51
|
Kaehler M, Osteresch P, Künstner A, Vieth SJ, Esser D, Möller M, Busch H, Vater I, Spielmann M, Cascorbi I, Nagel I. Clonal evolution in tyrosine kinase inhibitor-resistance: lessons from in vitro-models. Front Oncol 2023; 13:1200897. [PMID: 37384296 PMCID: PMC10294234 DOI: 10.3389/fonc.2023.1200897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Resistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed. Methods Here, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing. Results In this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment. Discussion Our data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Pia Osteresch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Axel Künstner
- Medical Systems Biology Group, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Stella Juliane Vieth
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marius Möller
- Medical Systems Biology Group, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Inga Vater
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
52
|
Lam TC, Cho WCS, Au JSK, Ma ESK, Lam STS, Loong HHF, Wong JWH, Wong SM, Lee VHF, Leung RCY, Lau JKS, Kam MTY, Mok FST, Lim FMY, Nyaw JSF, Tin WWY, Cheung KM, Chan OSH, Kwong PWK, Cheung FY, Poon DM, Chik JYK, Lam MHC, Chan LWC, Wong SCC, Cao YB, Hui CV, Chen JZJ, Chang JH, Kong SFM, El Helali A. Consensus Statements on Precision Oncology in the China Greater Bay Area. JCO Precis Oncol 2023; 7:e2200649. [PMID: 37315266 PMCID: PMC10309548 DOI: 10.1200/po.22.00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Next-generation sequencing comprehensive genomic panels (NGS CGPs) have enabled the delivery of tailor-made therapeutic approaches to improve survival outcomes in patients with cancer. Within the China Greater Bay Area (GBA), territorial differences in clinical practices and health care systems and strengthening collaboration warrant a regional consensus to consolidate the development and integration of precision oncology (PO). Therefore, the Precision Oncology Working Group (POWG) formulated standardized principles for the clinical application of molecular profiling, interpretation of genomic alterations, and alignment of actionable mutations with sequence-directed therapy to deliver clinical services of excellence and evidence-based care to patients with cancer in the China GBA. METHODS Thirty experts used a modified Delphi method. The evidence extracted to support the statements was graded according to the GRADE system and reported according to the Revised Standards for Quality Improvement Reporting Excellence guidelines, version 2.0. RESULTS The POWG reached consensus in six key statements: harmonization of reporting and quality assurance of NGS; molecular tumor board and clinical decision support systems for PO; education and training; research and real-world data collection, patient engagement, regulations, and financial reimbursement of PO treatment strategies; and clinical recommendations and implementation of PO in clinical practice. CONCLUSION POWG consensus statements standardize the clinical application of NGS CGPs, streamline the interpretation of clinically significant genomic alterations, and align actionable mutations with sequence-directed therapies. The POWG consensus statements may harmonize the utility and delivery of PO in China's GBA.
Collapse
Affiliation(s)
- Tai-Chung Lam
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Joseph Siu-Kie Au
- Adventist Oncology Centre, Hong Kong Adventist Hospital, Hong Kong SAR, China
| | - Edmond Shiu-Kwan Ma
- Clinical and Molecular Pathology and Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Stephen Tak-Sum Lam
- Clinical Genetic Service Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - S.N. Michael Wong
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Michael Tsz-Yeung Kam
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | | | - Fiona Mei-Ying Lim
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong SAR, China
| | | | | | - Ka-Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | | | | | - Foon-Yiu Cheung
- Hong Kong International Oncology Centre, Hong Kong SAR, China
| | - Darren M.C. Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | | | | | - Lawrence Wing-Chi Chan
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze-Chuen Cesar Wong
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ya-Bing Cao
- Department of Radiology & Oncology, Kiang Wu Hospital, Macao SAR, China
| | - Cheng-Vai Hui
- Department of Clinical Oncology, Centro Hospitalar Conde de São Januário, Macao SAR, China
| | - Jack Zhi-Jian Chen
- Department of Radiation Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Jian-Hua Chang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Spring Feng-Ming Kong
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aya El Helali
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
53
|
Schillinger G. [Genetic tumour diagnostics and personalised medicine from a systems perspective]. ZEITSCHRIFT FUR EVIDENZ, FORTBILDUNG UND QUALITAT IM GESUNDHEITSWESEN 2023; 179:91-94. [PMID: 37183116 DOI: 10.1016/j.zefq.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
High-quality studies are necessary and feasible in personalised medicine in order to evaluate the benefits across the entire treatment chain of biomarker tests and resulting treatments in regard to patient-relevant endpoints. With the introduction of genome sequencing in oncology, a considerable number of new treatment concepts with mostly low-quality evidence can be expected. High quality requirements, interdisciplinary cooperation structures, knowledge-generating care and the connection of patient care at the expense of the statutory health insurance funds, with research at the expense of the manufacturers or public funding, are necessary.
