51
|
Dou X, Chen L, Lei M, Zellmer L, Jia Q, Ling P, He Y, Yang W, Liao DJ. Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. Int J Biol Sci 2018; 14:1800-1812. [PMID: 30443184 PMCID: PMC6231223 DOI: 10.7150/ijbs.26962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Organisms and their different component levels, whether organelle, cellular or other, come by birth and go by death, and the deaths are often balanced by new births. Evolution on the one hand has built demise program(s) in cells of organisms but on the other hand has established external controls on the program(s). For instance, evolution has established death program(s) in animal cells so that the cells can, when it is needed, commit apoptosis or senescent death (SD) in physiological situations and stress-induced cell death (SICD) in pathological situations. However, these programmed cell deaths are not predominantly regulated by the cells that do the dying but, instead, are controlled externally and remotely by the cells' superior(s), i.e. their host tissue or organ or even the animal's body. Currently, it is still unclear whether a cell has only one death program or has several programs respectively controlling SD, apoptosis and SICD. In animals, apoptosis exterminates, in a physiological manner, healthy but no-longer needed cells to avoid cell redundancy, whereas suicidal SD and SICD, like homicidal necrosis, terminate ill but useful cells, which may be followed by regeneration of the live cells and by scar formation to heal the damaged organ or tissue. Therefore, “who dies” clearly differentiates apoptosis from SD, SICD and necrosis. In animals, apoptosis can occur only in those cell types that retain a lifelong ability of proliferation and never occurs in those cell types that can no longer replicate in adulthood. In cancer cells, SICD is strengthened, apoptosis is dramatically weakened while SD has been lost. Most published studies professed to be about apoptosis are actually about SICD, which has four basic and well-articulated pathways involving caspases or involving pathological alterations in the mitochondria, endoplasmic reticula, or lysosomes.
Collapse
Affiliation(s)
- Xixi Dou
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P.R. China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Qingwen Jia
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, Shandong Province, P.R. China.,Technology Center, Shandong Freda Pharmaceutical Group, Jinan 250101, Shandong Province, P.R. China
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, P.R. China
| |
Collapse
|
52
|
Mačák Kubašková T, Mudroňová D, Velebný S, Hrčková G. The utilisation of human dialyzable leukocyte extract (IMMODIN) as adjuvant in albendazole therapy on mouse model of larval cestode infection: Immunomodulatory and hepatoprotective effects. Int Immunopharmacol 2018; 65:148-158. [PMID: 30316073 DOI: 10.1016/j.intimp.2018.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
Metacestode (larval) stages of zoonotic cestodes of medical and veterinary importance cause chronic infections associated with immunosuppression. During mouse model of cestode infection induced by larvae of Mesocestoides (M.) vogae, we investigated the effects of dialyzable leukocyte extract (DLE) containing low-molecular weight substances (under 10 kDa) prepared from peripheral blood leukocytes of healthy human donors (available under commercial name IMMODIN). In the experiment, the effects of DLE as adjuvant to anthelmintic albendazole (ABZ) as well ABZ mono-therapy were also investigated. We showed that DLE enhanced therapeutic effect of ABZ by significant reduction of parasites number in both biased sites. Furthermore, administration of DLE reduced fibrosis and concentrations of lipid peroxides in the liver and thereby showed cytoprotective effect. In contrast, higher hydroxyproline level and numbers of larvae enclosed in fibrous capsules were found in ABZ-treated group. In order to investigate whether DLE could affect parasite-induced immunosuppression, we evaluated selected immune parameters. The results showed that DLE administration to mice increased proliferation of concanavalin A stimulated splenic cells ex vivo. Similarly, in vitro study confirmed that DLE ameliorated hypo-responsiveness of T lymphocytes and partially reverted suppressive effect of parasites excretory-secretory products. In addition, flow cytometric analysis revealed higher numbers of T helper and NK cells in the spleen and peritoneal cavity of infected mice after DLE + ABZ therapy. We also found strongly reduced serum levels of TGF-β1 and IL-17 as well as modulation of cytokines associated with Th1/Th2 immunity. These results suggest that IMMODIN could serve as a suitable adjuvant to the primary anthelmintic therapy.
Collapse
Affiliation(s)
- Terézia Mačák Kubašková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Dagmar Mudroňová
- The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovak Republic
| | - Samuel Velebný
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Gabriela Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic; IMUNA PHARM, a.s., Jarková 269/17, Šarišské Michaľany, Slovak Republic.
| |
Collapse
|
53
|
Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V, Horuzsko DD, Arbab AS, Dzutsev A, Sadek R, Trinchieri G, Horuzsko A. The innate immune receptor TREM-1 promotes liver injury and fibrosis. J Clin Invest 2018; 128:4870-4883. [PMID: 30137027 DOI: 10.1172/jci98156] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation occurs in all tissues in response to injury or stress and is the key process underlying hepatic fibrogenesis. Targeting chronic and uncontrolled inflammation is one strategy to prevent liver injury and fibrosis progression. Here, we demonstrate that triggering receptor expressed on myeloid cells 1 (TREM-1), an amplifier of inflammation, promotes liver disease by intensifying hepatic inflammation and fibrosis. In the liver, TREM-1 expression was limited to liver macrophages and monocytes and was highly upregulated on Kupffer cells, circulating monocytes, and monocyte-derived macrophages in a mouse model of chronic liver injury and fibrosis induced by carbon tetrachloride (CCl4) administration. TREM-1 signaling promoted proinflammatory cytokine production and mobilization of inflammatory cells to the site of injury. Deletion of Trem1 reduced liver injury, inflammatory cell infiltration, and fibrogenesis. Reconstitution of Trem1-deficient mice with Trem1-sufficient Kupffer cells restored the recruitment of inflammatory monocytes and the severity of liver injury. Markedly increased infiltration of liver fibrotic areas with TREM-1-positive Kupffer cells and monocytes/macrophages was found in patients with hepatic fibrosis. Our data support a role of TREM-1 in liver injury and hepatic fibrogenesis and suggest that TREM-1 is a master regulator of Kupffer cell activation, which escalates chronic liver inflammatory responses, activates hepatic stellate cells, and reveals a mechanism of promotion of liver fibrosis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ashwin Ajith
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vera Portik-Dobos
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel David Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali Syed Arbab
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ramses Sadek
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anatolij Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
54
|
The role of the Notch signaling pathway in liver injury and repair. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
55
|
Balta C, Ciceu A, Herman H, Rosu M, Boldura OM, Hermenean A. Dose-Dependent Antifibrotic Effect of Chrysin on Regression of Liver Fibrosis: The Role in Extracellular Matrix Remodeling. Dose Response 2018; 16:1559325818789835. [PMID: 30108459 PMCID: PMC6083810 DOI: 10.1177/1559325818789835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis represents an overaccumulation of extracellular matrix (ECM). This study was designed to investigate the effect of chrysin on established ECM overproduction in carbon tetrachloride (CCl4) mouse liver fibrosis. Experimental fibrosis was induced by intraperitoneal injection of 2 mL/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (5,7-dihydroxyflavone). For the assessment of the spontaneous reversion of fibrosis, CCl4-treated mice were investigated after 2 weeks of recovery time. Silymarin was used as a standard of liver protection. In fibrotic livers, the results showed the upregulation of collagen I (Col I) and tissue inhibitors of metalloproteinase 1 (TIMP-1) and modulation of matrix metalloproteinases (MMPs), which led to an altered ECM enriched in Col, confirmed as well by electron microscopy investigations. Treatment with chrysin significantly reduced ultrastructural changes, downregulated Col I, and restored TIMP-1/MMP balance, whereas in the group observed for the spontaneous regression of fibrosis, they remained in the same pattern with fibrotic livers. In this study, we have shown chrysin efficacy to attenuate dose-dependent CCl4-stimulated liver ECM accumulation by regulation of MMP/TIMP imbalance and inhibition of Col production. We have shown the dose-dependent chrysin efficiency in attenuation of CCl4-induced liver ECM accumulation by regulation of MMP/TIMP imbalance and inhibition of Col production. Our findings suggest that chrysin oral administration may introduce a new strategy for treating liver fibrosis in humans.
