51
|
Synthesis and Bio-physical Characterization of Crustin Capped Zinc Oxide Nanoparticles, and Their Photocatalytic, Antibacterial, Antifungal and Antibiofilm Activity. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
52
|
Poier N, Hochstöger J, Hackenberg S, Scherzad A, Bregenzer M, Schopper D, Kleinsasser N. Effects of Zinc Oxide Nanoparticles in HUVEC: Cyto- and Genotoxicity and Functional Impairment After Long-Term and Repetitive Exposure in vitro. Int J Nanomedicine 2020; 15:4441-4452. [PMID: 32606688 PMCID: PMC7319515 DOI: 10.2147/ijn.s246797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The present study focuses on threshold levels for cytotoxicity after long-term and repetitive exposure for HUVEC as a model for the specific microvascular endothelial system. Furthermore, possible genotoxic effects and functional impairment caused by ZnO NPs in HUVEC are elucidated. Methods Thresholds for cytotoxic effects are determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Annexin V assay. To demonstrate DNA damage, single-cell microgel electrophoresis (comet) assay is performed after exposure to sub-cytotoxic concentrations of ZnO NPs. The proliferation assay, dot blot assay and capillary tube formation assay are also carried out to analyze functional impairment. Results NPs showed to be spherical in shape with an average size of 45–55 nm. Long-term exposure as well as repetitive exposure with ZnO NPs exceeding 25 µg/mL lead to decreased viability in HUVEC. In addition, DNA damage was indicated by the comet assay after long-term and repetitive exposure. Twenty-four hours after long-term exposure, the proliferation assay does not show any difference between negative control and exposed cells. Forty-eight hours after exposure, HUVEC show an inverse concentration-related ability to proliferate. The dot blot assay provides evidence that ZnO NPs lead to a decreased release of VEGF, while capillary tube formation assay shows restriction in the ability of HUVEC to build tubes and meshes as a first step in angiogenesis. Conclusion Sub-cytotoxic concentrations of ZnO NPs lead to DNA damage and functional impairment in HUVEC. Based on these data, ZnO NPs may affect neo-angiogenesis. Further investigation based on tissue cultures is required to elucidate the impact of ZnO NPs on human cell systems.
Collapse
Affiliation(s)
- Nikolaus Poier
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz 4040, Austria
| | - Johannes Hochstöger
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz 4040, Austria
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| | - Maximilian Bregenzer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| | - Dominik Schopper
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz 4040, Austria
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| |
Collapse
|
53
|
Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19058-19072. [PMID: 30499089 DOI: 10.1007/s11356-018-3675-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
54
|
Balážová Ľ, Baláž M, Babula P. Zinc Oxide Nanoparticles Damage Tobacco BY-2 Cells by Oxidative Stress Followed by Processes of Autophagy and Programmed Cell Death. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1066. [PMID: 32486255 PMCID: PMC7353174 DOI: 10.3390/nano10061066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Nanomaterials, including zinc oxide nanoparticles (ZnO NPs), have a great application potential in many fields, such as medicine, the textile industry, electronics, and cosmetics. Their impact on the environment must be carefully investigated and specified due to their wide range of application. However, the amount of data on possible negative effects of ZnO NPs on plants at the cellular level are still insufficient. Thus, we focused on the effect of ZnO NPs on tobacco BY-2 cells, i.e., a widely accepted plant cell model. Adverse effects of ZnO NPs on both growth and biochemical parameters were observed. In addition, reactive oxygen and nitrogen species visualizations confirmed that ZnO NPs may induce oxidative stress. All these changes were associated with the lipid peroxidation and changes in the plasma membrane integrity, which together with endoplasmatic reticulum and mitochondrial dysfunction led to autophagy and programmed cell death. The present study demonstrates that the phytotoxic effect of ZnO NPs on the BY-2 cells is very complex and needs further investigation.
Collapse
Affiliation(s)
- Ľudmila Balážová
- Department of Pharmacognosy and Botany, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 72, SK-041 81 Košice, Slovakia
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia;
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| |
Collapse
|
55
|
Xu Z, Wu H, Zhang H, Bai J, Zhang Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol 2020; 40:1210-1218. [PMID: 32212198 DOI: 10.1002/jat.3977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
Atmospheric particulate matter with a diameter ≤2.5 μm (PM2.5) can induce inflammation of the respiratory system, which is the pathological basis of asthma or other respiratory diseases; however, the underlying regulation mechanism has not been clearly addressed. The aim of this study was to explore the potential role of the oxidative stress-JAK/STAT signaling pathway in the inflammation of human bronchial epithelial cells induced by PM2.5. The human bronchial epithelial cell line 16HBE cells were stimulated with PM2.5 at 50 and 100 μg/mL doses for 12 or 24 hours. Intracellular reactive oxygen species (ROS) was detected using flow cytometry. Gene and protein expressions of JAK2, STAT3 and cyclooxygenase 2 (COX-2) were determined using reverse transcription-polymerase chain reaction and western blotting, respectively. The ratio of intracellular glutathione/glutathione disulfide (GSH/GSSG) and the levels of interleukin (IL)-6 and IL-8 in cellular supernatant were analyzed using enzyme-linked immunosorbent assay. The results indicated that PM2.5 treatment significantly increased gene expressions of JAK2/STAT3 and protein levels of p-JAK2/p-STAT3, accompanied by increased intracellular ROS levels, decreased GSH/GSSG ratio at 50 and 100 μg/mL of PM2.5, and significantly enhanced levels of IL-6, IL-8 and COX-2 at a dose of 100 μg/mL. Pretreatment with N-acetyl-l-cysteine (NAC) attenuated the oxidative stress induced by PM2.5; similarly, pretreatment with AG490 (an inhibitor of JAK) decreased the cytokine levels stimulated by PM2.5. Therefore, we concluded that PM2.5 exposure could activate oxidative stress-JAK2/STAT3 signaling pathway, elevate the levels of IL-6, IL-8 and COX-2 in 16HBE cells, which can be inhibited by the NAC or AG490.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
56
|
"Iron free" zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis 2020; 11:183. [PMID: 32170066 PMCID: PMC7070056 DOI: 10.1038/s41419-020-2384-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
Exposure to nanomaterials (NMs) is an emerging threat to human health, and the understanding of their intracellular behavior and related toxic effects is urgently needed. Ferroptosis is a newly discovered, iron-mediated cell death that is distinctive from apoptosis or other cell-death pathways. No evidence currently exists for the effect of “iron free” engineered NMs on ferroptosis. We showed by several approaches that (1) zinc oxide nanoparticles (ZnO NPs)-induced cell death involves ferroptosis; (2) ZnO NPs-triggered ferroptosis is associated with elevation of reactive oxygen species (ROS) and lipid peroxidation, along with depletion of glutathione (GSH) and downregulation of glutathione peroxidase 4 (GPx4); (3) ZnO NPs disrupt intracellular iron homeostasis by orchestrating iron uptake, storage and export; (4) p53 largely participates in ZnO NPs-induced ferroptosis; and (5) ZnO particle remnants and dissolved zinc ion both contribute to ferroptosis. In conclusion, our data provide a new mechanistic rationale for ferroptosis as a novel cell-death phenotype induced by engineered NMs.
