51
|
Clostridium difficile disease: Diagnosis, pathogenesis, and treatment update. Surgery 2017; 162:325-348. [DOI: 10.1016/j.surg.2017.01.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
|
52
|
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 2017; 74:2959-2977. [PMID: 28352996 PMCID: PMC11107543 DOI: 10.1007/s00018-017-2509-x] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.
Collapse
Affiliation(s)
- G Adrienne Weiss
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
53
|
Liu YW, Chen YH, Chen JW, Tsai PJ, Huang IH. Immunization with Recombinant TcdB-Encapsulated Nanocomplex Induces Protection against Clostridium difficile Challenge in a Mouse Model. Front Microbiol 2017; 8:1411. [PMID: 28790999 PMCID: PMC5525027 DOI: 10.3389/fmicb.2017.01411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is considered to be one of the major cause of infectious diarrhea in healthcare systems worldwide. Symptoms of C. difficile infection are caused largely by the production of two cytotoxins: toxin A (TcdA) and toxin B (TcdB). Vaccine development is considered desirable as it would decrease the mounting medical costs and mortality associated with C. difficile infections. Biodegradable nanoparticles composed of poly-γ-glutamic acid (γ-PGA) and chitosan have proven to be a safe and effective antigen delivery system for many viral vaccines. However, few studies have used this efficient antigen carrier for bacterial vaccine development. In this study, we eliminated the toxin activity domain of toxin B by constructing a recombinant protein rTcdB consists of residues 1852-2363 of TcdB receptor binding domain. The rTcdB was encapsulated in nanoparticles composed of γ-PGA and chitosan. Three rounds of intraperitoneal vaccination led to high anti-TcdB antibody responses and afforded mice full protection mice from lethal dose of C. difficile spore challenge. Protection was associated with high levels of toxin-neutralizing antibodies, and the rTcdB-encapsulated NPs elicited a longer-lasting antibody titers than antigen with the conventional adjuvant, aluminum hydroxide. Significant reductions in the level of proinflammatory cytokines and chemokines were observed in vaccinated mouse. These results suggested that polymeric nanocomplex-based vaccine design can be useful in developing vaccine against C. difficile infections.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yu-Hung Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
54
|
Riedel T, Wetzel D, Hofmann JD, Plorin SPEO, Dannheim H, Berges M, Zimmermann O, Bunk B, Schober I, Spröer C, Liesegang H, Jahn D, Overmann J, Groß U, Neumann-Schaal M. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates. Int J Med Microbiol 2017; 307:311-320. [PMID: 28619474 DOI: 10.1016/j.ijmm.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic clades and five different toxin inventories in relation to the C. difficile model strains 630Δerm and R20291. Within 33 determined fermentation products, we identified two yet undescribed products (5-methylhexanoate and 4-(methylthio)-butanoate) of C. difficile. Our data revealed major differences in the fermentation products obtained after growth in a medium containing casamino acids and glucose as carbon and energy source. While the metabolism of branched chain amino acids remained comparable in all isolates, the aromatic amino acid uptake and metabolism and the central carbon metabolism-associated fermentation pathways varied strongly between the isolates. The patterns obtained followed neither the classification of the clades nor the ribotyping patterns nor the toxin distribution. As the toxin formation is strongly connected to the metabolism, our data allow an improved differentiation of C. difficile strains. The observed metabolic flexibility provides the optimal basis for the adaption in the course of infection and to changing conditions in different environments including the human gut.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Daniela Wetzel
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Julia Danielle Hofmann
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Simon Paul Erich Otto Plorin
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Henning Dannheim
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Ortrud Zimmermann
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany; Göttingen International Health Network, Göttingen, Germany
| | - Meina Neumann-Schaal
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.
| |
Collapse
|
55
|
Young VB. Old and new models for studying host-microbe interactions in health and disease: C. difficile as an example. Am J Physiol Gastrointest Liver Physiol 2017; 312:G623-G627. [PMID: 28360030 DOI: 10.1152/ajpgi.00341.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/31/2023]
Abstract
There has been an explosion of interest in studying the indigenous microbiota, which plays an important role in human health and disease. Traditionally, the study of microbes in relationship to human health involved consideration of individual microbial species that caused classical infectious diseases. With the interest in the human microbiome, an appreciation of the influence that complex communities of microbes can have on their environment has developed. When considering either individual pathogenic microbes or a symbiotic microbial community, researchers have employed a variety of model systems with which they can study the host-microbe interaction. With the use of studies of infections with the toxin-producing bacterium Clostridium difficile as a model for both a pathogen and beneficial bacterial communities as an example, this review will summarize and compare various model systems that can be used to gain insight into the host-microbe interaction.
Collapse
Affiliation(s)
- Vincent B Young
- Department of Internal Medicine/Infectious Diseases Division, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
56
|
Abstract
Clostridium difficile infection (CDI) is increasing in the outpatient setting, and older adults are at a higher risk for contracting CDI and experiencing poor outcomes. NPs may see this infection in the primary care setting. This article focuses on the presentation, treatment, and clinical practice implications for CDI in community-dwelling older adults.
Collapse
Affiliation(s)
- Anna Wentz Sams
- Anna W. Sams is an adult NP at Rockingham Gastroenterology Associates in Reidsville, N.C, and is in the process of completing her doctorate through the School of Nursing PhD program at the University of North Carolina, Greensboro, N.C. Laurie Kennedy-Malone is a nursing professor at the University of North Carolina at Greensboro School of Nursing, Greensboro, N.C
| | | |
Collapse
|
57
|
Raksanoh V, Shank L, Prangkio P, Yentongchai M, Sakdee S, Imtong C, Angsuthanasombat C. Zn 2+-dependent autocatalytic activity of the Bordetella pertussis CyaA-hemolysin. Biochem Biophys Res Commun 2017; 485:720-724. [PMID: 28238785 DOI: 10.1016/j.bbrc.2017.02.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
Proteolytic degradation of the ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of the Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was evidently detected upon solely-prolonged incubation. Here, a truncated CyaA-Hly fragment (CyaA-HP/BI) containing hydrophobic and acylation regions connected with the first RTX block (BI1015-1088) was constructed as a putative precursor for investigating its potential autocatalysis. The 70-kDa His-tagged CyaA-HP/BI fragment which was over-expressed in Escherichia coli as insoluble aggregate was entirely solubilized with 4 M urea. After re-naturation in a Ni2+-NTA affinity column, the purified-refolded CyaA-HP/BI fragment in HEPES buffer (pH 7.4) supplemented with 2 mM CaCl2 was completely degraded upon incubation at 37 °C for 3 h. Addition of 1,10-phenanthroline‒an inhibitor of Zn2+-dependent metalloproteases markedly reduced the extent of degradation for CyaA-HP/BI and CyaA-RTX, but the degradative effect was clearly enhanced by addition of 100 mM ZnCl2. Structural analysis of a plausible CyaA-HP/BI model revealed a potential Zn2+-binding His-Asp cluster located between the acylation region and RTX-BI1015-1088. Moreover, Arg997‒one of the identified cleavage sites of the CyaA-RTX fragment was located in close proximity to the Zn2+-binding catalytic site. Overall results demonstrated for the first time that the observed proteolysis of CyaA-HP/BI and CyaA-RTX fragments is conceivably due to their Zn2+-dependent autocatalytic activity.