Collapse
Affiliation(s)
- Cornel Balta
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Alina Ciceu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Hildegard Herman
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Marcel Rosu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Oana Maria Boldura
- Department of Chemistry, Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania," Timisoara, Romania
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, "Vasile Goldis" Western University of Arad, Arad, Romania
| |
Collapse
|
56
|
Ohara M, Ohnishi S, Hosono H, Yamamoto K, Fu Q, Maehara O, Suda G, Sakamoto N. Palmitoylethanolamide Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis in Rats. Front Pharmacol 2018; 9:709. [PMID: 30057547 PMCID: PMC6053486 DOI: 10.3389/fphar.2018.00709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Liver fibrosis is a complex inflammatory and fibrogenic process, and the progression of fibrosis leads to cirrhosis. The only therapeutic approaches are the removal of injurious stimuli and liver transplantation. Therefore, the development of anti-fibrotic therapies is desired. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide belonging to the N-acylethanolamines family and contained in foods such as egg yolks and peanuts. PEA has therapeutic anti-inflammatory, analgesic, and neuroprotective effects. However, the effects and roles of PEA in liver fibrosis remain unknown. Here we investigated the therapeutic effects of PEA in rats with liver fibrosis. Methods: We conducted in vitro experiments to investigate the effects of PEA on the activation of hepatic stellate cells (HSCs, LX-2). Liver fibrosis was induced by an intraperitoneal injection of 1.5 mL/kg of 50% carbon tetrachloride twice a week for 4 weeks. Beginning at 3 weeks, PEA (20 mg/kg) was intraperitoneally injected thrice a week for 2 weeks. Then rats were sacrificed and we performed histological and quantitative reverse-transcription polymerase chain reaction analyses. Results: The expression of α-smooth muscle actin (SMA) induced by transforming growth factor (TGF)-β1 in HSCs was significantly downregulated by PEA. PEA treatment inhibited the TGF-β1-induced phosphorylation of SMAD2 in a dose-dependent manner, and upregulated the expression of SMAD7. The reporter gene assay demonstrated that PEA downregulated the transcriptional activity of the SMAD complex upregulated by TGF-β1. Administration of PEA significantly reduced the fibrotic area, deposition of type I collagen, and activation of HSCs and Kupffer cells in rats with liver fibrosis. Conclusion: Activation of HSCs was significantly decreased by PEA through suppression of the TGF-β1/SMAD signaling pathway. Administration of PEA produced significant improvement in a rat model of liver fibrosis, possibly by inhibiting the activation of HSCs and Kupffer cells. PEA may be a potential new treatment for liver fibrosis.
Collapse
Affiliation(s)
- Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidetaka Hosono
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Maehara
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
57
|
Zhu Y, Ni T, Deng W, Lin J, Zheng L, Zhang C, Luo M. Effects of NLRP6 on the proliferation and activation of human hepatic stellate cells. Exp Cell Res 2018; 370:383-388. [PMID: 29966662 DOI: 10.1016/j.yexcr.2018.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022]
Abstract
Nod-like receptor pyrin domain-containing proteins (NLRPs) are known to take part in the pathogenesis of chronic liver diseases, including liver fibrosis. However, no known direct role of NLRP6, a member of NLRPs, has been reported in liver fibrosis. Here, we found that NLRP6 expression was decreased in fibrotic and cirrhotic livers. In a human hepatic stellate cell line, LX-2, overexpression of NLRP6 suppressed cell proliferation, hydroxyproline accumulation, as well as the expression of type I and type III collagens (Col-I and Col-III), α-smooth muscle actin (α-SMA) and matrix metalloproteinases (MMP2 and MMP9), whereas NLRP6 knockdown displayed reverse effects. Furthermore, NLRP6 significantly suppressed the phosphorylation of Smad2/3 (p-Smad2/3) and enhanced the expression of protein phosphatase magnesium dependent 1 A (PPM1A), the only phosphatase for Smad2/3. NLRP6 overexpression abrogated TGF-β1-stimulated hydroxyproline accumulation and p-Smad2/3. Co-immunoprecipitation assay demonstrated that NLRP6 was able to form a complex with PPM1A. NLRP6 overexpression did not change the level of p-Smad2/3 in LX-2 cells with PPM1A knockdown. These data indicated that PPM1A was required for the inhibitory effects of NLRP6 on TGF-β1/Smad2/3 signaling. In conclusion, our results suggest that NLRP6 exerts anti-fibrotic effects in LX-2 cells via regulating PPM1A/Smad2/3 and that NLRP6 may be an effective target in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yiming Zhu
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China
| | - Wensheng Deng
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, China.
| |
Collapse
|
58
|
Zhang F, Ni Y, Yuan Y, Yin W, Gao Y. Early urinary candidate biomarker discovery in a rat thioacetamide-induced liver fibrosis model. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1369-1381. [DOI: 10.1007/s11427-017-9268-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
|
59
|
|
60
|
Wang YH, Twu YC, Wang CK, Lin FZ, Lee CY, Liao YJ. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function. Int J Mol Sci 2018; 19:ijms19061678. [PMID: 29874879 PMCID: PMC6032364 DOI: 10.3390/ijms19061678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei 106, Taiwan.
| | - Fu-Zhen Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
61
|
Murad Gutiérrez V, Romero Enciso J. Liver elastography: What it is, how it is done, and how it is interpreted. RADIOLOGIA 2018. [DOI: 10.1016/j.rxeng.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Kennedy L, Hargrove L, Demieville J, Bailey JM, Dar W, Polireddy K, Chen Q, Nevah Rubin MI, Sybenga A, DeMorrow S, Meng F, Stockton L, Alpini G, Francis H. Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:600-615. [PMID: 29248461 PMCID: PMC5840487 DOI: 10.1016/j.ajpath.2017.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 02/08/2023]
Abstract
Feeding a high-fat diet (HFD) coupled with sugar, mimicking a Western diet, causes fatty liver disease in mice. Histamine induces biliary proliferation and fibrosis and regulates leptin signaling. Wild-type (WT) and l-histidine decarboxylase (Hdc-/-) mice were fed a control diet or an HFD coupled with a high fructose corn syrup equivalent. Hematoxylin and eosin and Oil Red O staining were performed to determine steatosis. Biliary mass and cholangiocyte proliferation were evaluated by immunohistochemistry. Senescence and fibrosis were measured by quantitative PCR and immunohistochemistry. Hepatic stellate cell activation was detected by immunofluorescence. Histamine and leptin levels were measured by enzyme immunoassay. Leptin receptor (Ob-R) was evaluated by quantitative PCR. The HDC/histamine/histamine receptor axis, ductular reaction, and biliary senescence were evaluated in patients with nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or end-stage liver disease. Hdc-/- HFD mice had increased steatosis compared with WT HFD mice. WT HFD mice had increased biliary mass, biliary proliferation, senescence, fibrosis, and hepatic stellate cell activation, which were reduced in Hdc-/- HFD mice. In Hdc-/- HFD mice, serum leptin levels increased, whereas biliary Ob-R expression decreased. Nonalcoholic steatohepatitis patients had increased HDC/histamine/histamine receptor signaling. Hdc-/- HFD mice are susceptible to obesity via dysregulated leptin/Ob-R signaling, whereas the lack of HDC protects from HFD-induced fibrosis and cholangiocyte damage. HDC/histamine/leptin signaling may be important in managing obesity-induced biliary damage.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Jennifer Demieville
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas
| | - Jennifer M Bailey
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wasim Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kishore Polireddy
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingzheng Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Moises I Nevah Rubin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Amelia Sybenga
- Department of Anatomic and Clinical Pathology, Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Lindsey Stockton
- Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Heather Francis
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
| |
Collapse
|
63
|
Chen L, Brigstock DR. Cellular or Exosomal microRNAs Associated with CCN Gene Expression in Liver Fibrosis. Methods Mol Biol 2018; 1489:465-480. [PMID: 27734397 DOI: 10.1007/978-1-4939-6430-7_38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver fibrosis occurs during chronic injury and represents, in large part, an exaggerated matrigenic output by hepatic stellate cells (HSCs) which become activated as a result of injury-induced signaling pathways in parenchymal and inflammatory cells (hepatocytes, macrophages, etc.). The molecular components in these pathways (e.g., CCN proteins) are modulated by transcription factors as well as by factors such as microRNAs (miRs) that act posttranscriptionally. MiRs are small (~23 nt) noncoding RNAs that regulate gene expression by specifically interacting with the 3' untranslated region (UTR) of target gene mRNA to repress translation or enhance mRNA cleavage. As well as acting in their cells of production, miRs (and other cellular constituents such as mRNAs and proteins) can be liberated from their cells of origin in nanovesicular membrane exosomes, which traverse the intercellular spaces, and can be delivered to neighboring cells into which they release their molecular payload, causing alterations in gene expression in the target cells. Here we summarize some of the experimental approaches for studying miR action and exosomal trafficking between hepatic cells. Insights into the mechanisms involved will yield new information about how hepatic fibrosis is regulated and, further, may identify new points of therapeutic intervention.