Collapse
|
57
|
Tolliver LM, Holl NJ, Hou FYS, Lee HJ, Cambre MH, Huang YW. Differential Cytotoxicity Induced by Transition Metal Oxide Nanoparticles is a Function of Cell Killing and Suppression of Cell Proliferation. Int J Mol Sci 2020; 21:ijms21051731. [PMID: 32138333 PMCID: PMC7084189 DOI: 10.3390/ijms21051731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
The application of nanoparticles (NPs) in industry is on the rise, along with the potential for human exposure. While the toxicity of microscale equivalents has been studied, nanoscale materials exhibit different properties and bodily uptake, which limits the prediction ability of microscale models. Here, we examine the cytotoxicity of seven transition metal oxide NPs in the fourth period of the periodic table of the chemical elements. We hypothesized that NP-mediated cytotoxicity is a function of cell killing and suppression of cell proliferation. To test our hypothesis, transition metal oxide NPs were tested in a human lung cancer cell model (A549). Cells were exposed to a series of concentrations of TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, or ZnO for either 24 or 48 h. All NPs aside from Cr2O3 and Fe2O3 showed a time- and dose-dependent decrease in viability. All NPs significantly inhibited cellular proliferation. The trend of cytotoxicity was in parallel with that of proliferative inhibition. Toxicity was ranked according to severity of cellular responses, revealing a strong correlation between viability, proliferation, and apoptosis. Cell cycle alteration was observed in the most toxic NPs, which may have contributed to promoting apoptosis and suppressing cell division rate. Collectively, our data support the hypothesis that cell killing and cell proliferative inhibition are essential independent variables in NP-mediated cytotoxicity.
Collapse
Affiliation(s)
- Larry M. Tolliver
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
| | - Natalie J. Holl
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
| | - Fang Yao Stephen Hou
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan;
| | - Melissa H. Cambre
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
- Correspondence: ; Tel.: 1-573-341-6589
| |
Collapse
|
58
|
Alver U, Kudret A, Kerli S. Effect of Ethanol on the Photovoltaic Performance of ZnO Based Dye Sensitized Solar Cells. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774519070022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B 2020; 8:4973-4989. [DOI: 10.1039/d0tb00739k] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide nanoparticles are characterized by a good biocompatibility while providing a versatile potential as innovative therapeutic agents in cancer medicine.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, Head and Neck Surgery
- University Medical Centre of the Johannes Gutenberg-University
- Laboratory for Molecular Tumor Biology
- 55131 Mainz
- Germany
| | - Wolfgang Tremel
- Department of Chemistry
- Johannes Gutenberg-University
- 55128 Mainz
- Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, Head and Neck Surgery
- University Medical Centre of the Johannes Gutenberg-University
- Laboratory for Molecular Tumor Biology
- 55131 Mainz
- Germany
| |
Collapse
|
60
|
Nasser F, Constantinou J, Lynch I. Nanomaterials in the Environment Acquire an "Eco-Corona" Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies. Proteomics 2019; 20:e1800412. [PMID: 31750982 DOI: 10.1002/pmic.201800412] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/06/2019] [Indexed: 01/07/2023]
Abstract
Nanomaterials (NMs) are particles with at least one dimension between 1 and 100 nm and a large surface area to volume ratio, providing them with exceptional qualities that are exploited in a variety of industrial fields. Deposition of NMs into environmental waters during or after use leads to the adsorption of an ecological (eco-) corona, whereby a layer of natural biomolecules coats the NM changing its stability, identity and ultimately toxicity. The eco-corona is not currently incorporated into ecotoxicity tests, although it has been shown to alter the interactions of NMs with organisms such as Daphnia magna (D. magna). Here, the literature on environmental biomolecule interactions with NMs is synthesized and a framework for understanding the eco-corona composition and its role in modulating NMs ecotoxicity is presented, utilizing D. magna as a model. The importance of including biomolecules as part of the current international efforts to update the standard testing protocols for NMs, is highlighted. Facilitating the formation of an eco-corona prior to NMs ecotoxicity testing will ensure that signaling pathways perturbed by the NMs are real rather than being associated with the damage arising from reactive NM surfaces "acquiring" a corona by pulling biomolecules from the organism's surface.
Collapse
Affiliation(s)
- Fatima Nasser
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Julia Constantinou
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
61
|
Metal nanoparticles for controlling fungal proliferation: quantitative analysis and applications. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
62
|
Du J, Fu L, Li H, Xu S, Zhou Q, Tang J. The potential hazards and ecotoxicity of CuO nanoparticles: an overview. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1670211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Li Fu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huanxuna Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qingwei Zhou
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
63
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
64
|
Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact 2019; 312:108814. [PMID: 31509734 DOI: 10.1016/j.cbi.2019.108814] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Nanotechnology is a growing science that may provide several new applications for medicine, food preservation, diagnostic technologies, and sanitation. Despite its beneficial applications, there are several questions related to the safety of nanomaterials for human use. The development of nanotechnology is associated with some concerns because of the increased risk of carcinogenesis following exposure to nanomaterials. The increased levels of reactive oxygen species (ROS) that are due to exposure to nanoparticles (NPs) are primarily responsible for the genotoxicity of metal NPs. Not all, but most metal NPs are able to directly produce free radicals through the release of metal ions and through interactions with water molecules. Furthermore, the increased production of free radicals and the cell death caused by metal NPs can stimulate reduction/oxidation (redox) reactions, leading to the continuous endogenous production of ROS in a positive feedback loop. The overexpression of inflammatory mediators, such as NF-kB and STATs, the mitochondrial malfunction and the increased intracellular calcium levels mediate the chronic oxidative stress that occurs after exposure to metal NPs. In this paper, we review the genotoxicity of different types of metal NPs and the redox mechanisms that amplify the toxicity of these NPs.
Collapse
|
65
|
Yin S, Liu J, Kang Y, Lin Y, Li D, Shao L. Interactions of nanomaterials with ion channels and related mechanisms. Br J Pharmacol 2019; 176:3754-3774. [PMID: 31290152 DOI: 10.1111/bph.14792] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
The pharmacological potential of nanotechnology, especially in drug delivery and bioengineering, has developed rapidly in recent decades. Ion channels, which are easily targeted by external agents, such as nanomaterials (NMs) and synthetic drugs, due to their unique structures, have attracted increasing attention in the fields of nanotechnology and pharmacology for the treatment of ion channel-related diseases. NMs have significant effects on ion channels, and these effects are manifested in many ways, including changes in ion currents, kinetic characteristics and channel distribution. Subsequently, intracellular ion homeostasis, signalling pathways, and intracellular ion stores are affected, leading to the initiation of a range of biological processes. However, the effect of the interactions of NMs with ion channels is an interesting topic that remains obscure. In this review, we have summarized the recent research progress on the direct and indirect interactions between NMs and ion channels and discussed the related molecular mechanisms, which are crucial to the further development of ion channel-related nanotechnological applications.
Collapse
Affiliation(s)
- Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqing Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongjian Li
- Liwan District Stomatology Hospital, Guangzhou, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
66
|
Hurtado-Gallego J, Leganés F, Rosal R, Fernández-Piñas F. Use of Cyanobacterial Luminescent Bioreporters to Report on the Environmental Impact of Metallic Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3597. [PMID: 31430858 PMCID: PMC6721232 DOI: 10.3390/s19163597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Due to their ecological relevance, low cost, and easy maintenance, cyanobacteria have been used for bioreporter development. In this study, a battery of cyanobacterial bioreporters has been used to assess the ecotoxicity of four highly used metallic nanoparticles (NPs). The toxicity of these NPs was tested using the bioreporter Nostoc CPB4337 (Anabaena CPB4337). As oxidative stress is a primary toxic mechanism of metallic NPs, cyanobacterial reactive oxygen species (ROS)-detecting bioreporters were used. Metallic NPs release metal ions, which contribute to their toxic effect and the formation of ROS, so a metal-detecting bioreporter was also used to detect the bioavailable metals. The results confirm that ROS production by NPs was due to the NPs per se and not by released free-ions, which in fact were almost undetectable. Although the metal-detecting bioreporter could not detect the dissolved metal ions, it was able to detect the metallic NPs themselves, indicating that this bioreporter may be useful to detect them in the environment. ROS production varied depending on the growth medium or environmental matrices conditions and on the NP type. This work demonstrated the different levels of ROS production by metallic NPs and the importance of nanotoxicology studies in real matrices.
