51
|
Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 2019; 21:3417-3429. [PMID: 31026366 DOI: 10.1111/1462-2920.14641] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 02/02/2023]
Abstract
Bumble bees are important and widespread insect pollinators who face many environmental challenges. For example, bees are exposed to the metalloid selenate when foraging on pollen and nectar from plants growing in contaminated soils. As it has been shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability of the bee microbiome to increase survivorship against selenate challenge. We exposed uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose of 0.75 mg l-1 selenate and found that microbiota-inoculated bees survive slightly but significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found that selenate exposure altered gut microbial community composition and relative abundance of specific core bacteria. We also grew two core bumble bee microbes - Snodgrassella alvi and Lactobacillus bombicola - in selenate-spiked media and found that these bacteria grew in the tested concentrations of 0.001-10 mg l-1 selenate. Furthermore, the genomes of these microbes harbour genes involved in selenate detoxification. The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate, but the specific mechanisms and colony-level benefits under natural settings require further study.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Peter Graystock
- Department of Entomology, University of California, Riverside, CA, 92521, USA.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kaleigh Russell
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
52
|
Šrut M, Menke S, Höckner M, Sommer S. Earthworms and cadmium - Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:843-853. [PMID: 30660978 DOI: 10.1016/j.ecoenv.2018.12.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 05/25/2023]
Abstract
Preservation of the soil resources stability is of high importance for ecosystems, particularly in the current era of environmental change, which presents a severe pollution burden (e.g. by heavy metals) to soil fauna. Gut microbiomes are becoming recognized as important players in organism health, with comprehension of their perturbations in the polluted environment offering new insights into the nature and extent of heavy metal effects on the health of soil biota. Our aim was to investigate the effect of environmentally relevant heavy metal concentrations of cadmium (Cd) on the earthworm (Lumbricus terrestris) gut microbiota. Our results revealed that Cd exposure led to perturbations of earthworm gut microbiota with an increase in bacteria previously described as heavy metal resistant or able to bind heavy metals, revealing the potential of the earthworm-gut microbiota system in overcoming human-caused heavy metal pollution. Furthermore, an 'indicator species analysis' linked the bacterial genera Paenibacillus, Flavobacterium and Pseudomonas, with Cd treatment, suggesting these bacterial taxa as biomarkers of exposure in earthworms inhabiting Cd-stressed soils. The results of this study help to understand the impact of anthropogenic disturbance on soil fauna health and will have implications for environmental monitoring and protection of soil resources.
Collapse
Affiliation(s)
- Maja Šrut
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Sebastian Menke
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Helmholtzstr. 10/1, 89081 Ulm, Germany
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Simone Sommer
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Helmholtzstr. 10/1, 89081 Ulm, Germany
| |
Collapse
|
53
|
Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. ENVIRONMENTAL RESEARCH 2019; 171:501-509. [PMID: 30743242 DOI: 10.1016/j.envres.2019.01.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 05/24/2023]
Abstract
Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by impairments of reciprocal social interaction and restricted stereotyped repetitive behavior. The goal of the present study was to investigate the trace element and gut microbiota profiles of Chinese autistic children and screen out potential metallic or microbial indicators of the disease. One hundred and thirty-six children (78 with ASD and 58 healthy controls) aged from 3 to 7 years were enrolled. The levels of lead, cadmium, arsenic, copper, zinc, iron, mercury, calcium and magnesium in hair samples from the children were analyzed. Fecal samples were also collected and the children's gut microbiota profiles were characterized by 16s rRNA sequencing. Concentrations of lead, arsenic, copper, zinc, mercury, calcium and magnesium were significantly higher in the ASD group than in the control group. Linear discriminant analysis effect size analysis indicated that the relative abundance of nine genera was increased in the autistic children. Redundancy analysis showed that arsenic and mercury were significantly associated with Parabacteroides and Oscillospira in the gut. A random forest model was trained with high accuracy (84.00%) and the metallic and microbial biomarkers of ASD were established. Our results indicate significant alterations in the trace element and gut microbiota profiles of Chinese children with ASD and reveal the potential pathogenesis of this disease in terms of metal metabolism and gut microecology.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, PRChina
| | - Shi Cen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jinchi Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China.