Collapse
Affiliation(s)
- Li Chen
- The Research Institute at Nationwide Children's Hospital, Research Building 2, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Research Building 2, 700 Children's Drive, Columbus, OH, 43205, USA.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, 43212, USA.,Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, 43212, USA
| |
Collapse
|
64
|
Analysis of Pathological Activities of CCN Proteins in Fibrotic Diseases: Liver Fibrosis. Methods Mol Biol 2018; 1489:445-463. [PMID: 27734396 DOI: 10.1007/978-1-4939-6430-7_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Hepatic fibrosis is a complex pathology arising from chronic injury. Pathological features are dominated by the excessive production of extracellular matrix proteins, particularly collagens which are deposited as insoluble scar material that can compromise tissue function. Fibrosis in the liver can often be assessed by staining for collagen in tissue sections and this is an approach that is widely used for grading of fibrosis in human biopsies. However, the recognition of the molecular components that drive fibrosis, including CCN proteins, and the involvement of hepatic stellate cells (HSC) as the principal collagen-producing cells in fibrosing liver, has resulted in a wide variety of molecular and cellular approaches to study the pathogenesis of fibrosis both in vivo and in vitro.
Collapse
|
65
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
66
|
Liver elastography: what it is, how it is done, and how it is interpreted. RADIOLOGIA 2017; 60:183-189. [PMID: 29248161 DOI: 10.1016/j.rx.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Liver elastography is a noninvasive method for diagnosing fibrosis that has been developed over the last decade in response to the limitations of liver biopsies, blood markers, and traditional imaging modalities. There are different methods of measuring tissue stiffness through ultrasound; thus far, shear wave elastography has proven superior for diagnosing clinically significant liver fibrosis, where early detection modifies the approach to treatment and improves prognosis. This article aims to provide a brief review of the different methods for performing elastography with ultrasound, focusing especially on shear wave elastography and on technical aspects for carrying out the procedure and key points for interpreting the findings.
Collapse
|
67
|
Tang N, Zhang Y, Liang Q, Liu Z, Shi Y. The role of ursodeoxycholic acid on cholestatic hepatic fibrosis in infant rats. Mol Med Rep 2017; 17:3837-3844. [PMID: 29257337 DOI: 10.3892/mmr.2017.8284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/08/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify the impact of ursodeoxycholic acid (UDCA) on liver function and fibrosis markers in infant rats by establishing a cholestatic‑induced hepatic fibrosis model. α‑naphthylisothiocyanate (ANIT) was administrated by gavage to induce cholestatic hepatic fibrosis in infant rats. UCDA treatment was performed to assess its impact on biochemical indicators of liver function, four serum biomarkers of hepatic fibrosis, hepatic fibrosis indices in liver tissues and the pathology of liver tissues. Colorimetric assays and biochemical assays based on the initial rate method were performed to determine the levels of liver function markers in the serum, whereas the serum biomarkers of hepatic fibrosis were measured via radioimmunoassay. Sections of liver tissue were harvested and stained with hematoxylin‑eosin or picric acid‑Sirius red, and subjected to immunohistochemical staining to analyze liver pathology. All indicators of liver function, except for cholinesterase, were significantly higher in the ANIT model than in the control group (P<0.01). γ‑glutamyl transpeptidase and total bile acids of the UDCA treatment group were significantly lower than the ANIT model (P<0.05); whereas no significant differences were observed in alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin and indirect bilirubin between the two groups. Serum laminin protein (LN) and type‑IV collagen (cIV) in the UDCA treatment group were significantly lower than in the ANIT model (P<0.01); whereas no significant differences were observed in hyaluronic acid and type‑III procollagen between the two groups. Liver LN and cIV in the UDCA treatment group were significantly lower than in the ANIT model (P<0.01). The degree of hepatic fibrosis in the UDCA treatment group was significantly lower than in the ANIT model (P<0.01). The results of the present study demonstrated that UDCA is able to reduce LN and cIV in serum and protect liver tissues against hepatic fibrosis.
Collapse
Affiliation(s)
- Ning Tang
- Department of Pediatrics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yaping Zhang
- Department of Pediatrics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qinghong Liang
- Department of Pediatrics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zeyu Liu
- Department of Pediatrics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yingping Shi
- Department of Pathology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
68
|
Zheng XY, Zhao X, Yang YF, Jiang HJ, Li W, Sun Y, Pu XP. Antioxidant, antiapoptotic and amino acid balance regulating activities of 1,7-dihydroxy-3,4,8-trimethoxyxanthone against dimethylnitrosamine-induced liver fibrosis. PLoS One 2017; 12:e0189344. [PMID: 29232404 PMCID: PMC5726633 DOI: 10.1371/journal.pone.0189344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injury which could be caused by viral, autoimmune, drugs, and so on. Unfortunately, there was no effective therapy available for liver fibrosis in clinic. In this study, we identified the anti-fibrotic effects of 1,7-dihydroxy-3,4,8-trimethoxyxanthone (ZYC-1) on the dimethylnitrosamine (DMN)-induced rat model. ZYC-1 was isolated from Swertia punicea Hemsl and was administrated to DMN-induced rat model. ZYC decreased the hyaluronic acid (HA), type IV collagen (CIV) and hydroxyproline (Hyp) levels and inhibited the expression of α smooth muscle actin (α-SMA) and transforming growth factor beta 1 (TGF-1β). The anti-fibrotic effect of ZYC-1 was also confirmed by Sirius Red staining. Finally, we identified 42 differentially expressed proteins by using proteomics analysis after ZYC-1 treatment, of which 17 were up-regulated and 25 were down-regulated. These Most of the 42 proteins are involved in the oxidative stress pathway, the mitochondrial-mediated apoptotic pathway and the amino acid metabolism pathway. Our study presented the first elucidated mechanisms of xanthone on liver fibrosis in vivo. This study pointed out that ZYC-1 may be used as a lead compound for hepatofibrosis treatment.