Collapse
Affiliation(s)
- Jara Hurtado-Gallego
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
67
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
68
|
Song WJ, Jeong MS, Choi DM, Kim KN, Wie MB. Zinc Oxide Nanoparticles Induce Autophagy and Apoptosis via Oxidative Injury and Pro-Inflammatory Cytokines in Primary Astrocyte Cultures. NANOMATERIALS 2019; 9:nano9071043. [PMID: 31330912 PMCID: PMC6669602 DOI: 10.3390/nano9071043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
The present study examined the potential toxic concentrations of zinc oxide nanoparticles (ZnO NPs) and associated autophagy and apoptosis-related injuries in primary neocortical astrocyte cultures. Concentrations of ZnO NPs ≥3 μg/mL induced significant toxicity in the astrocytes. At 24 h after exposure to the ZnO NPs, transmission electron microscopy revealed swelling of the endoplasmic reticulum (ER) and increased numbers of autophagolysosomes in the cultured astrocytes, and increased levels of LC3 (microtubule-associated protein 1 light chain 3)-mediated autophagy were identified by flow cytometry. Apoptosis induced by ZnO NP exposure was confirmed by the elevation of caspase-3/7 activity and 4′,6′-diamidino-2-phenylindole (DAPI) staining. Significant (p < 0.05) changes in the levels of glutathione peroxidase, superoxide dismutase, tumor necrosis factor (TNF-α), and interleukin-6 were observed by enzyme-linked immunoassay (ELISA) assay following the exposure of astrocyte cultures to ZnO NPs. Phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinase (MAPK) dual activation was induced by ZnO NPs in a dose-dependent manner. Additionally, the Akt (protein kinase B) inhibitor BML257 and the mTOR (mammalian target of rapamycin) inhibitor rapamycin contributed to the survival of astrocytes. Inhibitors of cyclooxygenase-2 and lipoxygenase attenuated ZnO NP-induced toxicity. Calcium-modulating compounds, antioxidants, and zinc/iron chelators also decreased ZnO NP-induced toxicity. Together, these results suggest that ZnO NP-induced autophagy and apoptosis may be associated with oxidative stress and the inflammatory process in primary astrocyte cultures.
Collapse
Affiliation(s)
- Woo-Ju Song
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Myung-Seon Jeong
- Chuncheon Center, Korean Basic Science Institute, Chuncheon 24341, Korea
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Min Choi
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korean Basic Science Institute, Chuncheon 24341, Korea
| | - Myung-Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
69
|
Lee JR, Lee JY, Kim HJ, Hahn MJ, Kang JS, Cho H. The inhibition of chloride intracellular channel 1 enhances Ca 2+ and reactive oxygen species signaling in A549 human lung cancer cells. Exp Mol Med 2019; 51:1-11. [PMID: 31316050 PMCID: PMC6802611 DOI: 10.1038/s12276-019-0279-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is a promising therapeutic target in cancer due to its intrinsic characteristics; it is overexpressed in specific tumor types and its localization changes from cytosolic to surface membrane depending on activities and cell cycle progression. Ca2+ and reactive oxygen species (ROS) are critical signaling molecules that modulate diverse cellular functions, including cell death. In this study, we investigated the function of CLIC1 in Ca2+ and ROS signaling in A549 human lung cancer cells. Depletion of CLIC1 via shRNAs in A549 cells increased DNA double-strand breaks both under control conditions and under treatment with the putative anticancer agent chelerythrine, accompanied by a concomitant increase in the p-JNK level. CLIC1 knockdown greatly increased basal ROS levels, an effect prevented by BAPTA-AM, an intracellular calcium chelator. Intracellular Ca2+ measurements clearly showed that CLIC1 knockdown significantly increased chelerythrine-induced Ca2+ signaling as well as the basal Ca2+ level in A549 cells compared to these levels in control cells. Suppression of extracellular Ca2+ restored the basal Ca2+ level in CLIC1-knockdown A549 cells relative to that in control cells, implying that CLIC1 regulates [Ca2+]i through Ca2+ entry across the plasma membrane. Consistent with this finding, the L-type Ca2+ channel (LTCC) blocker nifedipine reduced the basal Ca2+ level in CLIC1 knockdown cells to that in control cells. Taken together, our results demonstrate that CLIC1 knockdown induces an increase in the intracellular Ca2+ level via LTCC, which then triggers excessive ROS production and consequent JNK activation. Thus, CLIC1 is a key regulator of Ca2+ signaling in the control of cancer cell survival.
Collapse
Affiliation(s)
- Jae-Rin Lee
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Jong-Yoon Lee
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Ji Kim
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| | - Myong-Joon Hahn
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea
| | - Jong-Sun Kang
- 0000 0001 2181 989Xgrid.264381.aDepartment of Molecular Cell Biology, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Hana Cho
- 0000 0001 2181 989Xgrid.264381.aSingle Cell Network Research Center, Sungkyunkwan University, Suwon, Korea ,0000 0001 2181 989Xgrid.264381.aDepartment of Physiology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
70
|
Zhang L, Wu L, Mi Y, Si Y. Silver Nanoparticles Induced Cell Apoptosis, Membrane Damage of Azotobacter vinelandii and Nitrosomonas europaea via Generation of Reactive Oxygen Species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:181-186. [PMID: 31049596 DOI: 10.1007/s00128-019-02622-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) is widely used as an antibacterial agent, but the specific antibacterial mechanism is still conflicting. This study aimed to investigate the size dependent inhibition of AgNPs and the relationship between inhibition and reactive oxygen species (ROS). Azotobactervinelandii and Nitrosomonaseuropaea were exposed to AgNPs with different particles size (10 nm and 50 nm). The ROS production was measured and the results showed that the generation of ROS related to the particle size and concentrations of AgNPs. At 10 mg/L of 10 nm Ag particles, the apoptosis rate of A. vinelandii and N. europaea were 20.23% and 1.87% respectively. Additionally, the necrosis rate of A. vinelandii and N. europaea reached to 15.20% and 42.20% respectively. Furthermore, transmission electron microscopy images also indicated that AgNPs caused severely bacterial cell membrane damage. Together these data suggested that the toxicity of AgNPs depends on its particle size and overproduction of ROS.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lingli Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yazhu Mi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
71
|
Hu G, Cao J. Metal-containing nanoparticles derived from concealed metal deposits: An important source of toxic nanoparticles in aquatic environments. CHEMOSPHERE 2019; 224:726-733. [PMID: 30851524 DOI: 10.1016/j.chemosphere.2019.02.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The potential environmental risks of engineered nanoparticles in aquatic environment have attracted considerable attention, but naturally produced nanoparticles have relatively been ignored, such as ore-related nanoparticles. To obtain more information about the natural ore-related nanoparticles, deep groundwater and well water samples were respectively collected in or around four major metal deposits in Inner Mongolia, China. These water samples were tested with high resolution transmission electron microscopy (TEM) and abundant metal-containing nanoparticles were found. Major ore-forming elements of corresponding metal deposits, such as Fe, Pb, Zn and Cu, and even associated elements, such as As, Sb, Sn and Cr, significantly contributed to the chemical compositions of these detected nanoparticles. Through comparison analyses, these metal-containing nanoparticles were shown to be originally from deep concealed metal deposits. They were the products of faulting and oxidation of ore minerals, and were transported long distances by water flow. Notably, these ore-related nanoparticles happened to have similar components with those nanoparticles of high environmental risks. Coupled with the analytical results of Atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS), it is recommended that the concentration limits of metal-containing nanoparticles should be considered in the safety assessment of drinking water. This is the first time, so far as we know, that naturally produced ore-related nanoparticles in the aquatic environment were listed as a kind of material with environmental risks. Considering the wide distribution of concealed metal deposits, more attention on related studies was urgently required for establishing specialized risk assessment and monitoring system.