| |
Collapse
|
54
|
Zhang L, Wu YN, Chen T, Ren CH, Li X, Liu GX. Relationship between intestinal microbial dysbiosis and primary liver cancer. Hepatobiliary Pancreat Dis Int 2019; 18:149-157. [PMID: 30661942 DOI: 10.1016/j.hbpd.2019.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal microbial dysbiosis is involved in liver disease pathogenesis. However, its role in primary liver cancer (PLC), particularly in hepatocarcinogenesis remains unclear. The present study aimed to study the changes in intestinal flora at various stages of PLC and clarify the relationship between intestinal microbes and PLC. METHODS Twenty-four patients with PLC (PLC group), 24 patients with liver cirrhosis (LC group), and 23 healthy control individuals (HC group) were enrolled from October 2016 to October 2017. Stool specimens of the participants were collected and the genomic DNA of fecal bacteria was isolated. High-throughput pyrosequencing of 16S rDNA was used to identify differences in gut bacterial diversity among HC, LC, and PLC groups. We also analyzed the relationship between clinical factors and intestinal microorganisms in LC and PLC groups. RESULTS Diversity of Firmicutes tended to decrease from the HC to LC and PLC groups at the phylum level. Among species, Enterobacter ludwigii displayed an increasing trend in the PLC group, wherein the relative abundance of Enterobacter ludwigii in the PLC group was 100 times greater than that in the HC and LC groups. The ratio of Firmicutes/Bacteroidetes was significantly decreased with the disease progression. In addition, the linear discriminant analysis effect size method indicated that Clostridia were predominant in the gut microbiota of the HC group, whereas Enterococcaceae, Lactobacillales, Bacilli and Gammaproteobacteria may be used as diagnostic markers of PLC. Redundancy analysis showed a correlation between intestinal microbial diversity and clinical factors AST, ALT, and AFP. Veillonella showed a significant positive correlation with AFP in the PLC group, whereas Subdoligranulum showed a negative correlation with AFP. CONCLUSIONS This study indicates that dysbiosis of the gut microbiota might be involved in PLC development and progression.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, China; University of Chinese Academy of Sciences, Lanzhou, China; The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Yong-Na Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, China; University of Chinese Academy of Sciences, Lanzhou, China; The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, China; University of Chinese Academy of Sciences, Lanzhou, China
| | - Cheng-Hui Ren
- University of Chinese Academy of Sciences, Lanzhou, China; The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Xun Li
- University of Chinese Academy of Sciences, Lanzhou, China; The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Guang-Xiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou, China; University of Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
55
|
Zhou X, Li J, Sun JL. Oral Nickel Changes of Intestinal Microflora in Mice. Curr Microbiol 2019; 76:590-596. [DOI: 10.1007/s00284-019-01664-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
|
56
|
Shu Y, Hong P, Yu Q, Wang G, Zhang J, Donde OO, Xiao B, Wu H. High-Throughput Sequencing Analysis Reveals Correlations between Host Phylogeny, Gut Microbiota, and Habitat of Wild Frogs from a Mountainous Area. COPEIA 2019. [DOI: 10.1643/ot-18-040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China
| | - Pei Hong
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (BX)
| | - Qiang Yu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China
| | - Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China
| | - Oscar Omondi Donde
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (BX)
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (BX)
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China
| |
Collapse
|
57
|
Yao Q, Yang H, Wang X, Wang H. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. CHEMOSPHERE 2019; 216:313-323. [PMID: 30384300 DOI: 10.1016/j.chemosphere.2018.10.147] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Chromium is detrimental heavy metal pollutants and can enter and affect aquatic organisms. In our experiment, B. gargarizans embryos were chronically exposed in different concentrations of Cr (VI) (0, 13, 104, and 416 μg Cr6+ L-1) until reached Gosner stage 38. We measured morphological parameters of the body and intestine of B. gargarizans tadpoles, and examined alteration of intestinal tissue. Furthermore, we analyzed the intestinal microbial community of B. gargarizans tadpoles using 16S rRNA gene amplicon sequencing. Our research demonstrated that Cr (VI) exposure caused alteration of intestinal tissue structure in 416 μg Cr6+ L-1 treatment groups. Total body length, body wet weight, intestinal length and wet weight of B. gargarizans tadpoles were significantly declined at 416 μg Cr6+ L-1. In addition, 16S rRNA gene sequencing revealed that Cr (VI) exposure significantly altered the intestinal microbiota diversity and composition, and perturbed the community structure of the microbiota. As for the intestinal microbiota, at the phylum level, Fusobacteria significantly changed in all Cr (VI) treated groups. Saccharibacteria and TM6_Dependentiae were detected only in the high dose exposure groups. At the genus level, Aeromonas was significantly decreased in Cr (VI) treated groups. According to the results of functional prediction, Cr (VI) exposure affected metabolism and increased risk of disease by inducing the alterations of intestinal microbiota structure. Taken together, the present study provide a new framework elucidating the toxic effects Cr (VI) exposure on B. gargarizans tadpoles associated with intestinal histology and microbiota.