Collapse
Affiliation(s)
- Xi-Yuan Zheng
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
| | - Ying-Fan Yang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
| | - Han-Jie Jiang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
| | - Wan Li
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
69
|
Akcora BÖ, Storm G, Bansal R. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12. Biochim Biophys Acta Mol Basis Dis 2017; 1864:804-818. [PMID: 29217140 DOI: 10.1016/j.bbadis.2017.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 02/08/2023]
Abstract
Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl4-induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis.
Collapse
Affiliation(s)
- Büsra Öztürk Akcora
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
70
|
Xu A, Li Y, Zhao W, Hou F, Li X, Sun L, Chen W, Yang A, Wu S, Zhang B, Yao J, Wang H, Huang J. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. J Mol Med (Berl) 2017; 96:119-133. [PMID: 29098317 DOI: 10.1007/s00109-017-1605-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. KEY MESSAGES PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.
Collapse
Affiliation(s)
- Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenshan Zhao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Hou
- Department of Infection Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Aiting Yang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huan Wang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
71
|
Theron AJ, Anderson R, Rossouw TM, Steel HC. The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders. Front Immunol 2017; 8:1461. [PMID: 29163528 PMCID: PMC5673850 DOI: 10.3389/fimmu.2017.01461] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Even after attainment of sustained viral suppression following implementation of highly active antiretroviral therapy, HIV-infected persons continue to experience persistent, low-grade, systemic inflammation. Among other mechanisms, this appears to result from ongoing microbial translocation from a damaged gastrointestinal tract. This HIV-related chronic inflammatory response is paralleled by counteracting, but only partially effective, biological anti-inflammatory processes. Paradoxically, however, this anti-inflammatory response not only exacerbates immunosuppression but also predisposes for development of non-AIDS-related, non-communicable disorders. With respect to the pathogenesis of both sustained immunosuppression and the increased frequency of non-AIDS-related disorders, the anti-inflammatory/profibrotic cytokine, transforming growth factor-β1 (TGF-β1), which remains persistently elevated in both untreated and virally suppressed HIV-infected persons, may provide a common link. In this context, the current review is focused on two different, albeit related, harmful activities of TGF-β1 in HIV infection. First, on the spectrum of anti-inflammatory/immunosuppressive activities of TGF-β1 and the involvement of this cytokine, derived predominantly from T regulatory cells, in driving disease progression in HIV-infected persons via both non-fibrotic and profibrotic mechanisms. Second, the possible involvement of sustained elevations in circulating and tissue TGF-β1 in the pathogenesis of non-AIDS-defining cardiovascular, hepatic, pulmonary and renal disorders, together with a brief comment on potential TGF-β1-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Annette J. Theron
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Ronald Anderson
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Helen C. Steel
- Faculty of Health Sciences, Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
72
|
Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - What is the link? J Hepatol 2017; 67:619-631. [PMID: 28712691 DOI: 10.1016/j.jhep.2017.04.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
The main trigger for liver injury in acquired cholestatic liver disease remains unclear. However, the accumulation of bile acids (BAs) undoubtedly plays a role. Recent progress in deciphering the pathomechanisms of inborn cholestatic liver diseases, decoding mechanisms of BA-induced cell death, and generating modern BA-derived drugs has improved the understanding of the regulation of BA synthesis and transport. Now is the appropriate time to reassess current knowledge about the specific role of BAs in hepatobiliary injury.
Collapse
Affiliation(s)
- Peter Fickert
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria.
| | - Martin Wagner
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria
| |
Collapse
|
73
|
Boyle M, Mann J. WITHDRAWN: Epigenetics in Chronic Liver Disease. J Hepatol 2017:S0168-8278(17)32255-9. [PMID: 28855099 DOI: 10.1016/j.jhep.2017.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Marie Boyle
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
74
|
Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed Pharmacother 2017; 95:1-10. [PMID: 28826090 DOI: 10.1016/j.biopha.2017.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/20/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is a reversible scarring response that commonly occurs with chronic liver injury. During hepatic fibrogenesis, the major effector hepatic stellate cells (HSCs) become activated, featured by disappeared intracellular lipid droplets, decreased retinoid storage, and dysregulated expression of genes associated with lipid and retinoid metabolism. Compelling evidence suggested that recovery of retinoid droplets could inhibit HSC activation, while the precise molecular basis underlying the phenotypical switch still remained unclear. In this study, curcumin increased the abundance of lipid droplets and content of triglyceride in activated HSCs. In addition, curcumin could concentration-dependently regulate genes associated with lipid and retinoid metabolism. Further, consistent results were obtained from in vivo experiments. Curcumin increased Nrf2 expression and nuclear translocation, and its binding activity to DNA, which might be associated with suppression of Kelch-like ECH-associated protein 1 in HSCs. Of interest was that Nrf2 overexpression plasmids, in contract to Nrf2 siRNA, strengthened the effect of curcumin on induction of lipocyte phenotype. In in vivo system, Nrf2 knockdown mediated by Nrf2 shRNA lentivirus not only accelerated the lipid degradation in HSCs but also promoted the progression of CCl4-induced hepatic fibrosis in mice. Noteworthily, Nrf2 knockdown abolished the protective effect of curcumin. In conclusion, curcumin could induce lipocyte phenotype of activated HSCs via activating Nrf2. Nrf2 could be a target molecule for antifibrotic strategy.
Collapse
|
75
|
Lu C, Xu W, Shao J, Zhang F, Chen A, Zheng S. Nrf2 induces lipocyte phenotype via a SOCS3-dependent negative feedback loop on JAK2/STAT3 signaling in hepatic stellate cells. Int Immunopharmacol 2017; 49:203-211. [PMID: 28601022 DOI: 10.1016/j.intimp.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
76
|
Oh JE, Shim KY, Lee JI, Choi SI, Baik SK, Eom YW. 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS. Int J Mol Med 2017; 40:576-582. [PMID: 28656203 DOI: 10.3892/ijmm.2017.3043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/16/2017] [Indexed: 11/06/2022] Open
Abstract
Liver fibrosis, a precursor to cirrhosis, is the result of the deposition of extracellular matrix (ECM) proteins and is mediated primarily by activated hepatic stellate cells (HSCs). In this study, we investigated the anti-fibrotic effects of interferon (IFN)-γ in activated HSCs in vitro and whether cell viability would be decreased by the inhibition of indoleamine 2,3-dioxygemase (IDO), which is responsible for cell cycle arrest. Following treatment with IFN-γ, cell signaling pathways and DNA content were analyzed to assess the inactivation of HSCs or the decrease in HSC proliferation. The IDO inhibitor, 1-methyl-L-tryptophan (1-MT), was used to determine whether IDO plays a key role in the regulation of activated HSCs, as IFN-γ increases the expression of IDO. IFN-γ significantly inhibited the growth of HSCs and downregulated the expression of α-smooth muscle actin (α-SMA) in the HSCs. IDO expression was markedly increased by IFN-γ through signal transducer and activator of transcription 1 (STAT1) activation and resulted in the depletion of tryptophan. This depletion induced G1 cell cycle arrest. When the cells were released from IFN-γ-mediated G1 cell cycle arrest by treatment with 1-MT, the apoptosis of the HSCs was markedly increased through the induction of IFN-γRβ, interferon regulatory factor (IRF-1) and FAS. Our results thus suggest that the inhibition of IDO enhances the suppression of activated HSCs, and therefore co-treatment with IFN-γ and 1-MT may be applied to ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Ji Eun Oh
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Kwang Yong Shim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Jong In Lee
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Soo In Choi
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| |
Collapse
|
77
|
Pingitore P, Dongiovanni P, Motta BM, Meroni M, Lepore SM, Mancina RM, Pelusi S, Russo C, Caddeo A, Rossi G, Montalcini T, Pujia A, Wiklund O, Valenti L, Romeo S. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. Hum Mol Genet 2017; 25:5212-5222. [PMID: 27742777 PMCID: PMC5886043 DOI: 10.1093/hmg/ddw341] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/28/2016] [Indexed: 01/22/2023] Open
Abstract
Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis. Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling.
