51
|
Huang S, Huang M, Dong X. Advanced Glycation End Products in Meat during Processing and Storage: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Suhong Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xiaoli Dong
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
52
|
Li Y, Xue C, Quan W, Qin F, Wang Z, He Z, Zeng M, Chen J. Assessment the influence of salt and polyphosphate on protein oxidation and Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine formation in roasted beef patties. Meat Sci 2021; 177:108489. [PMID: 33714683 DOI: 10.1016/j.meatsci.2021.108489] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
The impact of NaCl and tripolyphosphate (TPP)/pyrophosphate (PP) on protein oxidation and Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) formation in roasted beef patties was investigated. The content of CML and CEL in patties treated with salts was approximately 1.1-1.7 and 1.2-3.2 times higher than that of the control samples, respectively. An increase in salt content caused higher oxidation of tryptophan and protein carbonylation with a decrease in Schiff bases (P < 0.05) and a slight decrease in lipid oxidation (P < 0.05). Significant correlations (P < 0.05) between CML, CEL, and protein oxidation measurements was found. The higher salts content, causing less cooking loss and higher moisture content, significantly correlated (P < 0.05) with CML, CEL content, and protein oxidation of the patties. The increase in CML and CEL content and protein oxidation in roasted patties with salts might be related to the pro-oxidation of salts, and also partly due to the temperature changes caused by the water-holding capacity of salts.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
53
|
Zhu Z, Yang J, Zhou X, Khan IA, Bassey AP, Huang M. Comparison of two kinds of peroxyl radical pretreatment at chicken myofibrillar proteins glycation on the formation of N ε-carboxymethyllysine and N ε-carboxyethyllysine. Food Chem 2021; 353:129487. [PMID: 33725542 DOI: 10.1016/j.foodchem.2021.129487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
During meat processing, two typical advanced glycation end products (AGEs), Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), are generated by free radical induction. However, the impact of peroxyl radicals on myofibrillar proteins (MPs) glycosylation and CML and CEL formation is scarcely reported. In this study, two peroxyl radicals called ROO· and LOO· derived from AAPH (2,2'-azobis (2-methylpropionamidine) dihydrochloride) and linoleic acid were exposed prior to the Maillard reaction (glucosamine incubation at 37 °C for 24 h). Levels of AGEs (CML/CEL), protein oxidation (sulfhydryl/carbonyl), free amino group, surface hydrophobicity, zeta potential, particle size, intrinsic fluorescence intensity and secondary structure were determined. Together with Pearson's correlation, the assumption that free radicals promote MPs oxidation and glycation, alter the aggregation behavior and structure modification, leading to AGEs promotion has been built. In addition, the effect of dose-dependency of peroxyl radical on AGEs has also been established with different effects of peroxyl radical induction.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing Yang
- Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., National R&D, Center for Poultry Processing Technology, Nanjing, Jiangsu 211200, PR China; Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Xinghu Zhou
- Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., National R&D, Center for Poultry Processing Technology, Nanjing, Jiangsu 211200, PR China
| | - Iftikhar Ali Khan
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China; Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., National R&D, Center for Poultry Processing Technology, Nanjing, Jiangsu 211200, PR China.