Collapse
Affiliation(s)
- Veerada Raksanoh
- Division of Biochemistry and Biochemical Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lalida Shank
- Division of Biochemistry and Biochemical Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Panchika Prangkio
- Division of Biochemistry and Biochemical Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mattayaus Yentongchai
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Somsri Sakdee
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Bangkok 10160, Thailand.
| |
Collapse
|
58
|
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| |
Collapse
|
59
|
Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol 2017; 429:1030-1044. [PMID: 28232034 DOI: 10.1016/j.jmb.2017.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
The exotoxins toxin A (TcdA) and toxin B (TcdB) are produced by the bacterial pathogen Clostridium difficile and are responsible for the pathology associated with C. difficile infection (CDI). The antitoxin antibodies actoxumab and bezlotoxumab bind to and neutralize TcdA and TcdB, respectively. Bezlotoxumab was recently approved by the FDA for reducing the recurrence of CDI. We have previously shown that a single molecule of bezlotoxumab binds to two distinct epitopes within the TcdB combined repetitive oligopeptide (CROP) domain, preventing toxin binding to host cells. In this study, we characterize the binding of actoxumab to TcdA and examine its mechanism of toxin neutralization. Using a combination of approaches including a number of biophysical techniques, we show that there are two distinct actoxumab binding sites within the CROP domain of TcdA centered on identical amino acid sequences at residues 2162-2189 and 2410-2437. Actoxumab binding caused the aggregation of TcdA especially at higher antibody:toxin concentration ratios. Actoxumab prevented the association of TcdA with target cells demonstrating that actoxumab neutralizes toxin activity by inhibiting the first step of the intoxication cascade. This mechanism of neutralization is similar to that observed with bezlotoxumab and TcdB. Comparisons of the putative TcdA epitope sequences across several C. difficile ribotypes and homologous repeat sequences within TcdA suggest a structural basis for observed differences in actoxumab binding and/or neutralization potency. These data provide a mechanistic basis for the protective effects of the antibody in vitro and in vivo, including in various preclinical models of CDI.
Collapse
|
60
|
Usacheva EA, Jin JP, Peterson LR. Host response to Clostridium difficile infection: Diagnostics and detection. J Glob Antimicrob Resist 2016; 7:93-101. [PMID: 27693863 PMCID: PMC5124533 DOI: 10.1016/j.jgar.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a significant healthcare concern worldwide, and C. difficile is recognised as the most frequent aetiological agent of infectious healthcare-associated diarrhoea in hospitalised adult patients. The clinical manifestation of CDI varies from self-limited diarrhoea to life-threatening colitis. Such a broad disease spectrum can be explained by the impact of host factors. Currently, a complex CDI aetiology is widely accepted, acknowledging the interaction between bacteria and the host. C. difficile strains producing clostridial toxins A and B are considered toxigenic and can cause disease; those not producing the toxins are non-pathogenic. A person colonised with a toxigenic strain will not necessarily develop CDI. It is imperative to recognise patients with active disease from those only colonised with this pathogen and to implement appropriate treatment. This can be achieved by diagnostics that rely on host factors specific to CDI. This review will focus on major aspects of CDI pathogenesis and molecular mechanisms, describing host factors in disease progression and assessment of the host response in order to facilitate the development of CDI-specific diagnostics.
Collapse
Affiliation(s)
- Elena A Usacheva
- Infectious Disease Research, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL 60201, USA; University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| | - Jian-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lance R Peterson
- Infectious Disease Research, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL 60201, USA; University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
61
|
Chen S, Gu H, Sun C, Wang H, Wang J. Rapid detection of Clostridium difficile toxins and laboratory diagnosis of Clostridium difficile infections. Infection 2016; 45:255-262. [PMID: 27601055 DOI: 10.1007/s15010-016-0940-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clostridium difficile is an anaerobic, spore-forming and Gram-positive bacillus. It is the major cause of antibiotic-associated diarrhea prevailing in hospital settings. The morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Because of the poor clinical different between CDI and other causes of hospital-acquired diarrhea, laboratory test for C. difficile is an important intervention for diagnosis of CDI. OBJECTIVE Laboratory tests for CDI can broadly detect either the organisms or its toxins. Currently, several laboratory tests are used for diagnosis of CDI, including toxigenic culture, glutamate dehydrogenase detection, nucleic acid amplification testing, cell cytotoxicity assay, and enzyme immunoassay towards toxin A and/or B. This review focuses on the rapid testing of C. difficile toxins and currently available methods for diagnosis of CDI, giving an overview of the role that the toxins rapid detecting plays in clinical diagnosis of CDI.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Huawei Gu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
62
|
Meehan AM, Tariq R, Khanna S. Challenges in management of recurrent and refractory Clostridium difficile infection. World J Clin Infect Dis 2016; 6:28-36. [DOI: 10.5495/wjcid.v6.i3.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) is the most common nosocomial infection in the United States and is associated with a high mortality. One quarter of patients treated for CDI have at least one recurrence. Spore persistence, impaired host immune response and alteration in the gastrointestinal microbiome due to antibiotic use are factors in recurrent disease. We review the etiology of recurrent CDI and best approaches to management including fecal microbiota transplantation.
Collapse
|
63
|
Pilate T, Verhaegen J, Van Ranst M, Saegeman V. Binary toxin and its clinical importance in Clostridium difficile infection, Belgium. Eur J Clin Microbiol Infect Dis 2016; 35:1741-1747. [PMID: 27393490 DOI: 10.1007/s10096-016-2719-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Binary toxin-producing Clostridium difficile strains such as ribotypes 027 and 078 have been associated with increased Clostridium difficile infection (CDI) severity. Our objective was to investigate the association between presence of the binary toxin gene and CDI severity and recurrence. We performed a laboratory-based retrospective study including patients between January 2013 and March 2015 whose fecal samples were analyzed by polymerase chain reaction (PCR) for the presence of the genes for toxin B and binary toxin and a deletion in the tcdC gene, specific for ribotype 027. Clinical and epidemiological characteristics were compared between 33 binary toxin-positive CDI patients and 33 binary toxin-negative CDI patients. Subsequently, the characteristics of 66 CDI patients were compared to those of 66 diarrhea patients who were carriers of non-toxigenic C. difficile strains. Fifty-nine of 1034 (5.7 %) fecal samples analyzed by PCR were binary toxin-positive, belonging to 33 different patients. No samples were positive for ribotype 027. Binary toxin-positive CDI patients did not differ from binary toxin-negative CDI patients in terms of disease recurrence, morbidity, or mortality, except for a higher peripheral leukocytosis in the binary toxin-positive group (16.30 × 109/L vs. 11.65 × 109/L; p = 0.02). The second part of our study showed that CDI patients had more severe disease, but not a higher 30-day mortality rate than diarrhea patients with a non-toxicogenic C. difficile strain. In our setting with a low prevalence of ribotype 027, the presence of the binary toxin gene is not associated with poor outcome.
Collapse
Affiliation(s)
- T Pilate
- Department of Laboratory Medicine, UH Leuven, Herestraat 49, Leuven, Belgium.
| | - J Verhaegen
- Department of Laboratory Medicine, UH Leuven, Herestraat 49, Leuven, Belgium
| | - M Van Ranst
- Department of Laboratory Medicine, UH Leuven, Herestraat 49, Leuven, Belgium
| | - V Saegeman
- Department of Laboratory Medicine, UH Leuven, Herestraat 49, Leuven, Belgium
| |
Collapse
|
64
|
Russo HM, Rathkey J, Boyd-Tressler A, Katsnelson MA, Abbott DW, Dubyak GR. Active Caspase-1 Induces Plasma Membrane Pores That Precede Pyroptotic Lysis and Are Blocked by Lanthanides. THE JOURNAL OF IMMUNOLOGY 2016; 197:1353-67. [PMID: 27385778 DOI: 10.4049/jimmunol.1600699] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/04/2016] [Indexed: 12/27/2022]
Abstract
Canonical inflammasome activation induces a caspase-1/gasdermin D (Gsdmd)-dependent lytic cell death called pyroptosis that promotes antimicrobial host defense but may contribute to sepsis. The nature of the caspase-1-dependent change in plasma membrane (PM) permeability during pyroptotic progression remains incompletely defined. We assayed propidium(2+) (Pro(2+)) influx kinetics during NLRP3 or Pyrin inflammasome activation in murine bone marrow-derived macrophages (BMDMs) as an indicator of this PM permeabilization. BMDMs were characterized by rapid Pro(2+) influx after initiation of NLRP3 or Pyrin inflammasomes by nigericin (NG) or Clostridium difficile toxin B (TcdB), respectively. No Pro(2+) uptake in response to NG or TcdB was observed in Casp1(-/-) or Asc(-/-) BMDMs. The cytoprotectant glycine profoundly suppressed NG and TcdB-induced lysis but not Pro(2+) influx. The absence of Gsdmd expression resulted in suppression of NG-stimulated Pro(2+) influx and pyroptotic lysis. Extracellular La(3+) and Gd(3+) rapidly and reversibly blocked the induced Pro(2+) influx and markedly delayed pyroptotic lysis without limiting upstream inflammasome assembly and caspase-1 activation. Thus, caspase-1-driven pyroptosis requires induction of initial prelytic pores in the PM that are dependent on Gsdmd expression. These PM pores also facilitated the efflux of cytosolic ATP and influx of extracellular Ca(2+) Although lanthanides and Gsdmd deletion both suppressed PM pore activity and pyroptotic lysis, robust IL-1β release was observed in lanthanide-treated BMDMs but not in Gsdmd-deficient cells. This suggests roles for Gsdmd in both passive IL-1β release secondary to pyroptotic lysis and in nonlytic/nonclassical IL-1β export.