Collapse
Affiliation(s)
- Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
| | - Paola Dongiovanni
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | | | - Marica Meroni
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Saverio Massimo Lepore
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Serena Pelusi
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Cristina Russo
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
| | - Giorgio Rossi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Liver Surgery and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy
| | - Tiziana Montalcini
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luca Valenti
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
78
|
Wáng YXJ, Deng M, Li YT, Huang H, Leung JCS, Chen W, Lu PX. A Combined Use of Intravoxel Incoherent Motion MRI Parameters Can Differentiate Early-Stage Hepatitis-b Fibrotic Livers from Healthy Livers. SLAS Technol 2017; 23:259-268. [PMID: 28666091 DOI: 10.1177/2472630317717049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study investigated a combined use of intravoxel incoherent motion (IVIM) parameters, Dslow ( D), PF ( f), and Dfast ( D*), for liver fibrosis evaluation. Sixteen healthy volunteers (F0) and 33 hepatitis-b patients (stage F1 = 15, stage F2-4 = 18) were included. With a 1.5 T MR scanner and respiration gating, IVIM diffusion-weighted imaging was acquired using a single-shot echo-planar imaging sequence with 10 b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, and 800 s/mm2. Signal measurement was performed on right liver parenchyma. With a three-dimensional tool, Dslow, PF, and Dfast values were placed along the x axis, y axis, and z axis, and a plane was defined to separate healthy volunteers from patients. The three-dimensional tool demonstrated that healthy volunteers and all patients with liver fibrosis could be separated. Classification and regression tree showed that a combination of PF (PF < 12.55%), Dslow (Dslow < 1.152 × 10-3 mm2/s), and Dfast (Dfast < 13.36 × 10-3 mm2/s) could differentiate healthy subjects and all fibrotic livers (F1-4) with an area under the curve of logistic regression (AUC) of 0.986. The AUC for differentiation of healthy livers versus F2-4 livers was 1. PF offered the best diagnostic value, followed by Dslow; however, all three parameters of PF, Dslow, and Dfast contributed to liver fibrosis detection.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Yáo T Li
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Hua Huang
- 2 Department of Radiology, The Shenzhen No. 3 People's Hospital, Shenzhen, Guangdong Province, China
| | - Jason Chi Shun Leung
- 3 JC Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Weitian Chen
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR
| | - Pu-Xuan Lu
- 4 Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong Province, China
| |
Collapse
|
79
|
Dias HB, Krause GC, Squizani ED, Lima KG, Schuster AD, Pedrazza L, Basso BDS, Martha BA, de Mesquita FC, Nunes FB, Donadio MVF, de Oliveira JR. Fructose-1,6-bisphosphate reverts iron-induced phenotype of hepatic stellate cells by chelating ferrous ions. Biometals 2017. [DOI: 10.1007/s10534-017-0025-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
80
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
81
|
Najimi M, Berardis S, El-Kehdy H, Rosseels V, Evraerts J, Lombard C, El Taghdouini A, Henriet P, van Grunsven L, Sokal EM. Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Res Ther 2017; 8:131. [PMID: 28583205 PMCID: PMC5460523 DOI: 10.1186/s13287-017-0575-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022] Open
Abstract
Background Progressive liver fibrosis leads to cirrhosis and end-stage liver disease. This disease is a consequence of strong interactions between matrix-producing hepatic stellate cells (HSCs) and resident and infiltrating immune cell populations. Accumulated experimental evidence supports the involvement of adult-derived human liver mesenchymal stem/progenitor cells (ADHLSCs) in liver regeneration. The aim of the present study was to evaluate the influence of ADHLSCs on HSCs, both in vitro and in vivo. Methods Activated human HSCs were co-cultured with ADHLSCs or ADHLSC-conditioned culture medium. The characteristics of the activated human HSCs were assessed by microscopy and biochemical assays, whereas proliferation was analyzed using flow cytometry and immunocytochemistry. The secretion profile of activated HSCs was evaluated by ELISA and Luminex. ADHLSCs were transplanted into a juvenile rat model of fibrosis established after co-administration of phenobarbital and CCl4. Results When co-cultured with ADHLSCs or conditioned medium, the proliferation of HSCs was inhibited, beginning at 24 h and for up to 7 days. The HSCs were blocked in G0/G1 phase, and showed decreased Ki-67 positivity. Pro-collagen I production was reduced, while secretion of HGF, IL-6, MMP1, and MMP2 was enhanced. Neutralization of HGF partially blocked the inhibitory effect of ADHLSCs on the proliferation and secretion profile of HSCs. Repeated intrahepatic transplantation of cryopreserved/thawed ADHLSCs without immunosuppression inhibited the expression of markers of liver fibrosis in 6 out of 11 rats, as compared to their expression in the vehicle-transplanted group. Conclusions These data provide evidence for a direct inhibitory effect of ADHLSCs on activated HSCs, which supports their development for the treatment of liver fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0575-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mustapha Najimi
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium.
| | - Silvia Berardis
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Hoda El-Kehdy
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Valérie Rosseels
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Jonathan Evraerts
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Catherine Lombard
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Adil El Taghdouini
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Leo van Grunsven
- Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Etienne Marc Sokal
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| |
Collapse
|
82
|
Bruschi FV, Claudel T, Tardelli M, Caligiuri A, Stulnig TM, Marra F, Trauner M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65:1875-1890. [PMID: 28073161 DOI: 10.1002/hep.29041] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The genetic polymorphism I148M of patatin-like phospholipase domain-containing 3 (PNPLA3) is robustly associated with hepatic steatosis and its progression to steatohepatitis, fibrosis, and cancer. Hepatic stellate cells (HSCs) are key players in the development of liver fibrosis, but the role of PNPLA3 and its variant I148M in this process is poorly understood. Here we analyzed the expression of PNPLA3 during human HSC activation and thereby explored how a PNPLA3 variant impacts hepatic fibrogenesis. We show that expression of PNPLA3 gene and protein increases during the early phases of activation and remains elevated in fully activated HSCs (P < 0.01). Knockdown of PNPLA3 significantly decreases the profibrogenic protein alpha-smooth muscle actin (P < 0.05). Primary human I148M HSCs displayed significantly higher expression and release of proinflammatory cytokines, such as chemokine (C-C motif) ligand 5 (P < 0.01) and granulocyte-macrophage colony-stimulating factor (P < 0.001), thus contributing to migration of immune cells (P < 0.05). Primary I148M HSCs showed reduced retinol (P < 0.001) but higher lipid droplet content (P < 0.001). In line with this, LX-2 cells stably overexpressing I148M showed augmented proliferation and migration, lower retinol, and abolished retinoid X receptor/retinoid A receptor transcriptional activities but more lipid droplets. Knockdown of I148M PNPLA3 (P < 0.001) also reduces chemokine (C-C motif) ligand 5 and collagen1α1 expression (P < 0.05). Notably, I148M cells display reduced peroxisome proliferator-activated receptor gamma transcriptional activity, and this effect was attributed to increased c-Jun N-terminal kinase, thereby inhibiting peroxisome proliferator-activated receptor gamma through serine 84 phosphorylation and promoting activator protein 1 transcription. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and the peroxisome proliferator-activated receptor gamma agonist rosiglitazone decreased activator protein 1 promoter activity. CONCLUSIONS These data indicate that PNPLA3 is required for HSC activation and that its genetic variant I148M potentiates the profibrogenic features of HSCs, providing a molecular mechanism for the higher risk of progression and severity of liver diseases conferred to patients carrying the I148M variant. (Hepatology 2017;65:1875-1890).