Collapse
Affiliation(s)
- Guai Hu
- School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Exploration, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianjin Cao
- School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Exploration, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
72
|
Yousef MI, Mutar TF, Kamel MAEN. Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep 2019; 6:336-346. [PMID: 31049295 PMCID: PMC6482313 DOI: 10.1016/j.toxrep.2019.04.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/25/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022] Open
Abstract
Oral sub-chronic exposure to Aluminum oxide or zinc oxide nanoparticles has hepato-renal toxicity. The toxicities of Aluminum oxide and/or zinc oxide NPs mediated through different correlated pathways. The pathways including; epigenetic changes, impaired antioxidant systems, induced oxidative stress and disturbed cytokine production. Exaggerated hepatic and renal toxicities of combined exposure to both NPs.
Aluminum oxide nanoparticles (Al2O3NPs) and zinc oxide nanoparticles (ZnONPs) have been involved in many industries and they are extensively abundant in many aspects of human life. Consequently, concerns have been raised about their potentially harmful effects. However the toxicities of Al2O3NPs and ZnONPs are well documented, the effect of co-exposure to both nanoparticles remains strictly obscure. Therefore, the present study was undertaken to address this issue. Four groups of male Wistar rats (10 rats each) were used; control, Al2O3NPs treated, ZnONPs treated and Co-treated groups. Rats were orally administered their respective treatment daily for 75 days. The effects of each nanoparticle alone or in combination were assessed at different levels including; hepatic and renal function, structure, and redox status, nuclear DNA fragmentation, hepatic expression of mitochondrial transcription factor A (mtTFA) gene and peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α), systemic inflammation, and hematologic parameters. The results confirmed the hepatorenal toxicities of each nanoparticle used at the level of all parameters with suppression of the hepatic expression of mtTFA and PGC-1α. The co-exposure to both nanoparticles results in synergistic effects. From these results, we can conclude that co-exposure to aluminum oxide nanoparticles and zinc oxide nanoparticles results in more pronounced hepatorenal toxicities and systemic inflammation.
Collapse
Key Words
- ACP, acid phosphatase
- ALT, alanine transaminase
- AST, aspartate transaminase
- AlP, alkaline phosphatase
- Aluminum oxide nanoparticles
- CAT, catalase
- Cytokines and p53
- DNA fragmentation
- GGT, gamma-glutamyl transferase
- GPX, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- Gene expression
- LDH, lactate dehydrogenase
- Oxidative stress
- PGC-1α, peroxisome proliferator activator receptor gamma-coactivator 1α
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid-reactive substances
- Zinc oxide nanoparticles
- mtTFA, mitochondrial transcription factor A
Collapse
Affiliation(s)
- Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Thulfiqar Fawwaz Mutar
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | | |
Collapse
|
73
|
Jiráková K, Moskvin M, Machová Urdzíková L, Rössner P, Elzeinová F, Chudíčková M, Jirák D, Ziolkowska N, Horák D, Kubinová Š, Jendelová P. The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages. Neurochem Res 2019; 45:159-170. [PMID: 30945145 DOI: 10.1007/s11064-019-02790-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Collapse
Affiliation(s)
- Klára Jiráková
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Maksym Moskvin
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Rössner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Fatima Elzeinová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Milada Chudíčková
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Jirák
- MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Natalia Ziolkowska
- MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniel Horák
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Šárka Kubinová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Jendelová
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. .,Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
74
|
Cui Y, Melby ES, Mensch AC, Laudadio ED, Hang MN, Dohnalkova A, Hu D, Hamers RJ, Orr G. Quantitative Mapping of Oxidative Stress Response to Lithium Cobalt Oxide Nanoparticles in Single Cells Using Multiplexed in Situ Gene Expression Analysis. NANO LETTERS 2019; 19:1990-1997. [PMID: 30773885 DOI: 10.1021/acs.nanolett.8b05172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineered nanoparticles (NPs) can negatively impact biological systems through induced generation of reactive oxygen species (ROS). Overproduced ROS cause biochemical damage and hence need to be effectively buffered by a sophisticated cellular oxidative stress response system. How this complex cellular system, which consists of multiple enzymes, responds to NP-induced ROS is largely unknown. Here, we apply a single cell analysis to quantitatively evaluate 10 key ROS responsive genes simultaneously to understand how the cell prioritizes tasks and reallocates resources in response to NP-induced oxidative stress. We focus on rainbow trout gill epithelial cells-a model cell type for environmental exposure-and their response to the massive generation of ROS induced by lithium cobalt oxide (LCO) NPs, which are extensively used as cathode materials in lithium ion batteries. Using multiplexed fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) in single cells, we found a shift in the expression of oxidative stress response genes with initial increase in genes targeting superoxide species, followed by increase in genes targeting peroxide and hydroxyl species. In contrast, Li+ and Co2+, at concentrations expected to be shed from the NPs, did not induce ROS generation but showed a potent inhibition of transcription for all 10 stress response genes. Taken together, our findings suggest a "two-hit" model for LCO NP toxicity, where the intact LCO NPs induce high levels of ROS that elicit sequential engagement of stress response genes, while the released metal ions suppress the expression of these genes. Consequently, these effects synergistically drive the exposed cells to become more vulnerable to ROS stress and damage.
Collapse
Affiliation(s)
- Yi Cui
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Eric S Melby
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Arielle C Mensch
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Elizabeth D Laudadio
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Mimi N Hang
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Robert J Hamers
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
75
|
Paul SK, Dutta H, Sarkar S, Sethi LN, Ghosh SK. Nanosized Zinc Oxide: Super-Functionalities, Present Scenario of Application, Safety Issues, and Future Prospects in Food Processing and Allied Industries. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sanjib K. Paul
- Department of Agricultural Engineering, Assam University, Silchar, India
| | - Himjyoti Dutta
- Amity Institute of Food Technology, Amity University, Uttar Pradesh, India
| | - Sudipto Sarkar
- Department of Agricultural Engineering, Assam University, Silchar, India
| | | | | |
Collapse
|
76
|
Behboodi S, Baghbani-Arani F, Abdalan S, Sadat Shandiz SA. Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells. Biol Trace Elem Res 2019; 187:392-402. [PMID: 29808275 DOI: 10.1007/s12011-018-1392-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
The current experiment reveals the anticancer properties of silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of Cichorium intybus, a significant medicinal plant. The characteristics of AgNPs were continuously studied by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analysis. Current microscopic results show that produced AgNPs were spherical in shape with an average size of 17.17 nm. A strong peak between 2 and 4 keV showed the greatest ratio of the elemental silver signals, due to surface plasmon resonance (SPR). The AgNPs, fabricated by green method, had a negative zeta potential of - 9.76 mV, which indicates that the synthesized AgNPs is dispersed in the medium with high stability. The in vitro cytotoxicity effect of AgNPs showed promising anticancer activity against human breast cancer MCF-7 cells. Annexin V-FITC/propidium iodide assay, Hoechst 33258 staining, and upregulation of caspase 3 activity revealed significant apoptosis activities of AgNPs against MCF-7 cells. Moreover, the flow cytometric analyses of cell cycle distribution of MCF7 cells showed that AgNPs treatment has enhanced the sub-G1 peaks, which is an indicator of apoptosis pathway. Overall results in our study suggested that AgNPs fabricated by a biogreen approach could be useful in cancer therapy.