Collapse
Affiliation(s)
- Hana M Russo
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Joseph Rathkey
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Andrea Boyd-Tressler
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; and
| | | | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - George R Dubyak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; and Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
65
|
Valdés-Varela L, Hernández-Barranco AM, Ruas-Madiedo P, Gueimonde M. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates. Front Microbiol 2016; 7:738. [PMID: 27242753 PMCID: PMC4870236 DOI: 10.3389/fmicb.2016.00738] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
Collapse
Affiliation(s)
- L Valdés-Varela
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Ana M Hernández-Barranco
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Miguel Gueimonde
- Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
66
|
Martin-Verstraete I, Peltier J, Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins (Basel) 2016; 8:E153. [PMID: 27187475 PMCID: PMC4885068 DOI: 10.3390/toxins8050153] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.
Collapse
Affiliation(s)
- Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
- UFR Sciences du vivant, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France.
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| |
Collapse
|
67
|
Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2016; 27:167-99. [PMID: 24696432 DOI: 10.1128/cmr.00080-13] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract.
Collapse
|
68
|
Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel) 2016; 8:E134. [PMID: 27153087 PMCID: PMC4885049 DOI: 10.3390/toxins8050134] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies.
Collapse
Affiliation(s)
- Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Rome 00154, Italy.
| | - Steven Siarakas
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Sydney 2139, Australia.
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | | |
Collapse
|
69
|
Valdés-Varela L, Alonso-Guervos M, García-Suárez O, Gueimonde M, Ruas-Madiedo P. Screening of Bifidobacteria and Lactobacilli Able to Antagonize the Cytotoxic Effect of Clostridium difficile upon Intestinal Epithelial HT29 Monolayer. Front Microbiol 2016; 7:577. [PMID: 27148250 PMCID: PMC4840286 DOI: 10.3389/fmicb.2016.00577] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an opportunistic pathogen inhabiting the human gut, often being the aetiological agent of infections after a microbiota dysbiosis following, for example, an antibiotic treatment. C. difficile infections (CDI) constitute a growing health problem with increasing rates of morbidity and mortality at groups of risk, such as elderly and hospitalized patients, but also in populations traditionally considered low-risk. This could be related to the occurrence of virulent strains which, among other factors, have high-level of resistance to fluoroquinolones, more efficient sporulation and markedly high toxin production. Several novel intervention strategies against CDI are currently under study, such as the use of probiotics to counteract the growth and/or toxigenic activity of C. difficile. In this work, we have analyzed the capability of twenty Bifidobacterium and Lactobacillus strains, from human intestinal origin, to counteract the toxic effect of C. difficile LMG21717 upon the human intestinal epithelial cell line HT29. For this purpose, we incubated the bacteria together with toxigenic supernatants obtained from C. difficile. After this co-incubation new supernatants were collected in order to quantify the remnant A and B toxins, as well as to determine their residual toxic effect upon HT29 monolayers. To this end, the real time cell analyser (RTCA) model, recently developed in our group to monitor C. difficile toxic effect, was used. Results obtained showed that strains of Bifidobacterium longum and B. breve were able to reduce the toxic effect of the pathogen upon HT29, the RTCA normalized cell-index values being inversely correlated with the amount of remnant toxin in the supernatant. The strain B. longum IPLA20022 showed the highest ability to counteract the cytotoxic effect of C. difficile acting directly against the toxin, also having the highest capability for removing the toxins from the clostridial toxigenic supernatant. Image analysis showed that this strain prevents HT29 cell rounding; this was achieved by preserving the F-actin microstructure and tight-junctions between adjacent cells, thus keeping the typical epithelium-like morphology. Besides, preliminary evidence showed that the viability of B. longum IPLA20022 is needed to exert the protective effect and that secreted factors seems to have anti-toxin activity.
Collapse
Affiliation(s)
- Lorena Valdés-Varela
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Marta Alonso-Guervos
- Optical Microscopy and Image Processing Unit, University Institute of Oncology of Asturias, Scientific-Technical Services, University of Oviedo Oviedo, Spain
| | - Olivia García-Suárez
- Department of Morphology and Cellular Biology, University of Oviedo Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
70
|
Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation. BMC Microbiol 2015; 15:281. [PMID: 26680234 PMCID: PMC4683695 DOI: 10.1186/s12866-015-0614-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Clostridium difficile is one of the major nosocomial threats causing severe gastrointestinal infections. Compared to the well documented clinical symptoms, little is known about the processes in the bacterial cell like the regulation and activity of metabolic pathways. In this study, we present time-resolved and global data of extracellular substrates and products. In a second part, we focus on the correlation of fermentation products and substrate uptake with toxin production. Results Formation of different fermentation products during growth in a comparison between the two different media in a global approach was studied using non-targeted gas chromatography–mass spectrometry (GC-MS) based analysis. During cultivation in a casamino acids medium and minimal medium, the clinical isolate C. difficile 630Δerm showed major differences in amino acid utilization: In casamino acids medium, C. difficile preferred proline, leucine and cysteine as carbon and energy sources while glutamate and lysine were not or hardly used. In contrast, proline and leucine were consumed at a significantly later stage in minimal medium. Due to the more complex substrate mixture more fermentation products were detectable in the casamino acids medium, accompanied by major changes in the ratios between oxidative and reductive Stickland products. Different glucose consumption dynamics were observed in presence of either casamino acids or the minimal set of amino acids, accompanied by major changes in butanoate formation. This was associated with a variation in both the toxin yield and a change in the ratio of toxin A to toxin B. Conclusions Since in all media compositions, more than one substrate was available as a suitable carbon source, availability of different carbon sources and their metabolic fate appears to be the key factor for toxin formation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0614-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meina Neumann-Schaal
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Langer Kamp 19b, 38106, Braunschweig, Germany.
| | - Julia Danielle Hofmann
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Langer Kamp 19b, 38106, Braunschweig, Germany.
| | - Sabine Eva Will
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Langer Kamp 19b, 38106, Braunschweig, Germany.
| | - Dietmar Schomburg
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Langer Kamp 19b, 38106, Braunschweig, Germany.
| |
Collapse
|
71
|
Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies. Infect Immun 2015; 84:395-406. [PMID: 26573738 DOI: 10.1128/iai.00870-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/08/2015] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA(-) TcdB(+) strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients.
Collapse
|
72
|
The Protective Role of Albumin in Clostridium difficile Infection: A Step Toward Solving the Puzzle. Infect Control Hosp Epidemiol 2015; 36:1478-9. [PMID: 26456662 DOI: 10.1017/ice.2015.221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
73
|
Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. J Microbiol Methods 2015; 119:66-73. [PMID: 26436983 DOI: 10.1016/j.mimet.2015.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023]
Abstract
The incidence and severity of Clostridium difficile infections (CDI) has been increased not only among hospitalized patients, but also in healthy individuals traditionally considered as low risk population. Current treatment of CDI involves the use of antibiotics to eliminate the pathogen, although recurrent relapses have also been reported. For this reason, the search of new antimicrobials is a very active area of research. The strategy to use inhibitors of toxin's activity has however been less explored in spite of being a promising option. In this regard, the lack of fast and reliable in vitro screening methods to search for novel anti-toxin drugs has hampered this approach. The aim of the current study was to develop a method to monitor in real time the cytotoxicity of C. difficile upon the human colonocyte-like HT29 line, since epithelial intestinal cells are the primary targets of the toxins. The label-free, impedance based RCTA (real time cell analyser) technology was used to follow overtime the behaviour of HT29 in response to C. difficile LMG21717 producing both A and B toxins. Results obtained showed that the selection of the medium to grow the pathogen had a great influence in obtaining toxigenic supernatants, given that some culture media avoided the release of the toxins. A cytotoxic dose- and time-dependent effect of the supernatant obtained from GAM medium upon HT29 and Caco2 cells was detected. The sigmoid-curve fit of data obtained with HT29 allowed the calculation of different toxicological parameters, such as EC50 and LOAEL values. Finally, the modification in the behaviour of HT29 reordered in the RTCA was correlated with the cell rounding effect, typically induced by these toxins, visualized by time-lapsed captures using an optical microscope. Therefore, this RTCA method developed to test cytotoxicity kinetics of C. difficile supernatants upon IEC could be a valuable in vitro model for the screening of new anti-CDI agents.