Collapse
Affiliation(s)
- Qiong Yao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyu Yang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xianchan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
58
|
Yang X, He F, Zhang Y, Xue J, Li K, Zhang X, Zhu L, Wang Z, Wang H, Yang S. Inulin Ameliorates Alcoholic Liver Disease via Suppressing LPS-TLR4-Mψ
Axis and Modulating Gut Microbiota in Mice. Alcohol Clin Exp Res 2019; 43:411-424. [PMID: 30589437 DOI: 10.1111/acer.13950] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Yang
- Clinical Medical College; Ningxia Medical University; Yinchuan Ningxia China
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| | - Fang He
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| | - Yanting Zhang
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| | - Jing Xue
- Department of Pathogenic Biology and Medical Immunology; School of Basic Medical Sciences; Ningxia Medical University; Yinchuan Ningxia China
| | - Ke Li
- Clinical Medical College; Ningxia Medical University; Yinchuan Ningxia China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Lili Zhu
- Department of Pathogenic Biology and Medical Immunology; School of Basic Medical Sciences; Ningxia Medical University; Yinchuan Ningxia China
| | - Zhen Wang
- Clinical Medical College; Ningxia Medical University; Yinchuan Ningxia China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology; School of Basic Medical Sciences; Ningxia Medical University; Yinchuan Ningxia China
| | - Shaoqi Yang
- Department of Gastroenterology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| |
Collapse
|
59
|
Ji H, Zhang Y, Bararunyeretse P, Li H. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:182-193. [PMID: 30196000 DOI: 10.1016/j.ecoenv.2018.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 05/27/2023]
Abstract
To enrich the understanding of the complex environmental system of soil and microorganisms in gold tailings, we studied the effects of environmental factors on the microbial community diversity in gold mine tailing soil in Beijing, and the strains screened from the soil with serious mercury (Hg) pollution. The results showed that microbial diversity and community composition varied among sites, and at varying depths, soil microbes were significantly affected by soil environmental factors such as lead (Pb), Hg, pH, and total organic carbon (TOC). Pb and Hg negatively affected soil microbial diversity, and less-polluted soil showed increased microbial diversities and complex community structure. Community composition analysis showed that Firmicutes, Proteobacteria and Actinobacteria were the dominant microorganisms. Moreover, Hg-resistant bacterial species isolated from soil samples were identified as Pseudomonas plecoglossicida with a high Hg tolerance efficiency. This study is important in understanding the microbial diversity and function in gold mine tailing soils and can widen the application for bioremediation process.
Collapse
Affiliation(s)
- Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Yan Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Prudence Bararunyeretse
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongxia Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
60
|
Zhang W, Guo R, Ai S, Yang Y, Ding J, Zhang Y. Long-term heavy metal pollution varied female reproduction investment in free-living anura, Bufo raddei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:136-142. [PMID: 29734069 DOI: 10.1016/j.ecoenv.2018.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Environment contamination is known to affect the growth, reproduction, and even mortality of anuran species, and hence modulate their life history traits. Although knowledge of the ability of amphibians to cope with harsh environments has gained ongoing research, the reproductive strategy of free-living amphibians subjected to long-term heavy metal pollution is largely unknown. This study aimed to explore the variation in the life history traits, including age structure, maturation age, reproductive investment, and reproduction trade-off, in female Bufo raddei, a widespread anuran in Baiyin (BY) in northwest of China, subjected to sublethal heavy metal pollution. B. raddei collected from Liujiaxia (LJX), a relatively unpolluted area, were used as control. Skeletochronological analysis revealed variation in the average breeding age of females: more than 70% of females from BY began to breed 1 year before the toads collected from LJX. Females from BY tended to prioritize reproduction over survival and invested more in their first reproductive event. Further, females in BY with a high fluctuating asymmetry index showed a relatively lower reproductive investment. For trade-off in offspring number and size, BY population optimize larger clutch sizes with smaller egg size compared with population in LJX. Changes in female reproductive investment caused by heavy metal pollution might ultimately alter the structural stability of amphibian population.