Collapse
Affiliation(s)
- Sorayya Behboodi
- Department of Biology, Tehran Shargh, Payam Noor University, Tehran, Iran
| | - Fahimeh Baghbani-Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Sahar Abdalan
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | | |
Collapse
|
77
|
Singh S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 2019; 29:300-311. [DOI: 10.1080/15376516.2018.1553221] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Science and Education, Raebareli, India
| |
Collapse
|
78
|
Kononenko V, Drobne D. In Vitro Cytotoxicity Evaluation of the Magnéli Phase Titanium Suboxides (Ti xO 2x-1) on A549 Human Lung Cells. Int J Mol Sci 2019; 20:E196. [PMID: 30625978 PMCID: PMC6337184 DOI: 10.3390/ijms20010196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
The use of titanium suboxides, known as Magnéli phase TiOx, is expected to increase in the near future due to their desirable properties. In order to use Magnéli phase TiOx nanoparticles safely, it is necessary to know how nanoparticles interact with biological systems. In this study, the cytotoxicity of three different Magnéli TiOx nanoparticles was evaluated using human lung A549 cells and the results were compared with hazard data on two different TiO₂ nanoparticles whose biological interactions have already been extensively studied. After A549 cells were exposed to nanoparticles, the metabolic activity was measured by the Resazurin assay, the amount of cellular proteins was measured by the Coomassie Blue assay, and lysosomal integrity was measured by the Neutral Red Uptake assay. In order to investigate possible modes of particle actions, intracellular Ca2+ level, reactive oxygen species (ROS) production, and photo-oxidative disruptions of lysosomal membranes were assessed. All experiments were performed in serum-containing and in serum-deprived cell culture mediums. In addition, the photocatalytic activity of Magnéli TiOx and TiO₂ nanoparticles was measured. The results show that Magnéli TiOx nanoparticles increase intracellular Ca2+ but not ROS levels. In contrast, TiO₂ nanoparticles increase ROS levels, resulting in a higher cytotoxicity. Although Magnéli TiOx nanoparticles showed a lower UV-A photocatalytic activity, the photo-stability of the lysosomal membranes was decreased by a greater extent, possibly due to particle accumulation inside lysosomes. We provide evidence that Magnéli TiOx nanoparticles have lower overall biological activity when compared with the two TiO₂ formulations. However, some unique cellular interactions were detected and should be further studied in line with possible Magnéli TiOx application. We conclude that Magnéli phase nanoparticles could be considered as low toxic material same as other forms of titanium oxide particles.
Collapse
Affiliation(s)
- Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
79
|
Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 2019; 42:84-93. [PMID: 30103634 DOI: 10.1080/01480545.2018.1491987] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, nanoparticles are being used extensively in personal healthcare products such as cosmetics, sunscreens, soaps, and shampoos. Particularly, metal oxide nanoparticles are gaining competence as key industrial constituents, progressing toward a remarkable rise in their applications. Zinc oxide and titanium oxide nanoparticles are the most commonly employed metal oxide nanoparticles in sunscreens, ointments, foot care, and over the counter topical products. Dermal exposure to these metal oxides predominantly occurs through explicit use of cosmetic products and airway exposure to nanoparticle dusts is primarily mediated via occupational exposure. There is a compelling need to understand the toxicity effects of nanoparticles which can easily enter the cells and induce oxidative stress. Consequently, these products have become a direct source of pollution in the environment and thereby greatly impact our ecosystem. A complete understanding of the toxicity mechanism of nano-ZnO is intended to resolve whether and to what extent such nanoparticles may pose a threat to the environment and to human beings. In this review article, we have discussed the characteristics of metal oxide nanoparticles and its applications in the cosmetic industry. We have also highlighted about their toxicity effects and their impact on human health.
Collapse
Affiliation(s)
- Vimala Devi Subramaniam
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Suhanya Veronica Prasad
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Antara Banerjee
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Madhumala Gopinath
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Ramachandran Murugesan
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Francesco Marotta
- b ReGentra R&d international for Aging Intervention , Milano-Beijing & VCC, Preventitive Medical Promotion Foundation , Beijing , China
| | - Xiao-Feng Sun
- c Department of Oncology and Department of Clinical and Experimental Medicine , University of Linköping , Linköping , Sweden
| | - Surajit Pathak
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| |
Collapse
|
80
|
Rabha R, Ghosh S, Padhy PK. Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:393-403. [PMID: 30218962 DOI: 10.1016/j.ecoenv.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Chronic smoke exposure, emitted by biomass fuel burning leads to many diseases, which are originated due to oxidative stress. The present study investigated the levels of PM2.5, PM10 and PM2.5 bound trace metals released during cooking with fuelwood and subsequent changes in haematological parameters along with oxidative stress in rural tribal women of northeast India exposed to wood smoke. The levels of PM2.5, PM10 and trace metals associated with PM2.5 (nickel, cobalt, manganese, zinc, cadmium, lead and copper) were measured. In addition, blood samples were analyzed for concentrations of different blood related parameters (haemoglobin, platelet count, red blood cells and white blood cells) and levels of antioxidants (reduced glutathione, superoxide dismutase, and catalase). Plasma malondialdehyde (MDA) was measured as a biomarker of lipid peroxidation. Health risk assessment was done to assess the potential risk posed by inhalation of fine particles emitted from cooking with fuel wood. Levels of both PM2.5 and PM10 were higher in wood users compared to LPG users during cooking period (644.4 ± 368.3 µg/m³ vs 50 ± 23.8 µg/m³; 915 ± 441.3 µg/m³ vs 83.3 ± 33 µg/m³) and it exceeded the permissible limits of WHO. Levels of trace metals during the cooking period in fuel wood users were significantly higher than LPG users (p = 0.01). After controlling possible confounders, both platelet count and white blood cells (WBC) had a significant positive association with PM2.5and PM10. Similarly, haemoglobin had a negative association with both PM2.5 and PM10. Depleted levels of antioxidant enzymes and increase in lipid peroxidation (MDA) suggest a close association with pollutants released from wood smoke, indicating oxidative stress in women who used fuelwood for cooking. The total hazard quotient (HQ) of 0.11 was within the acceptable limit (i.e., 1.0). The total excess lifetime cancer risk (ELCR) was 5.4 × 10-6 which is five times higher than the acceptable limit of 1.0 × 10-6. Individual carcinogenic risk of Ni (2.3 × 10-6) and Cd (3.1 × 10-6) were also higher compared to acceptable limit. These results indicate that tribal women cooking with wood are at greater risk of developing cancer and also give support to the positive association between wood smoke and oxidative stress.
Collapse
Affiliation(s)
- Rumi Rabha
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Suraj Ghosh
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Pratap Kumar Padhy
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
81
|
More J, Galusso N, Veloso P, Montecinos L, Finkelstein JP, Sanchez G, Bull R, Valdés JL, Hidalgo C, Paula-Lima A. N-Acetylcysteine Prevents the Spatial Memory Deficits and the Redox-Dependent RyR2 Decrease Displayed by an Alzheimer's Disease Rat Model. Front Aging Neurosci 2018; 10:399. [PMID: 30574085 PMCID: PMC6291746 DOI: 10.3389/fnagi.2018.00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
We have previously reported that primary hippocampal neurons exposed to synaptotoxic amyloid beta oligomers (AβOs), which are likely causative agents of Alzheimer’s disease (AD), exhibit abnormal Ca2+ signals, mitochondrial dysfunction and defective structural plasticity. Additionally, AβOs-exposed neurons exhibit a decrease in the protein content of type-2 ryanodine receptor (RyR2) Ca2+ channels, which exert critical roles in hippocampal synaptic plasticity and spatial memory processes. The antioxidant N-acetylcysteine (NAC) prevents these deleterious effects of AβOs in vitro. The main contribution of the present work is to show that AβOs injections directly into the hippocampus, by engaging oxidation-mediated reversible pathways significantly decreased RyR2 protein content but increased single RyR2 channel activation by Ca2+ and caused considerable spatial memory deficits. AβOs injections into the CA3 hippocampal region impaired rat performance in the Oasis maze spatial memory task, decreased hippocampal glutathione levels and overall content of plasticity-related proteins (c-Fos, Arc, and RyR2) and increased ERK1/2 phosphorylation. In contrast, in hippocampus-derived mitochondria-associated membranes (MAM) AβOs injections increased RyR2 levels. Rats fed with NAC for 3-weeks prior to AβOs injections displayed comparable redox potential, RyR2 and Arc protein contents, similar ERK1/2 phosphorylation and RyR2 single channel activation by Ca2+ as saline-injected (control) rats. NAC-fed rats subsequently injected with AβOs displayed the same behavior in the spatial memory task as control rats. Based on the present in vivo results, we propose that redox-sensitive neuronal RyR2 channels partake in the mechanism underlying AβOs-induced memory disruption in rodents.