Collapse
|
74
|
De Sordi L, Butt MA, Pye H, Kohoutova D, Mosse CA, Yahioglu G, Stamati I, Deonarain M, Battah S, Ready D, Allan E, Mullany P, Lovat LB. Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile. PLoS One 2015; 10:e0135039. [PMID: 26313448 PMCID: PMC4551672 DOI: 10.1371/journal.pone.0135039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/16/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections. METHODS PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29. RESULTS Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT. CONCLUSION This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon.
Collapse
Affiliation(s)
- Luisa De Sordi
- Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
- Research Department of Tissue & Energy, UCL, London, United Kingdom
| | - M. Adil Butt
- Research Department of Tissue & Energy, UCL, London, United Kingdom
- Division of Gastrointestinal Services, University College Hospital, London, United Kingdom
| | - Hayley Pye
- Research Department of Tissue & Energy, UCL, London, United Kingdom
| | - Darina Kohoutova
- Research Department of Tissue & Energy, UCL, London, United Kingdom
- Division of Gastrointestinal Services, University College Hospital, London, United Kingdom
| | - Charles A. Mosse
- Research Department of Tissue & Energy, UCL, London, United Kingdom
| | - Gokhan Yahioglu
- Department of Chemistry, Imperial College London, London, United Kingdom
- PhotoBiotics Ltd, Chemistry Building, Imperial College London, London, United Kingdom
| | - Ioanna Stamati
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Mahendra Deonarain
- PhotoBiotics Ltd, Chemistry Building, Imperial College London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sinan Battah
- Organix Ltd, Colchester, United Kingdom
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Derren Ready
- Public Health Laboratory London, Pathology & Pharmacy Building, London, United Kingdom
| | - Elaine Allan
- Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
| | - Peter Mullany
- Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
| | - Laurence B. Lovat
- Research Department of Tissue & Energy, UCL, London, United Kingdom
- Division of Gastrointestinal Services, University College Hospital, London, United Kingdom
| |
Collapse
|
75
|
Sartelli M, Malangoni MA, Abu-Zidan FM, Griffiths EA, Di Bella S, McFarland LV, Eltringham I, Shelat VG, Velmahos GC, Kelly CP, Khanna S, Abdelsattar ZM, Alrahmani L, Ansaloni L, Augustin G, Bala M, Barbut F, Ben-Ishay O, Bhangu A, Biffl WL, Brecher SM, Camacho-Ortiz A, Caínzos MA, Canterbury LA, Catena F, Chan S, Cherry-Bukowiec JR, Clanton J, Coccolini F, Cocuz ME, Coimbra R, Cook CH, Cui Y, Czepiel J, Das K, Demetrashvili Z, Di Carlo I, Di Saverio S, Dumitru IM, Eckert C, Eckmann C, Eiland EH, Enani MA, Faro M, Ferrada P, Forrester JD, Fraga GP, Frossard JL, Galeiras R, Ghnnam W, Gomes CA, Gorrepati V, Ahmed MH, Herzog T, Humphrey F, Kim JI, Isik A, Ivatury R, Lee YY, Juang P, Furuya-Kanamori L, Karamarkovic A, Kim PK, Kluger Y, Ko WC, LaBarbera FD, Lee JG, Leppaniemi A, Lohsiriwat V, Marwah S, Mazuski JE, Metan G, Moore EE, Moore FA, Nord CE, Ordoñez CA, Júnior GAP, Petrosillo N, Portela F, Puri BK, Ray A, Raza M, Rems M, Sakakushev BE, Sganga G, Spigaglia P, Stewart DB, Tattevin P, Timsit JF, To KB, Tranà C, Uhl W, Urbánek L, van Goor H, Vassallo A, Zahar JR, Caproli E, Viale P. WSES guidelines for management of Clostridium difficile infection in surgical patients. World J Emerg Surg 2015; 10:38. [PMID: 26300956 PMCID: PMC4545872 DOI: 10.1186/s13017-015-0033-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023] Open
Abstract
In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.
Collapse
Affiliation(s)
- Massimo Sartelli
- />Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62019 Macerata, Italy
| | | | - Fikri M. Abu-Zidan
- />Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | | | - Stefano Di Bella
- />2nd Infectious Diseases Division, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Lynne V. McFarland
- />Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Washington, USA
| | - Ian Eltringham
- />Department of Medical Microbiology, King’s College Hospital, London, UK
| | - Vishal G. Shelat
- />Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - George C. Velmahos
- />Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Ciarán P. Kelly
- />Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Sahil Khanna
- />Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN USA
| | | | - Layan Alrahmani
- />Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI USA
| | - Luca Ansaloni
- />General Surgery I, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Goran Augustin
- />Department of Surgery, University Hospital Center Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miklosh Bala
- />Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Frédéric Barbut
- />UHLIN (Unité d’Hygiène et de Lutte contre les Infections Nosocomiales) National Reference Laboratory for Clostridium difficile Groupe Hospitalier de l’Est Parisien (HUEP), Paris, France
| | - Offir Ben-Ishay
- />Department of General Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Aneel Bhangu
- />Academic Department of Surgery, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK
| | - Walter L. Biffl
- />Department of Surgery, University of Colorado, Denver Health Medical Center, Denver, USA
| | - Stephen M. Brecher
- />Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury MA and BU School of Medicine, Boston, MA USA
| | - Adrián Camacho-Ortiz
- />Department of Internal Medicine, University Hospital, Dr.José E. González, Monterrey, Mexico
| | - Miguel A. Caínzos
- />Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura A. Canterbury
- />Department of Pathology, University of Alberta Edmonton, Edmonton, AB Canada
| | - Fausto Catena
- />Emergency Surgery Department, Maggiore Parma Hospital, Parma, Italy
| | - Shirley Chan
- />Department of General Surgery, Medway Maritime Hospital, Gillingham Kent, UK
| | - Jill R. Cherry-Bukowiec
- />Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI USA
| | - Jesse Clanton
- />Department of Surgery, Northeast Ohio Medical University, Summa Akron City Hospital, Akron, OH USA
| | | | - Maria Elena Cocuz
- />Faculty of Medicine, Transilvania University, Infectious Diseases Hospital, Brasov, Romania
| | - Raul Coimbra
- />Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, University of California San Diego Health Science, San Diego, USA
| | - Charles H. Cook
- />Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Yunfeng Cui
- />Department of Surgery,Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Jacek Czepiel
- />Department of Infectious Diseases, Jagiellonian University, Medical College, Kraków, Poland
| | - Koray Das
- />Department of General Surgery, Adana Numune Training and Research Hospital, Adana, Turkey
| | - Zaza Demetrashvili
- />Department of Surgery, Tbilisi State Medical University, Kipshidze Central University Hospital, Tbilisi, Georgia
| | | | | | | | - Catherine Eckert
- />National Reference Laboratory for Clostridium difficile, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Christian Eckmann
- />Department of General, Visceral and Thoracic Surgery, Klinikum Peine, Hospital of Medical University Hannover, Peine, Germany
| | | | - Mushira Abdulaziz Enani
- />Department of Medicine, Section of Infectious Diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mario Faro
- />Department of General Surgery, Trauma and Emergency Surgery Division, ABC Medical School, Santo André, SP Brazil
| | - Paula Ferrada
- />Division of Trauma, Critical Care and Emergency Surgery, Virginia Commonwealth University, Richmond, VA USA
| | | | - Gustavo P. Fraga
- />Division of Trauma Surgery, Hospital de Clinicas, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Jean Louis Frossard
- />Service of Gastroenterology and Hepatology, Geneva University Hospital, Genève, Switzerland
| | - Rita Galeiras
- />Critical Care Unit, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Wagih Ghnnam
- />Department of Surgery Mansoura, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Carlos Augusto Gomes
- />Surgery Department, Hospital Universitario (HU) Terezinha de Jesus da Faculdade de Ciencias Medicas e da Saude de Juiz de Fora (SUPREMA), Hospital Universitario (HU) Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Venkata Gorrepati
- />Department of Internal Medicine, Pinnacle Health Hospital, Harrisburg, PA USA
| | - Mohamed Hassan Ahmed
- />Department of Medicine, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, Buckinghamshire UK
| | - Torsten Herzog
- />Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Felicia Humphrey
- />Department of Gastroenterology and Hepatology, Ochsner Clinic Foundation, New Orleans, LA USA
| | - Jae Il Kim
- />Department of Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Arda Isik
- />General Surgery Department, Erzincan University Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Rao Ivatury