| |
Collapse
|
54
|
Cheng W, Wang X, Zhang Z, Ma L, Liu G, Wang Q, Chen F, Cheng KW. Development of an Isotope Dilution UHPLC-QqQ-MS/MS-Based Method for Simultaneous Determination of Typical Advanced Glycation End Products and Acrylamide in Baked and Fried Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2611-2618. [PMID: 33560839 DOI: 10.1021/acs.jafc.0c07575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a stable isotope dilution ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) method was developed and validated for simultaneous determination of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), and acrylamide (AA) in baked and fried foods. Ground food samples were extracted with acetone followed by two parallel assays. In assay A, a cleanup procedure based on dispersive solid-phase extraction was conducted for AA, free CML, and CEL analysis using the supernatant. In assay B, a multistep process including reduction, protein precipitation, acid hydrolysis, and solid-phase extraction was conducted for bound CML and CEL analysis using precipitation. The developed method was validated in terms of linearity, sensitivity (limit of detection, LOD; limit of quantitation, LOQ), accuracy, and precision. The results showed that the method had a wide linear range (0.25-500 ng/mL for CML and CEL, 0.5-500 ng/mL for AA), low LOD and LOQ (0.47-0.94 and 1.52-1.91 μg/kg, respectively), and good linearity (R2 > 0.999). The recovery test on baby biscuit and French fries samples showed the recovery rates of 90.2-108.3% for CML, 89.0-106.1% for CEL, and 94.5-112.3% for AA with satisfactory precision (relative standard deviation (RSD) < 10%). Finally, the developed method was successfully applied to 11 baked and fried food samples, and total CML, CEL, and AA contents varied in the ranges of 4.07-35.88 mg/kg, 1.99-14.49 mg/kg, and 5.56-506.64 μg/kg, respectively. Therefore, the isotope dilution UHPLC-QqQ-MS/MS method developed herein is promising for routine analysis of CML, CEL, and AA in baked and fried foods.
Collapse
Affiliation(s)
| | | | | | - Lukai Ma
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | | | | |
Collapse
|
55
|
Zhu Z, Fang R, Zhao D, Huang M, Wei Y. N ε -carboxymethyllysine and N ε -carboxyethyllysine kinetics and water loss analysis during chicken braising. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:388-397. [PMID: 32458464 DOI: 10.1002/jsfa.10528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Braised chicken is one of the well-known traditional processed meat products in China. However, reports are scarce with respect to the formation of Nɛ -carboxymethyllysine (CML) and Nɛ -carboxyethyllysine (CEL) during chicken braising. Furthermore, braising for a long time and using high-temperature process will result in water loss. However, the relationship between water loss and advanced glycation end products (AGEs) kinetics is limited. The present study aimed to investigate the relationship between water loss and kinetics of free and protein-bound CML and CEL in braised chicken under different braising conditions (60-100 °C for 5-60 min). RESULTS Levels of free and protein-bound CML and CEL were found to increase with heating time and temperature. The correlation coefficient (r2 ) was largest at zero-order reaction (free CML: r2 = 0.908-0.954, protein-bound CML: r2 = 0.901-0.958, free CEL: r2 = 0.952-0.973, protein-bound CEL: r2 = 0.959-0.965). The activation energy was 44.158 ± 3.638 kJ mol-1 for free CML, 40.041 ± 3.438 kJ mol-1 for protein-bound CML, 40.971 ± 0.334 kJ mol-1 for free CEL and 40.247 ± 0.553 kJ mol-1 for protein-bound CEL. Furthermore, with the increase of braising time and temperature, the drip loss and cooking loss also became aggravated. A significant positive correlation between water loss and AGEs levels during braising was observed by Pearson's correlation analysis (P < 0.05). CONCLUSION We conclude that the levels of free and protein-bound CML and CEL during braising were different, although they all met zero-order reaction kinetics. Water loss was probably one of the main reasons for the formation of AGEs during chicken braising. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rui Fang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Zhao
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Nanjing Huang Jiaoshou Food Technology Co., Ltd, National R&D Center for Poultry Processing Technology, Nanjing, China
| | | |
Collapse
|
56
|
Zhu Z, Fang R, Yang J, Khan IA, Huang J, Huang M. Air frying combined with grape seed extract inhibits N ε-carboxymethyllysine and N ε-carboxyethyllysine by controlling oxidation and glycosylation. Poult Sci 2020; 100:1308-1318. [PMID: 33518088 PMCID: PMC7858175 DOI: 10.1016/j.psj.2020.11.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
Advanced glycation end products (AGE), compounds formed in meat at the advanced stage of Maillard reaction, are easily exposed to thermal processing. Improving cooking condition and adding antioxidants are 2 common ways for AGE reduction. The present work compared the inhibition of grape seed extract (GSE) on levels of free and protein-bound Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in chicken breast under deep-frying and air-frying conditions. Efficiency of 5 concentrations of GSE (0.0, 0.2, 0.5, 0.8, and 1.0 g/kg) in retarding oxidation, glyoxal (GO), methylglyoxal (MGO), lysine (Lys), Maillard reaction degree (A294, A420), and Shiff's base were tested. Results showed that 0.5 g/kg GSE before heating significantly (P < 0.05) reduced AGE in fried breast chicken, whereas excessive supplementation of GSE (0.8 and 1 g/kg) was reverse. Air frying was found significantly (P < 0.05) better than deep frying to reduce the precursor substances (GO, MGO, and Lys) of AGE. In conclusion, GSE-derived polyphenols exhibited different inhibitory effects on oxidation and glycosylation at different concentrations. We found that 0.5 g/kg of GSE combined with air frying was the best recommendation for inhibiting CML and CEL.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Rui Fang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Jing Yang
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Iftikhar Ali Khan
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Jichao Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University Nanjing 210095, Jiangsu, China; Nanjing Huang Jiaoshou Food Science and Technology Co., Ltd., National R & D Center For Poultry Processing Technology, Nanjing 210095, China.