Collapse
Affiliation(s)
- Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Matteo Tardelli
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Thomas M Stulnig
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Fabio Marra
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
83
|
Sitanggang EJ, Antarianto RD, Jusman SWA, Pawitan JA, Jusuf AA. Bone Marrow Stem Cells Anti-liver Fibrosis Potency: Inhibition of Hepatic Stellate Cells Activity and Extracellular Matrix Deposition. Int J Stem Cells 2017; 10:69-75. [PMID: 28531915 PMCID: PMC5488778 DOI: 10.15283/ijsc16048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 01/02/2023] Open
Abstract
Transplantation of bone marrow derived stem cells (BMSCs) has been reported inhibits liver fibrosis. Several in vitro studies by co-culturing BMSCs and hepatic stellate cells (HSCs) indirectly or directly in 2D models showed inhibition of HSC as the key player in liver fibrosis. In this study, we investigated direct effect of BMSCs on HSCs by co-culturing BMSCs and HSCs in 3D model as it represents the liver microenvironment with intricate cell-cell and cell-matrix interactions. Primary isolated rat HSCs and BMSCs were directly co-cultured at 1:1 ratio with hanging drop method. The monoculture of rat HSCs served as positive control. Mono-culture and co-culture samples were harvested on day 3, 5 and 7 for histological analysis. The samples were analyzed for extracellular matrix deposition by Masson’s Trichrome staining, tenascin-C immunocytochemistry, resting HSC’s state as shown by positive Oil Red O stained cells. Our results indicated CD90+CD34− BMSCs anti-liver fibrosis potency as evidenced by higher proportion of Oil Red O-positive cells in the co-culture group compared to the monoculture group and the significant decrease in extracellular matrix deposition as well as the decrease in tenascin-C expression in the co-culture group (p<0.05) compared to the monoculture group. These findings demonstrate that BMSCs have a potential therapeutic effect against liver fibrotic process through their capacity to inhibit HSCs activation and their effect in minimizing extracellular matrix deposition.
Collapse
Affiliation(s)
| | | | - Sri Widia A Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta
| | | | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine Universitas Indonesia, Jakarta
| |
Collapse
|
84
|
Abstract
中医药调控肝再生是防治肝病及其相关病证的重要策略, 已形成的研究热点方兴未艾. 近些年来取得的主要进展至少包括以下几个方面: 调控肝损伤与肝再生失衡提高了中医/中西医结合防治肝病及其相关病证的临床疗效, "髓"为中心治疗靶点的研究进展揭示了中医/中西医结合防治肝病及其相关病证的疗效机制, 整体动态微调早调的作用方式满足了肝再生调控复杂多变的需要, 解决了单靶点调控肝再生疗效有限的关键科学问题, 平衡协调的疗效考核与结局指标的综合判断为中医药调控肝再生的临床推广应用提供了途径和方法.
Collapse
|
85
|
Ouyang P, Wang S, Zhang H, Huang Z, Wei P, Zhang Y, Wu Z, Li T. Microarray analysis of differentially expressed genes in L929 mouse fibroblast cells exposed to leptin and hypoxia. Mol Med Rep 2017; 16:181-191. [PMID: 28534985 PMCID: PMC5482097 DOI: 10.3892/mmr.2017.6596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/26/2017] [Indexed: 01/07/2023] Open
Abstract
Leptin and hypoxia are pro-fibrotic factors involved in fibrogenesis, however, the gene expression profiles remain to be fully elucidated. The aim of the present study was to investigate the regulatory roles of leptin and hypoxia on the L929 mouse fibroblast cell line. The cells were assigned to a normoxia, normoxia with leptin, hypoxia, and hypoxia with leptin group. The cDNA expression was detected using an Agilent mRNA array platform. The differentially expressed genes (DEGs) in response to leptin and hypoxia were identified using reverse transcription-quantitative polymerase chain reaction analysis, followed by clustering analysis, Gene Ontology analysis and pathway analysis. As a result, 54, 1,507 and 1,502 DEGs were found in response to leptin, hypoxia and the two combined, respectively, among which 52 (96.30%), 467 (30.99%) and 495 (32.96%) of the DEGs were downregulated. The most significant functional terms in response to leptin were meiosis I for biological process (P=0.0041) and synaptonemal complex for cell component (P=0.0013). Only one significant pathway responded to leptin, which was axon guidance (P=0.029). Flow cytometry confirmed that leptin promoted L929 cell proliferation. The most significant functional terms in response to hypoxia were ion binding for molecular function (P=7.8621E-05), glucose metabolic process for biological process (P=0.0008) and cell projection part for cell component (P=0.003). There were 12 pathways, which significantly responded to hypoxia (P<0.05) and the pathway with the highest significance was the chemokine signaling pathway (P=0.0001), which comprised 28 genes, including C-C motif ligand (CCL)1, C-X-C motif ligand (CXCL)9, CXCL10, son of sevenless homolog 1, AKT serine/threonine kinase 2, Rho-associated protein kinase 1, vav guanine nucleotide exchange factor 1, CCL17, arrestin β1 and C-C motif chemokine receptor 2. In conclusion, the present study showed that leptin and hypoxia altered the profiles of gene expression in L929 cells. These findings not only extend the cell spectrum of leptin on cell proliferation, but also improve current understanding of hypoxia in fibroblast cells.
Collapse
Affiliation(s)
- Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Sen Wang
- Cancer Institute of Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - He Zhang
- Department of Epidemiology, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhigang Huang
- Department of Epidemiology, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Pei Wei
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ye Zhang
- Cancer Institute of Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhuguo Wu
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
86
|
Abstract
Liver fibrosis arises because prolonged injury combined with excessive scar deposition within hepatic parenchyma arising from overactive wound healing response mediated by activated myofibroblasts. Fibrosis is the common end point for any type of chronic liver injury including alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, and cholestatic liver diseases. Although genetic influences are important, it is epigenetic mechanisms that have been shown to orchestrate many aspects of fibrogenesis in the liver. New discoveries in the field are leading toward the development of epigenetic biomarkers and targeted therapies. This review considers epigenetic mechanisms as well as recent advances in epigenetic programming in the context of hepatic fibrosis.
Collapse
Key Words
- CLD, chronic liver disease
- Chronic Liver Disease
- CpG, cytosine-phospho-guanine
- DNA Methylation
- DNMT, DNA methyltransferase
- Epigenetics
- HDAC, histone deacetylase
- HSC, hepatic stellate cell
- Histone Modifications
- Liver Fibrosis
- NAFLD, nonalcoholic fatty liver disease
- PPAR, peroxisome proliferator activated receptor
- TET, Ten Eleven Translocation
- miRNA, microRNA
- ncRNA, non-coding RNA
Collapse
Affiliation(s)
| | - Jelena Mann
- Correspondence Address correspondence to: Jelena Mann, PhD, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH United Kingdom. fax: +44-191-208-0723.Institute of Cellular MedicineFaculty of Medical Sciences4th FloorWilliam Leech BuildingNewcastle UniversityFramlington PlaceNewcastle upon TyneNE2 4HH United Kingdom
| |
Collapse
|
87
|
Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology 2017; 26:599-609. [DOI: 10.1007/s10787-017-0329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
|
88
|
Murphy IG, Graves MJ, Reid S, Patterson AJ, Patterson I, Priest AN, Lomas DJ. Comparison of breath-hold, respiratory navigated and free-breathing MR elastography of the liver. Magn Reson Imaging 2017; 37:46-50. [DOI: 10.1016/j.mri.2016.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
|
89
|
Salas-Villalobos T, Lozano-Sepúlveda S, Rincón-Sánchez A, Govea-Salas M, Rivas-Estilla A. Mechanisms involved in liver damage resolution after hepatitis C virus clearance. MEDICINA UNIVERSITARIA 2017. [DOI: 10.1016/j.rmu.2017.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
90
|
Enhanced Wnt Signalling in Hepatocytes is Associated with Schistosoma japonicum Infection and Contributes to Liver Fibrosis. Sci Rep 2017; 7:230. [PMID: 28331224 PMCID: PMC5428310 DOI: 10.1038/s41598-017-00377-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Liver fibrosis is the most serious pathology caused by Schistosoma japonicum infection, which arises when schistosome eggs are deposited in the liver. Eosinophils, macrophages and hepatic stellate cells (HSCs) have been identified as major cellular contributors to the development of granulomas and fibrosis, but little is known about the effects of hepatocytes on granuloma formation. Here, we found that the levels of Wnt signalling-related molecules, transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF) in hepatocytes were markedly elevated after S. japonicum infection. Liver fibrosis was exacerbated when exogenous Wnt3a was introduced, but was alleviated when Wnt signalling was suppressed by DKK1, accompanied by the reduced expression of TGF-β and CTGF in hepatocytes. These results indicate that the hepatocytic expression of TGF-β and CTGF is mediated by Wnt signalling. Additionally, the hepatocytes isolated from infected mice promoted the activation of primary HSCs in vitro, however, this effect was not observed when hepatocytes from DKK1 treated S. japonicum-infected mice was employed in the co-culture system. Our findings identify a novel pro-fibrogenic role of hepatocytes in schistosomiasis-induced liver fibrosis that is dependent on Wnt signalling, which may serve as a potential target for ameliorating hepatic fibrosis caused by helminths.