Collapse
Affiliation(s)
- Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China.
| | - Rui Guo
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Shiwei Ai
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
61
|
Mu D, Meng J, Bo X, Wu M, Xiao H, Wang H. The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:6-12. [PMID: 29453162 DOI: 10.1016/j.ecoenv.2018.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Cadmium is a natural and widely distributed toxicant, and can be commonly found in environment. Intestinal microbiota plays a very important role in maintaining its host's health. The effects of cadmium on the intestinal microbiota composition and stability of amphibians are little known. We exposed Rana chensinensis (R. chensinensis) embryos to different concentrations of cadmium (0, 112 and 448 μg Cd L-1) until they reached Gosner stage 38, and analyzed their microbial communities using 16S rRNA amplicon sequencing. By measures of both alpha and beta diversity, intestinal microbial communities were significantly differentiated in 448 μg Cd L-1 exposure groups. Cadmium exposure significantly altered the intestinal microflora diversity and composition of R. chensinensis. At the phylum level, it is worth noting that Fusobacteria and Spirochaetae were not detected in 448 μg Cd L-1 exposure groups. Firmicutes rapidly decreased in 448 μg Cd L-1 exposure group. At the genus level, Succinispira (Firmicutes), Desulfovibrio (Proteobacteria) and Fusobacterium (Fusobacteria) vanished in 448 μg Cd L-1 exposure groups. Our results demonstrate that cadmium exposure changed the composition and decreased the community diversity of intestinal microbiota of R. chensinensis tadpoles. Our study may provide a new framework based on intestinal microbiota to evaluate the response of amphibians to environmental chemicals pollution.
Collapse
Affiliation(s)
- Danyang Mu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jinhua Meng
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoxue Bo
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
62
|
McCoy KA, Peralta AL. Pesticides Could Alter Amphibian Skin Microbiomes and the Effects of Batrachochytrium dendrobatidis. Front Microbiol 2018; 9:748. [PMID: 29731742 PMCID: PMC5919957 DOI: 10.3389/fmicb.2018.00748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Krista A McCoy
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Ariane L Peralta
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
63
|
Huang BH, Chang CW, Huang CW, Gao J, Liao PC. Composition and Functional Specialists of the Gut Microbiota of Frogs Reflect Habitat Differences and Agricultural Activity. Front Microbiol 2018; 8:2670. [PMID: 29375532 PMCID: PMC5768659 DOI: 10.3389/fmicb.2017.02670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
The physiological impact of agricultural pollution, habitat disturbance, and food source variability on amphibian remains poorly understood. By comparing the composition and predicted functions of gut microbiota of two frog species from forest and farmland, we quantified the effects of the exogenous environment and endogenous filters on gut microbiota and the corresponding functions. However, compositional differences of the gut microbiota between the frog species were not detected, even when removing roughly 80–88% of the confounding effect produced by common and shared bacteria (i.e., generalists) and those taxa deemed too rare. The habitat effect accounted for 14.1% of the compositional difference of gut microbial specialists, but host and host × habitat effects were not significant. Similar trends of a significant habitat effect, at an even higher level (26.0%), for the physiological and metabolic functions of gut microbiota was predicted. A very obvious skewing of the relative abundance of functional groups toward farmland habitats reflects the highly diverse bacterial functions of farmland frogs, in particular related to pathogenic disease and pesticide degradation, which may be indication of poor adaptation or strong selective pressure against disease. These patterns reflect the impacts of agricultural activities on frogs and how such stresses may be applied in an unequal manner for different frog species.