- />Division of Trauma, Critical Care and Emergency Surgery, Virginia Commonwealth University, Richmond, VA USA
| | - Yeong Yeh Lee
- />School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan Malaysia
| | - Paul Juang
- />Department of Pharmacy Practice, St Louis College of Pharmacy, St Louis, MO USA
| | - Luis Furuya-Kanamori
- />Research School of Population Health, The Australian National University, Acton, ACT Australia
| | - Aleksandar Karamarkovic
- />Clinic For Emergency surgery, University Clinical Center of Serbia, Faculty of Medicine University of Belgrade, Belgrade, Serbia
| | - Peter K Kim
- />General and Trauma Surgery, Albert Einstein College of Medicine, North Bronx Healthcare Network, Bronx, NY USA
| | - Yoram Kluger
- />Department of General Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Wen Chien Ko
- />Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | - Jae Gil Lee
- />Division of Critical Care & Trauma Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Ari Leppaniemi
- />Abdominal Center, Helsinki University Hospital Meilahti, Helsinki, Finland
| | - Varut Lohsiriwat
- />Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sanjay Marwah
- />Department of Surgery, Post-Graduate Institute of Medical Sciences, Rohtak, India
| | - John E. Mazuski
- />Department of Surgery, Washington University School of Medicine, Saint Louis, USA
| | - Gokhan Metan
- />Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ernest E. Moore
- />Department of Surgery, University of Colorado, Denver Health Medical Center, Denver, USA
| | | | - Carl Erik Nord
- />Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Carlos A. Ordoñez
- />Department of Surgery, Fundación Valle del Lili, Hospital Universitario del Valle, Universidad del Valle, Cali, Colombia
| | | | - Nicola Petrosillo
- />2nd Infectious Diseases Division, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Francisco Portela
- />Gastroenterology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Basant K. Puri
- />Department of Medicine, Hammersmith Hospital and Imperial College London, London, UK
| | - Arnab Ray
- />Department of Gastroenterology and Hepatology, Ochsner Clinic Foundation, New Orleans, LA USA
| | - Mansoor Raza
- />Infectious Diseases and Microbiology Unit, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, Buckinghamshire UK
| | - Miran Rems
- />Department of Abdominal and General Surgery, General Hospital Jesenice, Jesenice, Slovenia
| | | | - Gabriele Sganga
- />Division of General Surgery and Organ Transplantation, Department of Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Patrizia Spigaglia
- />Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - David B. Stewart
- />Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA USA
| | - Pierre Tattevin
- />Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | | | - Kathleen B. To
- />Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI USA
| | - Cristian Tranà
- />Emergency Medicine and Surgery, Macerata hospital, Macerata, Italy
| | - Waldemar Uhl
- />Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Libor Urbánek
- />1st Surgical Clinic, University Hospital of St. Ann Brno, Brno, Czech Republic
| | - Harry van Goor
- />Department of Surgery, Radboud University Medical Center, Nijmegen, Netherlands
| | - Angela Vassallo
- />Infection Prevention/Epidemiology, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jean Ralph Zahar
- />Infection Control Unit, Angers University, CHU d’Angers, Angers, France
| | - Emanuele Caproli
- />Department of Surgery, Ancona University Hospital, Ancona, Italy
| | - Pierluigi Viale
- />Clinic of Infectious Diseases, St Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
76
|
Shields K, Araujo-Castillo RV, Theethira TG, Alonso CD, Kelly CP. Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe 2015; 34:59-73. [PMID: 25930686 PMCID: PMC4492812 DOI: 10.1016/j.anaerobe.2015.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Clostridium difficile infection (CDI) is increasingly prevalent, dangerous and challenging to prevent and manage. Despite intense national and international attention the incidence of primary and of recurrent CDI (PCDI and RCDI, respectively) have risen rapidly throughout the past decade. Of major concern is the increase in cases of RCDI resulting in substantial morbidity, morality and economic burden. RCDI management remains challenging as there is no uniformly effective therapy, no firm consensus on optimal treatment, and reliable data regarding RCDI-specific treatment options is scant. Novel therapeutic strategies are critically needed to rapidly, accurately, and effectively identify and treat patients with, or at-risk for, RCDI. In this review we consider the factors implicated in the epidemiology, pathogenesis and clinical presentation of RCDI, evaluate current management options for RCDI and explore novel and emerging therapies.
Collapse
Affiliation(s)
- Kelsey Shields
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| | - Roger V Araujo-Castillo
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Lowry Medical Office Building, Suite GB 110 Francis Street, Boston, MA 02215, United States.
| | - Thimmaiah G Theethira
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| | - Carolyn D Alonso
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Lowry Medical Office Building, Suite GB 110 Francis Street, Boston, MA 02215, United States.
| | - Ciaran P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, United States.
| |
Collapse
|
77
|
Jarrad A, Karoli T, Blaskovich MAT, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 2015; 58:5164-85. [PMID: 25760275 PMCID: PMC4500462 DOI: 10.1021/jm5016846] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 12/17/2022]
Abstract
In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization.
Collapse
Affiliation(s)
- Angie
M. Jarrad
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tomislav Karoli
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Dena Lyras
- School
of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Cooper
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
78
|
Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester FA, Hyams JS, Devers T, Bronson R, Lacy DB, Ho KY, Crum CP, McKeon F, Xian W. Cloning and variation of ground state intestinal stem cells. Nature 2015; 522:173-8. [PMID: 26040716 PMCID: PMC4853906 DOI: 10.1038/nature14484] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, “ground state” stem cells of the human intestine and colon. We show that derived stem cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells likely enforces the functional specificity of the adult intestinal tract. Using clonally-derived colonic epithelia, we show that toxins A or B of the enteric pathogen C. difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Xia Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Yusuke Yamamoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Lane H Wilson
- 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Ting Zhang
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Brooke E Howitt
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA
| | - Melissa A Farrow
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Florian Kern
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Gang Ning
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Yue Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Chiea Chuen Khor
- 1] Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore [2] Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| | - Benoit Chevalier
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Denis Bertrand
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Lingyan Wu
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Francisco A Sylvester
- Department of Pediatrics, Division of Gastroenterology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut 06106, USA
| | - Thomas Devers
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Roderick Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Khek Yu Ho
- Department of Medicine, National University of Singapore, 119228 Singapore
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA
| | - Frank McKeon
- 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore [3] Department of Medicine, National University of Singapore, 119228 Singapore [4] Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA
| | - Wa Xian
- 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA [4] Department of Medicine, National University of Singapore, 119228 Singapore [5] Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA
| |
Collapse
|
79
|
Kilic A, Alam MJ, Tisdel NL, Shah DN, Yapar M, Lasco TM, Garey KW. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples. Ann Lab Med 2015; 35:306-13. [PMID: 25932438 PMCID: PMC4390698 DOI: 10.3343/alm.2015.35.3.306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 01/28/2015] [Indexed: 01/03/2023] Open
Abstract
Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run.