Collapse
|
91
|
Kong LJ, Li H, Du YJ, Pei FH, Hu Y, Zhao LL, Chen J. Vatalanib, a tyrosine kinase inhibitor, decreases hepatic fibrosis and sinusoidal capillarization in CCl4-induced fibrotic mice. Mol Med Rep 2017; 15:2604-2610. [PMID: 28447731 PMCID: PMC5428398 DOI: 10.3892/mmr.2017.6325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/03/2017] [Indexed: 12/29/2022] Open
Abstract
Among the various consequence arising from lung injury, hepatic fibrosis is the most severe. Decreasing the effects of hepatic fibrosis remains one of the primary therapeutic challenges in hepatology. Dysfunction of hepatic sinusoidal endothelial cells is considered to be one of the initial events that occur in liver injury. Vascular endothelial growth factor signaling is involved in the progression of genotype changes. The aim of the present study was to determine the effect of the tyrosine kinase inhibitor, vatalanib, on hepatic fibrosis and hepatic sinusoidal capillarization in a carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis. Liver fibrosis was induced in BALB/c mice using CCl4 by intraperitoneal injection for 6 weeks. The four experimental groups included a control, and three experimental groups involving administration of CCl4, vatalanib and a combination of the two. Histopathological staining and measuring live hydroxyproline content evaluated the extent of liver fibrosis. The expression of α-smooth muscle actin (SMA) and cluster of differentiation (CD) 34 was detected by immunohistochemistry. Collagen type I, α-SMA, transforming growth factor (TGF)-β1 and vascular endothelial growth factor receptor (VEGFR) expression levels were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The average number of fenestrae per hepatic sinusoid was determined using transmission electron microscopy. Liver fibrosis scores and hydroxyproline content were decreased in both vatalanib groups. In addition, both doses of vatalanib decreased mRNA expression levels of hepatic α-SMA, TGF-β1, collagen-1, VEGFR1, and VEGFR2. Levels of α-SMA and CD34 protein were decreased in the vatalanib group compared with the CCl4 group. There were significant differences in the number of fenestrae per sinusoid between the groups. The present study identified that administration of vatalanib was associated with decreased liver fibrosis and hepatic sinusoidal capillarization in CCl4-induced mouse models, and is a potential compound for counteracting liver fibrosis.
Collapse
Affiliation(s)
- Ling-Jian Kong
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ya-Ju Du
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Liao-Liao Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
92
|
Öztürk Akcora B, Storm G, Prakash J, Bansal R. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl 4-induced liver fibrogenesis mouse model. Sci Rep 2017; 7:44545. [PMID: 28291245 PMCID: PMC5349608 DOI: 10.1038/srep44545] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Büsra Öztürk Akcora
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
93
|
Li JY, Cao HY, Sun L, Sun RF, Wu C, Bian YQ, Dong S, Liu P, Sun MY. Therapeutic mechanism of Yīn-Chén-Hāo decoction in hepatic diseases. World J Gastroenterol 2017; 23:1125-1138. [PMID: 28275293 PMCID: PMC5323438 DOI: 10.3748/wjg.v23.i7.1125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Yīn-Chén-Hāo decoction (YCHD) is a traditional Chinese medicine formula composed of capillaris (Artemisia capillaris), gardenia (Gardenia jasminoides), and rhubarb (Rheum rhabarbarum) that is used for the treatment of damp-heat jaundice. In modern clinics, YCHD is mostly used for hepatic diseases. This review summarizes the biological activities of YCHD and its medical applications. The main active compounds of YCHD are chlorogenic acid, rhein, geniposide, emodin, and scoparone. The pharmacological actions of YCHD include inhibition of hepatic steatosis, apoptosis, necrosis, anti-inflammation, and immune regulation. YCHD could be developed as a new therapeutic strategy for the treatment of hepatic diseases.
Collapse
|
94
|
Abstract
This systems genetics analysis comprises quantitative measurements of hepatic fibrogenesis in mouse models and mapping of quantitative traits in mouse genetic reference populations. It is part of a large mapping project of fibrogenic genes including the analyses of experimental crosses from different inbred mouse strains. Extensive quantitative trait loci (QTL) mapping of fibrosis phenotypes and liver expression profiling in combination with in silico mapping facilitated the identification of QTL regions and underlying candidate genes that confer fibrosis susceptibility also in humans. Moreover, the approach led to the identification of interacting QTLs and gene networks in liver fibrosis, providing a key experimental platform for the development of novel, more precise therapeutic interventions. Here, we provide a use case for the application of different analysis tools and the integration of multiple datasets determined in F2 intercrosses and BXD recombinant inbred lines to identify, finemap and affirm fibrosis susceptibility loci.
Collapse
Affiliation(s)
- Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Kirrberger Strasse 100, Gebaude 77, 66421, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
95
|
Duan Y, Pan J, Chen J, Zhu D, Wang J, Sun X, Chen L, Wu L. Soluble Egg Antigens of Schistosoma japonicum Induce Senescence of Activated Hepatic Stellate Cells by Activation of the FoxO3a/SKP2/P27 Pathway. PLoS Negl Trop Dis 2016; 10:e0005268. [PMID: 28036393 PMCID: PMC5231384 DOI: 10.1371/journal.pntd.0005268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 12/17/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Liver fibrosis was viewed as a reversible process. The activation of hepatic stellate cells (HSCs) is a key event in the process of liver fibrosis. The induction of senescence of HSCs would accelerate the clearance of the activated HSCs. Previously, we demonstrated that soluble egg antigens (SEA) of Schistosoma japonicum promoted the senescence of HSCs via STAT3/P53/P21 pathway. In this paper, our study was aimed to explore whether there are other signaling pathways in the process of SEA-induced HSCs aging and the underlying effect of SKP2/P27 signal on senescent HSCs. METHODOLOGY/PRINCIPAL FINDINGS Human hepatic stellate cell line, LX-2 cells, were cultured and stimulated with SEA. Western blot and cellular immunofluorescence analysis were performed to determine the expression of senescence-associated protein, such as P27, SKP2 and FoxO3a. Besides, RNA interfering was applied to knockdown the expression of related protein. The senescence of HSCs was determined by senescence-associated β-gal staining. We found that SEA increased the expression of P27 protein, whereas it inhibited the expression of SKP2 and FoxO3a. Knockdown of P27 as well as overexpression of SKP2 both suppressed the SEA-induced senescence of HSCs. In addition, the nuclear translocation of FoxO3a from the nucleus to the cytoplasm was induced by SEA stimulation. CONCLUSIONS/SIGNIFICANCE The present study demonstrates that SEA promotes HSCs senescence through the FoxO3a/SKP2/P27 pathway.