Collapse
Affiliation(s)
- Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Wen Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Technical Service Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Chih-Wei Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jian Gao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.,Faculty of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
64
|
Eggers S, Safdar N, Malecki KMC. Heavy metal exposure and nasal Staphylococcus aureus colonization: analysis of the National Health and Nutrition Examination Survey (NHANES). Environ Health 2018; 17:2. [PMID: 29304819 PMCID: PMC5756436 DOI: 10.1186/s12940-017-0349-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/18/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Heavy metals including lead and cadmium can disrupt the immune system and the human microbiota. and are increasingly of concern with respect to the propogation of antibiotic-resistence. Infection by methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of global morbidity and mortality. Heavy metal exposure may be associated with increased MRSA colonization and infection, and a decrease in methicillin-susceptible Staphylococcus aureus (MSSA) through co-selection mechanisms and natural selection of antibiotic resistance in the presence of heavy metals. This study examines the association between blood lead (Pb) and cadmium (Cd) level, and MRSA and MSSA nasal colonization. METHODS All data used for this analysis came from the 2001-2004 National Health and Nutrition Examination Survey (NHANES). The analytical sample consisted of 18,626 participants aged 1 year and older. Multivariate logistic regression, including adjustment for demographic and dietary factors, was used to analyze the association between blood Pb and Cd, and nasal colonization by MRSA and MSSA. RESULTS Prevalence of MRSA and MSSA carriage were 1.2%, and 29.3% respectively. MRSA was highest in women, individuals age 70 and older, who self-identified as black, had only a high school diploma, lived below 200% of the Federal Poverty Level, and had a history of smoking. While not significantly different from those colonized with MSSA, geometric mean blood Pb (1.74 μg/dL) and blood Cd (0.31 μg/L) were highest in those colonized with MRSA. Associations with MRSA colonization appeared to increase in a dose-dependent manner with increasing quartile of blood Pb level. Blood Cd level in the fourth quartile was also significantly associated with lower odds of MRSA colonization. Both metals were associated with lower odds of MSSA colonization. CONCLUSIONS Both MRSA and MSSA results suggest that general population levels of blood Pb but not Cd are associated with differences in nasal carriage of S. aureus. While further research is needed, reduction in heavy metal exposures such as lead, concurrently with maintaining a healthy microbiota may be two modifiable options to consider in the fight against antibiotic-resistance.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin – Madison, Warf Office Bldg, 610 Walnut St #707, Madison, WI 53726 USA
| | - Nasia Safdar
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, 750 Highland Ave, Madison, WI 53726 USA
- William S. Middleton Veterans Affairs Medical Center, 2500 Overlook Terrace, Madison, WI 53705 USA
| | - Kristen MC Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin – Madison, Warf Office Bldg, 610 Walnut St #707, Madison, WI 53726 USA
| |
Collapse
|
65
|
Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol 2017; 7:396. [PMID: 28936425 PMCID: PMC5596107 DOI: 10.3389/fcimb.2017.00396] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of MissouriColumbia, MO, United States.,Biomedical Sciences, University of MissouriColumbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of MissouriColumbia, MO, United States.,Genetics Area Program, University of MissouriColumbia, MO, United States
| |
Collapse
|
66
|
Zhang M, Huang F, Wang G, Liu X, Wen J, Zhang X, Huang Y, Xia Y. Geographic distribution of cadmium and its interaction with the microbial community in the Longjiang River: risk evaluation after a shocking pollution accident. Sci Rep 2017; 7:227. [PMID: 28331217 PMCID: PMC5427973 DOI: 10.1038/s41598-017-00280-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
A shocking Longjiang River cadmium pollution accident occurred in 2012, the effects of which on microbial communities remain unclear. Alkaline precipitation technology was applied for remediation, but concerns rose about the stability of this technology. To understand the geographic distribution of cadmium and its correlation with microbes, in this study, 39 water samples and 39 sludge samples from this river and 2 soil samples from the nearby farmland were collected for chemical and microbial analyses. The Cd concentrations of all water samples were lower than 0.005 mg/L and reached the quality standards for Chinese surface water. A ranking of sludge samples based on Cd contents showed sewage outfall > dosing sites > farmland, all of which were higher than the quality standard for soil. Alkaline precipitation technology was effective for Cd precipitation. Cd was unstable; it was constantly dissolving and being released from the sludge. The Cd content of each phase was mainly influenced by the total Cd content. Over 40,000 effective sequences were detected in each sample, and a total of 59,833 OTUs and 1,273 genera were found using Illumina MiSeq sequencing. Two phyla and 39 genera were notably positively correlated with the Cd distribution, while the cases of 10 phyla and 6 genera were the opposite.
Collapse
Affiliation(s)
- MingJiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| | - FuKe Huang
- Institute of HeChi Scientific-Technical Information, No. 385 West Ring Road of HeChi City, GuangXi Zhuang Autonomous Region, 547000, China
| | - GuangYuan Wang
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| | - XingYu Liu
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China.
| | - JianKang Wen
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| | - XiaoSheng Zhang
- Institute of HeChi Scientific-Technical Information, No. 385 West Ring Road of HeChi City, GuangXi Zhuang Autonomous Region, 547000, China
| | - YaoSi Huang
- Institute of HeChi Scientific-Technical Information, No. 385 West Ring Road of HeChi City, GuangXi Zhuang Autonomous Region, 547000, China
| | - Yu Xia
- National Engineering Laboratory of Biohydrometallurgy, General Research Institute for Nonferrous Metals, No. 2 Xinjiekouwai Street, Beijing, 100088, China
| |
Collapse
|