Collapse
Affiliation(s)
- Abdullah Kilic
- Department of Microbiology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey. ; Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX, USA. ; St Luke's Episcopal Hospital, Houston, TX, USA
| | - Mohammad J Alam
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX, USA
| | | | - Dhara N Shah
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX, USA
| | - Mehmet Yapar
- Department of Microbiology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | | | - Kevin W Garey
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX, USA. ; St Luke's Episcopal Hospital, Houston, TX, USA
| |
Collapse
|
80
|
Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect Immun 2015; 83:2369-81. [PMID: 25824828 DOI: 10.1128/iai.03136-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
Large clostridial toxins (LCTs) are produced by at least four pathogenic clostridial species, and several LCTs are proven pivotal virulence factors for both human and veterinary diseases. TpeL is a recently identified LCT produced by Clostridium perfringens that has received relatively limited study. In response, the current study surveyed carriage of the tpeL gene among different C. perfringens strains, detecting this toxin gene in some type A, B, and C strains but not in any type D or E strains. This study also determined that all tested strains maximally produce, and extracellularly release, TpeL at the late-log or early-stationary growth stage during in vitro culture, which is different from the maximal late-stationary-phase production reported previously for other LCTs and for TpeL production by C. perfringens strain JIR12688. In addition, the present study found that TpeL levels in culture supernatants can be repressed by either glucose or sucrose. It was also shown that, at natural production levels, TpeL is a significant contributor to the cytotoxic activity of supernatants from cultures of tpeL-positive strain CN3685. Lastly, this study identified TpeL, which presumably is produced in the intestines during diseases caused by TpeL-positive type B and C strains, as a toxin whose cytotoxicity decreases after treatment with trypsin; this finding may have pathophysiologic relevance by suggesting that, like beta toxin, TpeL contributes to type B and C infections in hosts with decreased trypsin levels due to disease, diet, or age.
Collapse
|
81
|
Goy SD, Olling A, Neumann D, Pich A, Gerhard R. Human neutrophils are activated by a peptide fragment of Clostridium difficile toxin B presumably via formyl peptide receptor. Cell Microbiol 2015; 17:893-909. [PMID: 25529763 DOI: 10.1111/cmi.12410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023]
Abstract
Clostridium difficile may induce antibiotic-associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB-induced rise in intracellular-free Ca(2+) and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR-1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR-1. Domain analyses revealed that the N-terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro-inflammatory ligand effect can be triggered even by cleaved and, thus, non-cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved 'non-cytotoxic' fragments and (iii) an interaction of the N-terminal glucosyltransferase domain instead of the C-terminal receptor binding domain of TcdB with target cells.
Collapse
Affiliation(s)
| | | | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Germany
| |
Collapse
|
82
|
Martin J. The contribution of strains and hosts to outcomes in Clostridium difficile infection. Infect Dis Clin North Am 2015; 29:51-61. [PMID: 25582645 DOI: 10.1016/j.idc.2014.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acquisition of Clostridium difficile spores can be followed by a spectrum of clinical outcomes ranging from asymptomatic transit through the bowel to severe colitis and death. This clinical variability is a product of bacterial virulence and host susceptibility to the pathogen. It is important to identify patients at high risk of poor outcome so that increased monitoring and optimal treatment strategies can be instigated. This article discusses the evidence linking strain type to clinical outcome, including the importance of toxin and nontoxin virulence factors. It reviews host factors and their relationship with C difficile infection susceptibility, recurrence, and mortality.
Collapse
Affiliation(s)
- Jessica Martin
- University of Leeds, Old Medical School, Leeds General Infirmary, Leeds LS1 3EX, UK.
| |
Collapse
|
83
|
Mathur H, Rea MC, Cotter PD, Ross RP, Hill C. The potential for emerging therapeutic options for Clostridium difficile infection. Gut Microbes 2015; 5:696-710. [PMID: 25564777 PMCID: PMC4615897 DOI: 10.4161/19490976.2014.983768] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review.
Collapse
Key Words
- ATCC, American Type Culture Collection
- CDI, Clostridium difficile infection
- CdtLoc, binary toxin locus
- Clostridium difficile
- DNA, deoxyribonucleic acid
- DPC, Dairy Products Collection
- ESCMID, European Society of Clinical Microbiology and Infectious Diseases
- ETEC, enterotoxigenic E. coli
- FDA, Food and Drug Administration
- FMT, faecal microbiota transplantation
- GIT, gastrointestinal tract
- HIV, human immunodeficiency virus
- IDSA, Infectious Diseases Society of America
- IgG, immunoglobulin G
- LTA, lipoteichoic acid
- M21V, methionine to valine substitution at residue 21
- MIC, minimum inhibitory concentration
- NGS, next generation sequencing
- NVB, Novacta Biosystems Ltd
- PMC, pseudomembranous colitis
- PaLoc, pathogenicity locus
- R027, ribotype 027
- RBD
- RBS, ribosome binding site
- RNA, ribonucleic acid
- SHEA, Society for Healthcare Epidemiology of America
- V15F, valine to phenylalanine substitution at residue 15
- antibiotics
- faecal microbiota transplantation
- receptor binding domain
- toxins
- vaccines
Collapse
Affiliation(s)
- Harsh Mathur
- School of Microbiology; University College Cork; Cork, Ireland,Teagasc Food Research Center; Moorepark; Fermoy, Ireland
| | - Mary C Rea
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| | - R Paul Ross
- Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,College of Science; Engineering and Food Science; University College Cork; Cork, Ireland
| | - Colin Hill
- School of Microbiology; University College Cork; Cork, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| |
Collapse
|
84
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
85
|
Broad coverage of genetically diverse strains of Clostridium difficile by actoxumab and bezlotoxumab predicted by in vitro neutralization and epitope modeling. Antimicrob Agents Chemother 2014; 59:1052-60. [PMID: 25451052 DOI: 10.1128/aac.04433-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infections (CDIs) are the leading cause of hospital-acquired infectious diarrhea and primarily involve two exotoxins, TcdA and TcdB. Actoxumab and bezlotoxumab are human monoclonal antibodies that neutralize the cytotoxic/cytopathic effects of TcdA and TcdB, respectively. In a phase II clinical study, the actoxumab-bezlotoxumab combination reduced the rate of CDI recurrence in patients who were also treated with standard-of-care antibiotics. However, it is not known whether the antibody combination will be effective against a broad range of C. difficile strains. As a first step toward addressing this, we tested the ability of actoxumab and bezlotoxumab to neutralize the activities of toxins from a number of clinically relevant and geographically diverse strains of C. difficile. Neutralization potencies, as measured in a cell growth/survival assay with purified toxins from various C. difficile strains, correlated well with antibody/toxin binding affinities. Actoxumab and bezlotoxumab neutralized toxins from culture supernatants of all clinical isolates tested, including multiple isolates of the BI/NAP1/027 and BK/NAP7/078 strains, at antibody concentrations well below plasma levels observed in humans. We compared the bezlotoxumab epitopes in the TcdB receptor binding domain across known TcdB sequences and found that key substitutions within the bezlotoxumab epitopes correlated with the relative differences in potencies of bezlotoxumab against TcdB of some strains, including ribotypes 027 and 078. Combined with in vitro neutralization data, epitope modeling will enhance our ability to predict the coverage of new and emerging strains by actoxumab-bezlotoxumab in the clinic.
Collapse
|
86
|
Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 2014; 5:579-93. [PMID: 25483328 PMCID: PMC4615314 DOI: 10.4161/19490976.2014.969632] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.
Collapse
Key Words
- AAD, antibiotic associated diarrhea
- C. difficile,Clostridium difficile
- CDI, C. difficile infection
- CDT, Clostridium difficile transferase
- CDTLoc, CDT locus
- CDTa, CDT enzymatic component
- CDTb, CDT binding/translocation component
- CST, Clostridium spiroforme toxin
- CWPs, cell wall protein
- Clostridium
- ECF, extracytoplasmic function
- HMW, high molecular weight
- LMW, low molecular weight
- LSR, lipolysis-stimulated lipoprotein receptor
- PCR, polymerase chain reaction
- PFGE, pulsed field gel electrophoresis
- PaLoc, pathogenicity locus
- REA, restriction endonuclease analysis
- S-layer, surface layer
- SLPs, S-layer proteins
- TcdA, toxin A
- TcdB, toxin B
- antibiotic
- colitis
- difficile
- infection
- nosocomial
- toxin
- virulence factor
- ι-toxin, iota toxin
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | | | - Glen P Carter
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Edward Rose
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton, Victoria, Australia,Correspondence to: Dena Lyras;
| |
Collapse
|
87
|
Heinrichs JH, Therien AG. Prevention of Clostridium difficile infections—The role of vaccines and therapeutic immunoglobulins. SEMINARS IN COLON AND RECTAL SURGERY 2014. [DOI: 10.1053/j.scrs.2014.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
88
|
Yun B, Oh S, Griffiths MW. Lactobacillus acidophilus modulates the virulence of Clostridium difficile. J Dairy Sci 2014; 97:4745-58. [PMID: 24856984 DOI: 10.3168/jds.2014-7921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 12/14/2022]
Abstract
Clostridium difficile is a spore-forming, toxin-producing, anaerobic bacterium that colonizes the human gastrointestinal tract. This pathogen causes antibiotic-associated diarrhea and colitis in animals and humans. Antibiotic-associated diseases may be treated with probiotics, and interest is increasing in such uses of probiotics. This study investigated the effect of Lactobacillus strains on the quorum-sensing signals and toxin production of C. difficile. In addition, an in vivo experiment was designed to assess whether Lactobacillus acidophilus GP1B is able to control C. difficile-associated disease. Autoinducer-2 activity was measured for C. difficile using the Vibrio harveyi coupled bioluminescent assay. Cell extract (10μg/mL) of L. acidophilus GP1B exhibited the highest inhibitory activity among 5 to 40μg/mL cell-extract concentrations. Real-time PCR data indicated decreased transcriptional levels in luxS, tcdA, tcdB, and txeR genes in the presence of 10μg/mL of cell extract of L. acidophilus GP1B. Survival rates at 5d for mice given the pathogen alone with L. acidophilus GP1B cell extract or L. acidophilus GP1B were 10, 70, and 80%, respectively. In addition, the lactic acid-produced L. acidophilus GP1B exhibits an inhibitory effect against the growth of C. difficile. Both the L. acidophilus GP1B and GP1B cell extract have significant antipathogenic effects on C. difficile.