Collapse
Affiliation(s)
- Jamileth More
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Nadia Galusso
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Pablo Veloso
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Gina Sanchez
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Bull
- Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
82
|
Ni S, Zhang H, Dai H, Xiao H. Starch-Based Flexible Coating for Food Packaging Paper with Exceptional Hydrophobicity and Antimicrobial Activity. Polymers (Basel) 2018; 10:E1260. [PMID: 30961185 PMCID: PMC6401770 DOI: 10.3390/polym10111260] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 12/15/2022] Open
Abstract
Herein, we fabricated a starch-based flexible coating for food packaging papers with excellent hydrophobicity and antimicrobial properties. FTIR (Fourier transform infrared) and XRD (X-ray diffraction) spectra revealed the homogeneous dispersion of the ZnO nanoparticles (NPs) in the composite film within 5% ZnO NP dosage. SEM (scanning electron microscope) and AFM (atomic force microscope) micrographs confirmed the increased roughness on the composite film with the increased dosages of ZnO NPs. Hydrophobic characteristics showed that dramatic enhancement was obtained in the values and stabilities of DCAs (dynamic contact angles) in the resultant film and coated paper. TG (thermogravimetry) results demonstrated the increased thermal stabilities of the composite films. Significantly, a decreased water vapor transmission rate was observed in the coated paper. When 20% guanidine-based starch and 2% CMC (carboxy methyl cellulose) was added, a flexible coating with excellent antimicrobial activity towards Escherichia coli can be obtained. Furthermore, the migration of ZnO NPs into the food simulants was well below the overall migration legislative limit. The resultant starch-based flexible composite film and coated paper established an effective approach to develop a green-based material for food packaging applications.
Collapse
Affiliation(s)
- Shuzhen Ni
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada, .
| | - Hui Zhang
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada, .
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada, .
| |
Collapse
|
83
|
Mfouo Tynga I, Abrahamse H. Nano-Mediated Photodynamic Therapy for Cancer: Enhancement of Cancer Specificity and Therapeutic Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E923. [PMID: 30412991 PMCID: PMC6266777 DOI: 10.3390/nano8110923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022]
Abstract
Deregulation of cell growth and development lead to cancer, a severe condition that claims millions of lives worldwide. Targeted or selective approaches used during cancer treatment determine the efficacy and outcome of the therapy. In order to enhance specificity and targeting and obtain better treatment options for cancer, novel modalities are currently under development. Photodynamic therapy has the potential to eradicate cancer, and combination therapy would yield even greater outcomes. Nanomedicine-aided cancer therapy shows enhanced specificity for cancer cells and minimal side-effects coupled with effective cancer destruction both in vitro and in vivo. Nanocarriers used in drug-delivery systems are very capable of penetrating the cancer stem cell niche, simultaneously killing cancer cells and eradicating drug-resistant cancer stem cells, yielding therapeutic efficiency of up to 100-fold against drug-resistant cancer in comparison with free drugs. Safety precautions should be considered when using nano-mediated therapy as the effects of extended exposure to biological environments are still to be determined.
Collapse
Affiliation(s)
- Ivan Mfouo Tynga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
84
|
Liang H, Chen A, Lai X, Liu J, Wu J, Kang Y, Wang X, Shao L. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca 2+-dependent NF-κB and MAPK pathways. Part Fibre Toxicol 2018; 15:39. [PMID: 30340606 PMCID: PMC6194560 DOI: 10.1186/s12989-018-0274-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
Background The extensive biological applications of zinc oxide nanoparticles (ZnO NPs) in stomatology have created serious concerns about their biotoxicity. In our previous study, ZnO NPs were confirmed to transfer to the central nervous system (CNS) via the taste nerve pathway and cause neurodegeneration after 30 days of tongue instillation. However, the potential adverse effects on the brain caused by tongue-instilled ZnO NPs are not fully known. Methods In this study, the biodistribution of Zn, cerebral histopathology and inflammatory responses were analysed after 30 days of ZnO NPs tongue instillation. Moreover, the molecular mechanisms underlying neuroinflammation in vivo were further elucidated by treating BV2 and PC12 cells with ZnO NPs in vitro. Results This analysis indicated that ZnO NPs can transfer into the CNS, activate glial cells and cause neuroinflammation after tongue instillation. Furthermore, exposure to ZnO NPs led to a reduction in cell viability and induction of inflammatory response and calcium influx in BV2 and PC12 cells. The mechanism underlying how ZnO NPs induce neuroinflammation via the Ca2+-dependent NF-κB, ERK and p38 activation pathways was verified at the cytological level. Conclusion This study provided a new way how NPs, such as ZnO NPs, induce neuroinflammation via the taste nerve translocation pathway, a new mechanism for ZnO NPs-induced neuroinflammation and a new direction for nanomaterial toxicity analysis. Electronic supplementary material The online version of this article (10.1186/s12989-018-0274-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinying Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
85
|
Hrács K, Sávoly Z, Seres A, Kiss LV, Papp IZ, Kukovecz Á, Záray G, Nagy P. Toxicity and uptake of nanoparticulate and bulk ZnO in nematodes with different life strategies. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1058-1068. [PMID: 29961159 DOI: 10.1007/s10646-018-1959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Despite the increasing number and quantity of nanomaterials released in the environment, our knowledge on their bioavailability and possible toxicity to organisms is rather limited. Thus, we know quite little about sensitivity of various nematode feeding types and life strategies to treatments with nano metal oxides. The toxicity of zinc oxide nanoparticles (nano-ZnO) (with a particle size of 25 nm) and the bulk counterpart was investigated in two free-living nematode species of different life strategies: Xiphinema vuittenezi, a K-strategist plant-feeder nematode and Panagrellus redivivus, an r-strategist bacterivor nematode. The internal zinc concentration and the concentration of minor and trace elements were determined by total reflection X-ray fluorescence spectrometry. Concentration-dependent mortality in both nematode species was observed following a 24-h exposure both to nano-ZnO and bulk ZnO. The zinc concentration of the treating suspension had a significant effect on the internal zinc content of the animals in both cases. Particle size did not influence the internal zinc content. Our results show that nano and bulk ZnO have a similar dose-response effect on mortality of the bacterivor P. redivivus. In contrast, the nano-ZnO has stronger toxic effect on the mortality of X. vuittenezi. In general, X. vuittenezi did not react more sensitively to the treatments than P. redivivus, but appeared sensitive to the nano-ZnO treatment compared to bulk ZnO.
Collapse
Affiliation(s)
- Krisztina Hrács
- Department of Zoology and Animal Ecology, Szent István University, Páter Károly u. 1., Gödöllo, H-2100, Hungary.
| | | | - Anikó Seres
- Department of Zoology and Animal Ecology, Szent István University, Páter Károly u. 1., Gödöllo, H-2100, Hungary
| | - Lola Virág Kiss
- Department of Zoology and Animal Ecology, Szent István University, Páter Károly u. 1., Gödöllo, H-2100, Hungary
| | - Ibolya Zita Papp
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Gyula Záray
- Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Karolina út 29., Budapest, H-1113, Hungary
| | - Péter Nagy
- Department of Zoology and Animal Ecology, Szent István University, Páter Károly u. 1., Gödöllo, H-2100, Hungary
| |
Collapse
|
86
|
Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M. ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol 2018; 43:322-333. [DOI: 10.1080/01480545.2018.1508218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Jingyuan Ge
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Yuwei Dong
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Huanxuan Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Meiqing Jin
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
| |
Collapse
|
87
|
Rodeiro I, Hernández I, Herrera JA, Riera M, Donato MT, Tolosa L, González K, Ansoar Y, Gómez-Lechón MJ, Vanden Berghe W, Lopes M. Assessment of the cytotoxic potential of an aqueous-ethanolic extract from Thalassia testudinum angiosperm marine grown in the Caribbean Sea. J Pharm Pharmacol 2018; 70:1553-1560. [PMID: 30159909 DOI: 10.1111/jphp.13001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/04/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Reported antioxidant, anti-inflammatory and neuroprotective properties for one aqueous-ethanolic extract from Thalassia testudinum which grows in the Caribbean Sea compelled us to explore about extract cytotoxic effects. METHODS Cell viability was assayed on tumour (HepG2, PC12, Caco-2 and 4T1) and non-tumour (VERO, 3T3, CHO, MCDK and BHK2) cell lines. The extract effects upon primary cultures of rat and human hepatocytes and human lymphocytes were assayed. KEY FINDINGS The extract exhibited cytotoxicity against cancer cells compared to normal cells, and the IC50 values were 102 μg/ml for HepG2, 135 μg/ml for PC12, 165 μg/ml for Caco-2 and 129 μg/ml for 4T1 cells after 48 h, whereas IC50 could not be calculated for normal cells. Additional data from a high-content screening multiparametric assay indicated that after 24-h exposure, the extract (up to 100 μg/ml) induced death in HepG2 cells through oxidative stress-associated mechanism, DNA damage and hypercalcaemia. Comet assay corroborated extract-induced DNA damage. CONCLUSIONS Thalassia testudinum extract is more cytotoxic and produced more DNA damage on human hepatoma cells than to other non-tumour cells. A possible mechanism is suggested for extract-induced cytotoxicity based on oxidative stress, nuclear damage and hypercalcaemia in HepG2 cells. T. testudinum may be a source for antitumour agents.