Collapse
|
54
|
Schapranow MP, Borchert F, Bougatf N, Hund H, Eils R. Software-Tool Support for Collaborative, Virtual, Multi-Site Molecular Tumor Boards. SN COMPUTER SCIENCE 2023; 4:358. [PMID: 37131499 PMCID: PMC10136394 DOI: 10.1007/s42979-023-01771-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 05/04/2023]
Abstract
The availability of high-throughput molecular diagnostics builds the foundation for Molecular Tumor Boards (MTBs). Although more fine-grained data is expected to support decision making of oncologists, assessment of data is complex and time-consuming slowing down the implementation of MTBs, e.g., due to retrieval of the latest medical publications, assessment of clinical evidence, or linkage to the latest clinical guidelines. We share our findings from analysis of existing tumor board processes and defininion of clinical processes for the adoption of MTBs. Building on our findings, we have developed a real-world software prototype together with oncologists and medical professionals, which supports the preparation and conduct of MTBs and enables collaboration between medical experts by sharing medical knowledge even across the hospital locations. We worked in interdisciplinary teams of clinicians, oncologists, medical experts, medical informaticians, and software engineers using design thinking methodology. With their input, we identified challenges and limitations of the current MTB approaches, derived clinical process models using Business Process and Modeling Notation (BMPN), and defined personas, functional and non-functional requirements for software tool support. Based on it, we developed software prototypes and evaluated them with clinical experts from major university hospitals across Germany. We extended the Kanban methodology enabling holistic tracking of patient cases from "backlog" to "follow-up" in our app. The feedback from interviewed medical professionals showed that our clinical process models and software prototype provide suitable process support for the preparation and conduction of molecular tumor boards. The combination of oncology knowledge across hospitals and the documentation of treatment decision can be used to form a unique medical knowledge base by oncologists for oncologists. Due to the high heterogeneity of tumor diseases and the spread of the latest medical knowledge, a cooperative decision-making process including insights from similar patient cases was considered as a very valuable feature. The ability to transform prepared case data into a screen presentation was recognized as an essential feature speeding up the preparation process. Oncologists require special software tool support to incorporate and assess molecular data for the decision-making process. In particular, the need for linkage to the latest medical knowledge, clinical evidence, and collaborative tools to discuss individual cases were named to be of importance. With the experiences from the COVID-19 pandemic, the acceptance of online tools and collaborative working is expected to grow. Our virtual multi-site approach proved to allow a collaborative decision-making process for the first time, which we consider to have a positive impact on the overall treatment quality.
Collapse
Affiliation(s)
- Matthieu-P. Schapranow
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
| | - Florian Borchert
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
| | - Nina Bougatf
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Hauke Hund
- GECKO Institute, Heilbronn University of Applied Sciences, Max-Planck-Straße 39, 74081 Heilbronn, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Kapelle-Ufer 2, 10117 Berlin, Germany
| |
Collapse
|
55
|
Liu A, Vicenzi P, Sharma I, Orr K, Teller C, Koentz M, Trinkman H, Vallance K, Ray A. Molecular Tumor Boards: The Next Step towards Precision Therapy in Cancer Care. Hematol Rep 2023; 15:244-255. [PMID: 37092519 PMCID: PMC10123678 DOI: 10.3390/hematolrep15020025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The application of molecular tumor profiles in clinical decision making remains a challenge. To aid in the interpretation of complex biomarkers, molecular tumor boards (MTBs) have been established worldwide. In the present study, we show that a multidisciplinary approach is essential to the success of MTBs. Our MTB, consisting of pediatric oncologists, pathologists, and pharmacists, evaluated 115 cases diagnosed between March 2016 and September 2021. If targetable mutations were identified, pharmacists aided in the evaluation of treatment options based on drug accessibility. Treatable genetic alterations detected through molecular testing most frequently involved the cell cycle. For 85% of the cases evaluated, our MTB provided treatment recommendations based on the patient’s history and results of molecular tumor testing. Only three patients, however, received MTB-recommended targeted therapy, and only one of these patients demonstrated an improved clinical outcome. For the remaining patients, MTB-recommended treatment often was not administered because molecular tumor profiling was not performed until late in the disease course. For the three patients who did receive MTB-recommended therapy, such treatment was not administered until months after diagnosis due to physician preference. Thus, the education of healthcare providers regarding the benefits of targeted therapy may increase acceptance of these novel agents and subsequently improve patient survival.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Paige Vicenzi