Collapse
Affiliation(s)
- B Yun
- Division of Animal Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
| | - S Oh
- Division of Animal Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.
| | - M W Griffiths
- Department of Food Science, University of Guelph, Canadian Research Institute for Food Safety, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
89
|
Diebel LN, Liberati DM. Reinforcement of the intestinal mucus layer protects against Clostridium difficile intestinal injury in vitro. J Am Coll Surg 2014; 219:460-8. [PMID: 25067805 DOI: 10.1016/j.jamcollsurg.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/02/2014] [Accepted: 05/16/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND Clostridium difficile infection is increasing in incidence and severity. Attributable factors include virulence factors, including C difficile toxins A and B, as well as host immunologic status. The mucus component of the intestinal barrier is impaired by malnutrition, shock insults, and alterations in the gut microbiome. Exogenous phosphatidylcholine (PC) administration results in reinforcement of the mucus layer and is of therapeutic benefit in chronic ulcerative colitis. We therefore studied the role of exogenous PC combined with secretory immunoglobulin A (IgA) in intestinal barrier function against C difficile infection in vitro. STUDY DESIGN Dimeric IgA was placed in the basal chambers of mucus-producing (HT29-methotrexate) and non-mucus-producing (HT29) strains of intestinal epithelial monolayers and allowed to undergo transcytosis and, in additional experiments, exogenous colostral IgA (30 ng/mL) was added to the apical media. After subsequent coculture with PC and C difficile toxin A in the apical chamber, tumor necrosis factor-α, interleukin-6, toxin A uptake, intestinal epithelial cell monolayer permeability, and necrosis were determined. RESULTS A significant decrease of 4- to 5-fold in tumor necrosis factor-α and interleukin-6 levels and equally significant decreases in toxin A uptake and permeability changes in the intestinal cell monolayers with mucus or PC and transcytosed or colostral IgA vs control are shown. All groups analyzed also displayed a 2- to 3-fold reduction in necrosis. CONCLUSIONS Mucus or "exogenous" mucus in the form of PC has a synergistic role with secretory IgA in barrier defense against C difficile toxin A. Exogenous PC administration can be a therapeutic adjunct in patients with severe or recalcitrant C difficile infection.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Department of Surgery, Wayne State University Medical Center, Detroit, MI.
| | - David M Liberati
- Department of Surgery, Wayne State University Medical Center, Detroit, MI
| |
Collapse
|
90
|
Orth P, Xiao L, Hernandez LD, Reichert P, Sheth PR, Beaumont M, Yang X, Murgolo N, Ermakov G, DiNunzio E, Racine F, Karczewski J, Secore S, Ingram RN, Mayhood T, Strickland C, Therien AG. Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem 2014; 289:18008-21. [PMID: 24821719 DOI: 10.1074/jbc.m114.560748] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.
Collapse
Affiliation(s)
- Peter Orth
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | - Li Xiao
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | | | - Paul Reichert
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | - Payal R Sheth
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | | | - Xiaoyu Yang
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | | | | | | | - Fred Racine
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | | | - Susan Secore
- Merck & Co., Inc., West Point, Pennsylvania 19486
| | | | - Todd Mayhood
- From Merck & Co., Inc., Kenilworth, New Jersey 07023
| | | | | |
Collapse
|
91
|
Chilton CH, Gharbia SE, Fang M, Misra R, Poxton IR, Borriello SP, Shah HN. Comparative proteomic analysis of Clostridium difficile isolates of varying virulence. J Med Microbiol 2014; 63:489-503. [DOI: 10.1099/jmm.0.070409-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The soluble proteome of three Clostridium difficile strains of varying pathogenic potential, designated B-1, Tra 5/5 and 027 SM, were compared using differential in-gel electrophoresis in which the proteins of each strain were labelled with CyDyes. This enabled visual inspection of the 2D profiles of strains and identification of differentially expressed proteins using image analysis software. Unlabelled protein reference maps of the predominant proteins were then generated for each strain using 2D gel electrophoresis followed by protein sequencing of each spot using a Reflectron matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. Increased coverage of the proteome was achieved using 1D gel electrophoresis in a bottom-up approach using LC-MS/MS of 1 cm gel slices. A total of 888 different proteins were detected by comparative analysis of isolates grown in parallel for 64 h on blood agar plates. Of these, only 38 % were shared between all isolates. One hundred and ten proteins were identified as showing ≥2-fold difference in expression between strains. Differential expression was shown in a number of potential virulence and colonization factors. Toxin B was detected in the more virulent strains B-1 and 027 SM, but not in the lower virulent strain Tra 5/5, despite all strains possessing an intact pathogenicity locus. The S-layer protein (Cwp2) was identified in strains 027 SM and Tra 5/5 but not strain B-1, and differences in the post-translational modification of SlpA were noted for strain B-1. The variant S-layer profile of strain B-1 was confirmed by genomic comparison, which showed a 58 kb insertion in the S-layer operon of strain B-1. Differential post-translation modification events were also noted in flagellar proteins, thought to be due to differential glycosylation. This study highlights genomic and proteomic variation of different Clostridium difficile strains and suggests a number of factors may play a role in mediating the varying virulence of these different strains.
Collapse
Affiliation(s)
- C. H. Chilton
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds LS1 3EX, UK
| | - S. E. Gharbia
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| | - M. Fang
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| | - R. Misra
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| | - I. R. Poxton
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - S. P. Borriello
- Veterinary Medicines Directorate, Addlestone, Surrey KT15 3NB, UK
| | - H. N. Shah
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| |
Collapse
|
92
|
Ternan NG, Jain S, Graham RLJ, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014; 9:e88960. [PMID: 24586458 PMCID: PMC3933415 DOI: 10.1371/journal.pone.0088960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.
Collapse
Affiliation(s)
- Nigel G. Ternan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Shailesh Jain
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Robert L. J. Graham
- School of Medicine, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
93
|
Carter GP, Cheung JK, Larcombe S, Lyras D. Regulation of toxin production in the pathogenic clostridia. Mol Microbiol 2013; 91:221-31. [DOI: 10.1111/mmi.12469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Glen P. Carter
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Jackie K. Cheung
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Sarah Larcombe
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| |
Collapse
|
94
|
Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003782. [PMID: 24098139 PMCID: PMC3789829 DOI: 10.1371/journal.pgen.1003782] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Abstract
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Laure Saujet
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Ana R. Tomé
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Evelyne Couture-Tosi
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- * E-mail: (BD); (AOH)
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
- * E-mail: (BD); (AOH)
| |
Collapse
|
95
|
The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol 2013; 195:5174-85. [PMID: 24039264 DOI: 10.1128/jb.00501-13] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ(28)) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile.