Collapse
Affiliation(s)
- Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
- * E-mail:
| | - Jing Pan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
- Department of Pathogen Biology and Immunology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, People’s Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Liting Wu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
96
|
Bian EB, Wang YY, Yang Y, Wu BM, Xu T, Meng XM, Huang C, Zhang L, Lv XW, Xiong ZG, Li J. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 2016; 1863:674-686. [PMID: 27979710 DOI: 10.1016/j.bbadis.2016.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as major players in regulating various biological processes. LncRNA HOX transcript antisense RNA (Hotair) has been extensively studied in cancer. However, the role of Hotair in liver fibrosis remains unknown. Here we observed that Hotair expression was significantly increased in CCl4-induced mouse liver fibrosis models, human fibrotic livers and activated hepatic stellate cells (HSCs) by TGF-β1 stimulation. Enforced expression of Hotair in LX-2 cells promoted cell proliferation and activation while inhibition of its expression had an opposite effect. Furthermore, we found that Hotair may act as an endogenous 'sponge' of miR-148b, which regulates expression of the DNMT1/MEG3/p53 pathways in HSCs. Intriguingly, Hotair enhanced polycomb repressive complex 2 (PRC2) occupancy and histone H3K27me3 repressive marks, specifically at the MEG3 promoter region. Finally, we found that Hotair forms an RNA/DNA hybrid and recruits PRC2 to MEG3 promoter. These data suggest that Hotair inhibition may represent a promising therapeutic option for suppressing liver fibrosis.
Collapse
Affiliation(s)
- Er-Bao Bian
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Yuan-Yuan Wang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Yang Yang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Bao-Ming Wu
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Tao Xu
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Xiao-Ming Meng
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Cheng Huang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Lei Zhang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Xiong-Wen Lv
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Zhi-Gang Xiong
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1945, USA.
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China.
| |
Collapse
|
97
|
Chen L, Brigstock DR. Integrins and heparan sulfate proteoglycans on hepatic stellate cells (HSC) are novel receptors for HSC-derived exosomes. FEBS Lett 2016; 590:4263-4274. [PMID: 27714787 PMCID: PMC5154766 DOI: 10.1002/1873-3468.12448] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Exosomes mediate intercellular microRNA delivery between hepatic stellate cells (HSC), the principal fibrosis-producing cells in the liver. The purpose of this study was to identify receptors on HSC for HSC-derived exosomes, which bind to HSC rather than to hepatocytes. Our findings indicate that exosome binding to HSC is blocked by treating HSC with RGD, EDTA, integrin αv or β1 siRNAs, integrin αvβ3 or α5β1 neutralizing antibodies, heparin, or sodium chlorate. Furthermore, exosome cargo delivery and exosome-regulated functions in HSC, including expression of fibrosis- or activation-associated genes and/or miR-214 target gene regulation, are dependent on cellular integrin αvβ3, integrin α5β1, or heparan sulfate proteolgycans (HSPG). Thus, integrins and HSPG mediate the binding of HSC-derived exosomes to HSC as well as the delivery and intracellular action of the exosomal payload.
Collapse
Affiliation(s)
- Li Chen
- The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus OH 43205 USA
| | - David R Brigstock
- The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus OH 43205 USA
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212 USA
| |
Collapse
|
98
|
Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. J Transl Med 2016; 96:1256-1267. [PMID: 27775690 PMCID: PMC5121007 DOI: 10.1038/labinvest.2016.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually cirrhosis. Many microRNAs (miRs) are known to have a role in fibrosis progression; however, the role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis. Wild-type (WT) and miR-21-/- mice underwent Sham or bile duct ligation (BDL) for 1 week, before evaluating liver histology, biliary proliferation, hepatic stellate cell (HSC) activation, fibrotic response, and small mothers against decapentaplegic 7 (Smad-7) expression. In vitro, immortalized murine biliary cell lines (IMCLs) and human hepatic stellate cell line (hHSC) were treated with either miR-21 inhibitor or control before analyzing proliferation, apoptosis, and fibrotic responses. In vivo, the levels of miR-21 were increased in total liver and cholangiocytes after BDL, and loss of miR-21 decreased the amount of BDL-induced biliary proliferation and intrahepatic biliary mass. In addition, loss of miR-21 decreased BDL-induced HSC activation, collagen deposition, and expression of the fibrotic markers transforming growth factor-β1 and α-smooth muscle actin. In vitro, IMCL and hHSCs treated with miR-21 inhibitor displayed decreased proliferation and expression of fibrotic markers and enhanced apoptosis when compared with control treated cells. Furthermore, mice lacking miR-21 show increased Smad-7 expression, which may be driving the decrease in biliary hyperplasia and hepatic fibrosis. During cholestatic injury, miR-21 is increased and leads to increased biliary proliferation and hepatic fibrosis. Local modulation of miR-21 may be a therapeutic option for patients with cholestasis.
Collapse
|
99
|
van den Berg PJ, Bansal R, Daoudi K, Steenbergen W, Prakash J. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system. BIOMEDICAL OPTICS EXPRESS 2016; 7:5081-5091. [PMID: 28018726 PMCID: PMC5175553 DOI: 10.1364/boe.7.005081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
Liver fibrosis is a major cause for increasing mortality worldwide. Preclinical research using animal models is required for the discovery of new anti-fibrotic therapies, but currently relies on endpoint liver histology. In this study, we investigated a cost-effective and portable photoacoustic/ultrasound (PA/US) imaging system as a potential non-invasive alternative. Fibrosis was induced in mice using CCl4 followed by liver imaging and histological analysis. Imaging showed significantly increased PA features with higher frequency signals in fibrotic livers versus healthy livers. This corresponds to more heterogeneous liver structure resulting from collagen deposition and angiogenesis. Importantly, PA response and its frequency were highly correlated with histological parameters. These results demonstrate the preclinical feasibility of the PA imaging approach and applicability of dual PA/US system.
Collapse
Affiliation(s)
- Pim J van den Berg
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Khalid Daoudi
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| |
Collapse
|
100
|
Clinical Advancements in the Targeted Therapies against Liver Fibrosis. Mediators Inflamm 2016; 2016:7629724. [PMID: 27999454 PMCID: PMC5143744 DOI: 10.1155/2016/7629724] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins leading to liver dysfunction, is a growing cause of mortality worldwide. Hepatocellular damage owing to liver injury leads to the release of profibrotic factors from infiltrating inflammatory cells that results in the activation of hepatic stellate cells (HSCs). Upon activation, HSCs undergo characteristic morphological and functional changes and are transformed into proliferative and contractile ECM-producing myofibroblasts. Over recent years, a number of therapeutic strategies have been developed to inhibit hepatocyte apoptosis, inflammatory responses, and HSCs proliferation and activation. Preclinical studies have yielded numerous targets for the development of antifibrotic therapies, some of which have entered clinical trials and showed improved therapeutic efficacy and desirable safety profiles. Furthermore, advancements have been made in the development of noninvasive markers and techniques for the accurate disease assessment and therapy responses. Here, we focus on the clinical developments attained in the field of targeted antifibrotics for the treatment of liver fibrosis, for example, small molecule drugs, antibodies, and targeted drug conjugate. We further briefly highlight different noninvasive diagnostic technologies and will provide an overview about different therapeutic targets, clinical trials, endpoints, and translational efforts that have been made to halt or reverse the progression of liver fibrosis.
Collapse
|