Collapse
Affiliation(s)
- Idania Rodeiro
- Department of Pharmacology,, Institute of Marine Sciences (ICIMAR), Havana, Cuba
| | - Ivones Hernández
- Department of Pharmacology,, Institute of Marine Sciences (ICIMAR), Havana, Cuba
| | - José A Herrera
- Institute of Materials Science and Technology (IMRE), Havana University, Havana, Cuba
| | - Mario Riera
- Department of Pharmacology,, Institute of Marine Sciences (ICIMAR), Havana, Cuba
| | - Maria T Donato
- Hepatology Experimental Unit, La Fe Health Research Institute (IIS La Fe), Valencia, Spain.,Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Laia Tolosa
- Hepatology Experimental Unit, La Fe Health Research Institute (IIS La Fe), Valencia, Spain
| | - Kethia González
- Department of Pharmacology,, Institute of Marine Sciences (ICIMAR), Havana, Cuba
| | - Yadira Ansoar
- Department of Pharmacology,, Institute of Marine Sciences (ICIMAR), Havana, Cuba
| | - Maria J Gómez-Lechón
- Hepatology Experimental Unit, La Fe Health Research Institute (IIS La Fe), Valencia, Spain
| | | | - Miriam Lopes
- Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Minas Gerais, Brazil
| |
Collapse
|
88
|
|
89
|
Contractility of Airway Smooth Muscle Cell in Response to Zinc Oxide Nanoparticles by Traction Force Microscopy. Ann Biomed Eng 2018; 46:2000-2011. [PMID: 30051243 DOI: 10.1007/s10439-018-2098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been widely used in engineering and biomedicine. However, their adverse pathological effects and mechanisms, especially the biomechanical effects on respiratory system where airway smooth muscle cell (ASMC) contractility regulates the airway response and lung function, are not fully understood. Herein, we used traction force microscopy (TFM) method to investigate whether ZnO-NPs of different concentrations (0.1-10 μg/mL) can alter ASMC contractility (basal and agonist-stimulated) after a short-term exposure and the potential mechanisms. We found that ZnO-NPs exposure led to a decrease of ASMC viability in a dose-dependent manner. Notably, basal contractility was enhanced when the concentration of ZnO-NPs was less than 0.1 μg/mL and decreased afterwards, while KCl-stimulated contractility was reduced in all cases of ZnO-NPs treated groups. Cytoskeleton structure was also found to be significantly altered in ASMC with the stimulation of ZnO-NPs. More importantly, it seems that ZnO-NPs with low concentration (< 0.1 μg/mL) would change ASMC contractility without any apparent cytotoxicity through disruption of the microtubule assembly. Moreover, our results also emerged that ASMC contractility responses were regulated by clathrin-mediated endocytosis and cytoskeleton remodeling. Together, these findings indicate the susceptibility of cell mechanics to NPs exposure, suggesting that cell mechanical testing will contribute to uncover the pathological mechanisms of NPs in respiratory diseases.
Collapse
|
90
|
Sui B, Liu X, Sun J. Dual-Functional Dendritic Mesoporous Bioactive Glass Nanospheres for Calcium Influx-Mediated Specific Tumor Suppression and Controlled Drug Delivery in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23548-23559. [PMID: 29947213 DOI: 10.1021/acsami.8b05616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of nanomaterials for stable, controlled delivery of drugs and efficient suppression of tumor growth with desirable biosafety remains challenging in the nano-biomedical field. In this study, we prepared and optimized mesoporous bioactive glass (MBG) nanospheres to establish a functional drug delivery system and analyzed the effect of the dendritic mesoporous structure on drug loading and release. We then utilized an in vitro model to examine the biological effects of dendritic MBG nanospheres on normal and tumor cells and studied the molecular mechanism underlying specific tumor suppression by MBG nanospheres. Finally, we investigated the combinational effect of MBG nanospheres and a cancer therapeutic drug with an in vivo tumor xenograft model. Our results show that the dendritic MBG nanospheres have been successfully synthesized by optimizing calcium: silicon ratio. MBG nanospheres exhibit a dendritic mesoporous structure with a large specific surface area, demonstrate high drug loading efficiency, and release drugs in a controlled fashion to effectively prolong drug half-life. Ca2+ in nanospheres activates transient receptor potential channels and calcium-sensing receptor on tumor cells, mediates calcium influx, and directly regulates the calpain-1-Bcl-2-caspase-3 signaling pathway to specifically suppress tumor growth without affecting normal cells. In addition, dendritic MBG nanospheres synergize with cancer drugs to improve antitumor efficacy and reduce systemic toxicity. Dendritic MBG nanospheres with antitumor activity and controlled drug release have been successfully achieved and the underlying molecular mechanism was elucidated, paving the way for translational application.
Collapse
Affiliation(s)
- Baiyan Sui
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200023 , China
| | - Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200023 , China
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200023 , China
| |
Collapse
|
91
|
Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater 2018; 7:e1701503. [PMID: 29808627 DOI: 10.1002/adhm.201701503] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/26/2018] [Indexed: 12/30/2022]
Abstract
The increase of antibiotic resistance in bacteria has become a major concern for successful diagnosis and treatment of infectious diseases. Over the past few decades, significant progress has been achieved on the development of nanotechnology-based medicines for combating multidrug resistance in microorganisms. Among this, silver nanoparticles (AgNPs) hold great promise in addressing this challenge due to their broad-spectrum and robust antimicrobial properties. This review illustrates the antibacterial mechanisms of silver nanoparticles and further elucidates how different structural factors including surface chemistry, size, and shape, impact their antibacterial activities, which are expected to promote the future development of more potent silver nanoparticle-based antibacterial agents.