| |
Collapse
|
57
|
Zhu Z, Fang R, Huang M, Wei Y, Zhou G. Oxidation combined with Maillard reaction induced free and protein-bound Nε-carboxymethyllysine and Nε-carboxyethyllysine formation during braised chicken processing. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Hassoun A, Aït-Kaddour A, Sahar A, Cozzolino D. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: a Review of Advances over the Last Decade. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02510-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractThermal treatments are often applied during processing or preparation of muscle foods aiming to both improve the palatability and organoleptic properties and to ensure the safety of the treated food. However, the application of inappropriate or severe thermal treatments can lead to undesirable changes in the sensory and nutritional quality of heat-processed products, and especially so for foods that are sensitive to thermal treatments, such as meat and meat products. The impact of traditional and new heat processing technologies (e.g. microwaving, ohmic, and radio frequency heating) on meat quality has been widely assessed by a wide range of conventional methods, such as sensory, microbiological, and physicochemical methods. Due to the destructive nature and the time required to perform these assessments, alternative online methods are highly needed in order to achieve continuous monitoring through online applications. In this review paper, both traditional and new heat processing methods and their impact on the quality of meat will be first briefly presented. The methods and techniques that have been applied to monitor changes induced by application of thermal treatments will be then discussed. The main focus will be put on the application of spectroscopic techniques, as rapid and non-destructive methods compared to most conventional techniques. Finally, future trends and possible applications and research directions will be suggested.
Collapse
|
59
|
Sun X, Li X, Tang J, Lai K, Rasco BA, Huang Y. Formation of protein-bound N ε-carboxymethyllysine and N ε-carboxyethyllysine in ground pork during commercial sterilization as affected by the type and concentration of sugars. Food Chem 2020; 336:127706. [PMID: 32768907 DOI: 10.1016/j.foodchem.2020.127706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
This research was aimed to investigate the formation of protein-bound Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in ground pork at 121 °C (5-30 min) as affected by sugars (1-9% w/w, glucose, fructose, lactose, and sucrose).The addition of reducing sugar significantly (P < 0.05) increased the levels of CML and CEL in heat treated pork samples. Even adding 1% of glucose in pork could lead to 3.8 and 4.0 times increase in the formation rate constant (zero-order) of CML and CEL, respectively. In a typical commercial sterilization process (121 °C, 30 min), adding glucose, fructose or lactose in pork resulted in an average increase of 224-581%, 26-276%, and 8-189% CML, and 217-720%, 213%-15.8 times, and 20-150% CEL, respectively, depending on the sugar concentration. Sucrose did not promote the formation of CML and CEL in pork during heating.
Collapse
Affiliation(s)
- Xiaohua Sun
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China; College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Xiangjun Li
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Juming Tang
- Department of Biological System Engineering, Washington State University, Pullman, WA 99164-6120, United States
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Barbara A Rasco
- College of Agriculture and Natural Resources, University of Wyoming, Dept 3354, 1000 E University Ave, Laramie, WY 83071, United States
| | - Yiqun Huang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China.
| |
Collapse
|