Collapse
|
96
|
Abstract
Clostridium difficile infections (CDI) have emerged as a major cause of healthcare associated disease, and recent epidemiological evidence also suggests an important role in community-acquired diarrhea. This increase is associated with specific types, especially PCR ribotypes 027 and 078, which are sometimes referred to as “hypervirulent”. Over the past years major advances have been made in our understanding of C. difficile pathogenicity, with the identification and characterization of the major clostridial toxins TcdA and TcdB. However, the relation between the toxins, their regulation, and “hypervirulence” remain unclear. Here I review our current understanding of C. difficile pathogenicity and argue that “hypervirulent” is an inadequate term to describe PCR ribotypes 027 and 078, that the ability of C. difficile to cause problematic infections is a consequence of a multifactorial process that extends beyond toxins, sporulation, and antimicrobial resistance, and that vigilance is in order toward types that are closely related to ribotypes 027 and 078, but are currently not considered problematic.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Medical Microbiology; Leiden University Medical Center; Leiden, the Netherlands
| |
Collapse
|
97
|
Lo Vecchio A, Della Ventura B, Nicastro E. Clostridium difficile antibodies: a patent evaluation (WO2013028810). Expert Opin Ther Pat 2013; 23:1635-40. [PMID: 23978053 DOI: 10.1517/13543776.2013.832203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Incidence and severity of Clostridium difficile infection (CDI) are increasing worldwide. Toxins A (TcdA) and B (TcdB) and host immune response are the major determinates of CD pathogenesis and represent a new, stimulating therapeutic target to control CDI. AREAS COVERED The present patent and literature on the pathogenesis and treatment of CD were critically reviewed. The patent was described and put into clinical context, highlighting possible advantages and barriers to use. It consists of a blend of monoclonal antibodies (mAbs) and antigen-binding portions that neutralize TcdA, targeting the enterocyte-binding domain. It demonstrated good efficacy in in vivo models and seems promising in clinical practice. However, recent evidence reshaped the central role of TcdA. EXPERT OPINION Current treatments are inadequate to control CDI and recurrence. Toxin-targeted mAbs are one of the most promising approaches for CDI, including infection by hypervirulent strains. At-risk subjects and those experiencing recurrence are the ideal targets for this second-line treatment; however CDI epidemiology is fast-changing and mAbs may represent a powerful option also for other patients. The re-evaluation of the pathogenic role of TcdA may potentially limit the use of this product; however, the possible administration in combination with other therapeutic agents may optimize its efficacy.
Collapse
Affiliation(s)
- Andrea Lo Vecchio
- University of Naples Federico II, Department of Translational Medical Science, Section of Pediatrics , Via Pansini 5, 80131 Naples , Italy +39 081 7464232 ; +39 081 7464232 ;
| | | | | |
Collapse
|
98
|
In vivo physiological and transcriptional profiling reveals host responses to Clostridium difficile toxin A and toxin B. Infect Immun 2013; 81:3814-24. [PMID: 23897615 DOI: 10.1128/iai.00869-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toxin A (TcdA) and toxin B (TcdB) of Clostridium difficile cause gross pathological changes (e.g., inflammation, secretion, and diarrhea) in the infected host, yet the molecular and cellular pathways leading to observed host responses are poorly understood. To address this gap, we evaluated the effects of single doses of TcdA and/or TcdB injected into the ceca of mice, and several endpoints were analyzed, including tissue pathology, neutrophil infiltration, epithelial-layer gene expression, chemokine levels, and blood cell counts, 2, 6, and 16 h after injection. In addition to confirming TcdA's gross pathological effects, we found that both TcdA and TcdB resulted in neutrophil infiltration. Bioinformatics analyses identified altered expression of genes associated with the metabolism of lipids, fatty acids, and detoxification; small GTPase activity; and immune function and inflammation. Further analysis revealed transient expression of several chemokines (e.g., Cxcl1 and Cxcl2). Antibody neutralization of CXCL1 and CXCL2 did not affect TcdA-induced local pathology or neutrophil infiltration, but it did decrease the peripheral blood neutrophil count. Additionally, low serum levels of CXCL1 and CXCL2 corresponded with greater survival. Although TcdA induced more pronounced transcriptional changes than TcdB and the upregulated chemokine expression was unique to TcdA, the overall transcriptional responses to TcdA and TcdB were strongly correlated, supporting differences primarily in timing and potency rather than differences in the type of intracellular host response. In addition, the transcriptional data revealed novel toxin effects (e.g., altered expression of GTPase-associated and metabolic genes) underlying observed physiological responses to C. difficile toxins.
Collapse
|
99
|
Patrick Schenck L, Hirota SA, Hirota CL, Boasquevisque P, Tulk SE, Li Y, Wadhwani A, Doktorchik CTA, MacNaughton WK, Beck PL, MacDonald JA, MacDonald JA. Attenuation of Clostridium difficile toxin-induced damage to epithelial barrier by ecto-5'-nucleotidase (CD73) and adenosine receptor signaling. Neurogastroenterol Motil 2013; 25:e441-53. [PMID: 23600886 DOI: 10.1111/nmo.12139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clostridium difficile (Cdf) releases toxins (TcdA and TcdB) that damage the intestinal epithelial barrier. Ecto-5'-nucleotidase (CD73) is expressed on intestinal epithelial cells, and it is hypothesized to protect against toxin-induced epithelial damage through the cleavage of 5'-AMP to adenosine (Ado) and subsequent activation of adenosine receptors (AdoRs). Herein, we sought to assess the potential protective effects of CD73 and AdoR signaling on the injurious effects of Cdf toxins. METHODS Barrier function was assessed with T84 colonocytes. Transepithelial electrical resistance (TEER), paracellular fluorescein isothiocyanate (FITC)-dextran flux, and tight junction protein (ZO-1) integrity were monitored. Intrarectal installation of Cdf toxin was used to assess epithelial damage in vivo. KEY RESULTS TcdA/B caused reduced TEER and increased paracellular flux in vitro. Concurrent treatment with 5'-AMP attenuated these responses to Cdf toxin; an effect that was blocked with ZM241385 (AdoRA2 antagonist). APCP, a CD73 inhibitor, also suppressed the protective effects of 5'-AMP on paracellular flux. 5'-AMP reduced toxin-induced disruption of ZO-1, an effect that was abolished by APCP and ZM241385. Inhibition of CD73 with APCP during Cdf toxin exposure led to increased intestinal barrier permeability and epithelial damage in vivo. Intrarectal instillation of 5'-AMP had no effect on toxin-induced intestinal injury. CONCLUSIONS & INFERENCES Our data suggest that CD73 has a protective role against TcdA/B-induced damage. 5'-AMP treatment attenuated the damaging effects of Cdf toxin in vitro, and inhibitors of CD73 (APCP) and AdoRs (ZM241385) revealed that the cleavage of 5'-AMP to Ado was necessary for the protective effects. Inhibition of CD73 in vivo increases colonic tissue damage and epithelial permeability during Cdf toxin exposure.
Collapse
Affiliation(s)
| | | | - C. L. Hirota
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | | | - S. E. Tulk
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - Y. Li
- Department of Medicine; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - A. Wadhwani
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - C. T. A. Doktorchik
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - W. K. MacNaughton
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - P. L. Beck
- Department of Medicine; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - J. A. MacDonald
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | | |
Collapse
|
100
|
Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 2013; 9:e1003356. [PMID: 23675301 PMCID: PMC3649964 DOI: 10.1371/journal.ppat.1003356] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/27/2013] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile spores must germinate in vivo to become actively growing bacteria in order to produce the toxins that are necessary for disease. C. difficile spores germinate in vitro in response to certain bile acids and glycine. In other sporulating bacteria, proteins embedded within the inner membrane of the spore sense the presence of germinants and trigger the release of Ca⁺⁺-dipicolinic acid (Ca⁺⁺-DPA) from the spore core and subsequent hydrolysis of the spore cortex, a specialized peptidoglycan. Based upon homology searches of known germinant receptors from other spore-forming bacteria, C. difficile likely uses unique mechanisms to recognize germinants. Here, we identify the germination-specific protease, CspC, as the C. difficile bile acid germinant receptor and show that bile acid-mediated germination is important for establishing C. difficile disease in the hamster model of infection. These results highlight the importance of bile acids in triggering in vivo germination and provide the first description of a C. difficile spore germinant receptor. Blocking the interaction of bile acids with the C. difficile spore may represent an attractive target for novel therapeutics.
Collapse
Affiliation(s)
- Michael B. Francis
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Charlotte A. Allen
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|