Collapse
Affiliation(s)
- Shaoheng Tang
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| |
Collapse
|
92
|
XPF plays an indispensable role in relieving silver nanoparticle induced DNA damage stress in human cells. Toxicol Lett 2018; 288:44-54. [DOI: 10.1016/j.toxlet.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/23/2022]
|
93
|
Jaworski S, Wierzbicki M, Sawosz E, Jung A, Gielerak G, Biernat J, Jaremek H, Łojkowski W, Woźniak B, Wojnarowicz J, Stobiński L, Małolepszy A, Mazurkiewicz-Pawlicka M, Łojkowski M, Kurantowicz N, Chwalibog A. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent. NANOSCALE RESEARCH LETTERS 2018; 13:116. [PMID: 29687296 PMCID: PMC5913058 DOI: 10.1186/s11671-018-2533-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Collapse
Affiliation(s)
- Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Anna Jung
- Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland
| | | | - Joanna Biernat
- Braster S.A., Cichy Ogród 7, 05-580 Ożarów Mazowiecki, Poland
- Faculty of Mechatronics, Warsaw University of Technology, Boboli 8, 02-525 Warsaw, Poland
| | - Henryk Jaremek
- Braster S.A., Cichy Ogród 7, 05-580 Ożarów Mazowiecki, Poland
| | - Witold Łojkowski
- Institute of High Pressure Physics of the Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| | - Bartosz Woźniak
- Institute of High Pressure Physics of the Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics of the Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| | - Leszek Stobiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Marta Mazurkiewicz-Pawlicka
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Maciej Łojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
| | - Natalia Kurantowicz
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark
| |
Collapse
|
94
|
Garcia IM, Leitune VCB, Visioli F, Samuel SMW, Collares FM. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J Dent 2018; 73:57-60. [PMID: 29653139 DOI: 10.1016/j.jdent.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To evaluate the influence of zinc oxide quantum dots (ZnOQDs) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. MATERIALS AND METHODS ZnOQDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnOQDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student's t-test (α = 0.05). RESULTS The antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnOQDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). CONCLUSION ZnOQDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnOQDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. CLINICAL SIGNIFICANCE ZnOQDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil.
| | - Vicente Castelo Branco Leitune
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil.
| | - Fernanda Visioli
- Laboratory of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil.
| | - Susana Maria Werner Samuel
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil.
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
95
|
Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal Bioanal Chem 2018; 410:6051-6066. [DOI: 10.1007/s00216-018-0940-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
96
|
Lei B, Sun S, Xu J, Feng C, Yu Y, Xu G, Wu M, Peng W. Low-concentration BPAF- and BPF-induced cell biological effects are mediated by ROS in MCF-7 breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3200-3208. [PMID: 28735473 DOI: 10.1007/s11356-017-9709-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS) induced by bisphenol A (BPA) have been implicated in cellular oxidative damage and carcinogenesis. It is not known whether the potential alternatives of BPA, bisphenol AF (BPAF), and bisphenol F (BPF) can also induce ROS involved in mediating biological responses. This study evaluated the toxicity of BPAF and BPF on cell proliferation, DNA damage, intracellular calcium homeostasis, and ROS generation in MCF-7 human breast cancer cells. The results showed that BPAF at 0.001-1 μM and BPF at 0.01-1 μM significantly increased cell viability and at 25 and 50 μM, both compounds decreased cell viability. At 0.01-10 μM, both BPAF and BPF increased DNA damage and significantly elevated ROS and intracellular Ca2+ levels in MCF-7 cells. These biological effects were attenuated by the ROS scavenger N-acetylcysteine (NAC), indicating that ROS played a key role in the observed biological effects of BPAF and BPF on MCF-7 cells. These findings can deepen our understanding on the toxicity of BPAF and BPF, and provide basis data to further evaluate the potential health harm and establish environmental standard of BPAF and BPF.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Su Sun
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Xu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Gang Xu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Minghong Wu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei Peng
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
97
|
Anders CB, Eixenberger JE, Franco NA, Hermann RJ, Rainey KD, Chess JJ, Punnoose A, Wingett DG. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. ENVIRONMENTAL SCIENCE. NANO 2018; 5:572-588. [PMID: 29479436 PMCID: PMC5823520 DOI: 10.1039/c7en00888k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
ZnO nanoparticles (nZnO) are commonly used in nanotechnology applications despite their demonstrated cytotoxicity against multiple cell types. This underscores the significant need to determine the physicochemical properties that influence nZnO cytotoxicity. In this study, we analyzed six similarly sized nZnO formulations, along with SiO2-coated nZnO, bulk ZnO and ZnSO4 as controls. Four of the nZnO samples were synthesized using various wet chemical methods, while three employed high-temperature flame spray pyrolysis (FSP) techniques. X-ray diffraction and optical analysis demonstrated the lattice parameters and electron band gap of the seven nZnO formulations were similar. However, electrophoretic mobility measures, hydrodynamic size, photocatalytic rate constants, dissolution potential, reactive oxygen species (ROS) production and, more importantly, the cytotoxicity of the variously synthesized nZnO towards Jurkat leukemic and primary CD4+ T cells displayed major differences. Surface structure analysis using FTIR, X-ray photoelectron spectroscopies (XPS) and dynamic light scattering (DLS) revealed significant differences in the surface-bound chemical groups and the agglomeration tendencies of the samples. The wet chemical nZnO, with higher cationic surface charge, faster photocatalytic rates, increased extracellular dissolution and ROS generation demonstrated greater cytotoxicity towards both cell types than those made with FSP techniques. Furthermore, principal component analysis (PCA) suggests that the synthesis procedure employed influences which physicochemical properties contribute more to the cytotoxic response. These results suggest that the synthesis approach results in unique surface chemistries and can be a determinant of cellular cytotoxicity and oxidative stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Denise G. Wingett
- Biomolecular Sciences Graduate Programs, Boise State University, USA
- Department of Biological Sciences, Boise State University, USA
| |
Collapse
|
98
|
Huang YW, Cambre M, Lee HJ. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int J Mol Sci 2017; 18:ijms18122702. [PMID: 29236059 PMCID: PMC5751303 DOI: 10.3390/ijms18122702] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology is an emerging discipline that studies matters at the nanoscale level. Eventually, the goal is to manipulate matters at the atomic level to serve mankind. One growing area in nanotechnology is biomedical applications, which involve disease management and the discovery of basic biological principles. In this review, we discuss characteristics of nanomaterials, with an emphasis on transition metal oxide nanoparticles that influence cytotoxicity. Identification of those properties may lead to the design of more efficient and safer nanosized products for various industrial purposes and provide guidance for assessment of human and environmental health risk. We then investigate biochemical and molecular mechanisms of cytotoxicity that include oxidative stress-induced cellular events and alteration of the pathways pertaining to intracellular calcium homeostasis. All the stresses lead to cell injuries and death. Furthermore, as exposure to nanoparticles results in deregulation of the cell cycle (i.e., interfering with cell proliferation), the change in cell number is a function of cell killing and the suppression of cell proliferation. Collectively, the review article provides insights into the complexity of nanotoxicology.
Collapse
Affiliation(s)
- Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, 143 Schrenk Hall, 1870 Miner Circle, Rolla, MO 65409, USA.
| | - Melissa Cambre
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, 143 Schrenk Hall, 1870 Miner Circle, Rolla, MO 65409, USA.
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
99
|
|
100
|
Liu J, Kang Y, Yin S, Song B, Wei L, Chen L, Shao L. Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner. Int J Nanomedicine 2017; 12:8085-8099. [PMID: 29138564 PMCID: PMC5677299 DOI: 10.2147/ijn.s149070] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Due to the widespread applications of zinc oxide nanoparticles (ZnO NPs), the potential exposure of workers, consumers, and scientists to these particles has increased. This potential for exposure has attracted extensive attention in the science community. Many studies have examined the toxicological profile of ZnO NPs in the immune system, digestive system, however, information regarding the toxicity of ZnO NPs in the nervous system is scarce. In this study, we detected the cytotoxicity of two types of ZnO NPs of various sizes - ZnOa NPs and ZnOb NPs - and we characterized the shedding ability of zinc ions within culture medium and the cytoplasm. We found that reactive oxygen species played a crucial role in ZnO NP-induced cytotoxicity, likely because zinc ions were leached from ZnO NPs. Apoptosis and cytoskeleton changes were also toxic responses induced by the ZnO NPs, and ZnOb NPs induced more significant toxic responses than ZnOa NPs in SHSY5Y cells. In conclusion, ZnO NPs induced toxic responses in SHSY5Y cells in a size-dependent manner, which can probably be attributed to their ion-shedding ability.
Collapse
Affiliation(s)
- Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Yiyuan Kang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Suhan Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Bin Song
- Department of Stomatology, Guizhou Provincial People’s Hospital, Guiyang
| | - Limin Wei
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou
| | - Liangjiao Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|