- Department of Pediatrics, Dell Children’s Medical Center, Austin, TX 78723, USA
| | - Ishna Sharma
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kaci Orr
- Texas A&M Health Science Center School of Medicine, Bryan, TX 77807, USA
| | - Christa Teller
- Department of Pediatric Hematology/Oncology, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| | - Micha Koentz
- Department of Pharmacy, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| | - Heidi Trinkman
- Department of Pharmacy, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| | - Kelly Vallance
- Department of Pediatric Hematology/Oncology, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| | - Anish Ray
- Department of Pediatric Hematology/Oncology, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| |
Collapse
|
56
|
Repetto M, Crimini E, Boscolo Bielo L, Guerini-Rocco E, Ascione L, Bonfanti A, Zanzottera C, Mazzarella L, Ranghiero A, Belli C, Criscitiello C, Esposito A, Barberis MCP, Curigliano G. Molecular tumour board at European Institute of Oncology: Report of the first three year activity of an Italian precision oncology experience. Eur J Cancer 2023; 183:79-89. [PMID: 36801623 DOI: 10.1016/j.ejca.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Precision oncology aims to improve clinical outcomes by personalising treatment options for patients with cancer. Exploiting vulnerabilities identified in a patient's cancer genome requires reliable interpretation of a huge mole of alterations and heterogeneous biomarkers. ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) allows evidence-based evaluation of genomic findings. Molecular tumour boards (MTBs) convey the required multi-disciplinary expertise to enable ESCAT evaluation and strategical treatment choice. MATERIALS AND METHOD We retrospectively reviewed the records of 251 consecutive patients discussed by European Institute of Oncology MTB between June 2019 and June 2022. RESULTS One-hundred eighty-eight (74.6%) patients had at least one actionable alteration. After MTB discussion, 76 patients received molecularly matched therapies (MMTs) while 76 patients received standard of care. Patients receiving MMT displayed higher overall response rate (37.3% versus 12.9%), median progression-free survival (mPFS 5.8 months, 95% confidence interval [CI] 4.1-7.5 versus 3.6 months, 95% CI 2.5-4.8, p = 0.041; hazard ratio 0.679, 95% CI 0.467-0.987) and median overall survival (mOS 35.1 months, 95% CI not evaluable versus 8.5 months, 95% CI 3.8-13.2; hazard ratio 0.431, 95% CI 0.250-0.744, p = 0.002). Superiority in OS and PFS persisted in multivariable models. Among 61 pretreated patients receiving MMT, 37.5% of patients had PFS2/PFS1 ratio ≥1.3. Patients with higher actionable targets (ESCAT tier I) had better OS (p = 0.001) and PFS (p = 0.049), while no difference was observed in lower evidence levels. CONCLUSIONS Our experience shows that MTBs can yield valuable clinical benefit. Higher actionability ESCAT level appears to be associated with better outcomes for patients receiving MMT.
Collapse
Affiliation(s)
- Matteo Repetto
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy
| | - Edoardo Crimini
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy
| | - Luca Boscolo Bielo
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy; Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Liliana Ascione
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy
| | - Andrea Bonfanti
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Luca Mazzarella
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alberto Ranghiero
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Belli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy
| | - Angela Esposito
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Massimo C P Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, 20122, Italy.
| |
Collapse
|
57
|
Irelli A, Chiatamone Ranieri S, Di Giacomo D, Malatesta S, Patruno LV, Tessitore A, Alesse E, Cannita K. Role of the Molecular Tumor Board for the Personalized Treatment of Patients with Metastatic Breast Cancer: A Focus on the State of the Art in Italy. Cancers (Basel) 2023; 15:cancers15061727. [PMID: 36980613 PMCID: PMC10046335 DOI: 10.3390/cancers15061727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Molecular tumor boards (MTBs) are multidisciplinary groups that combine molecular and clinical data from cancer patients in order to formulate treatment recommendations for precision medicine. To date, there is insufficient data to support the use of singleplex or next-generation sequencing (NGS) technologies to select first-line therapy for patients with metastatic breast cancer (MBC), but considering the high number of level II alterations, according to the ESMO scale for clinical actionability of molecular targets (ESCAT), it is suggested to include patients in molecular screening programs in order to be able to offer targeted therapies for specific genomic alterations. This article aims at reviewing the most recent literature related to the most used methodologies/approaches for molecular diagnostics and variants’ classification, summarizing the internationally published molecular screening studies in support of MTB activity and, in the end, discussing MTBs’ current position and role in Italy, the number of which is increasing, also thanks to the thrust of institutions.
Collapse
Affiliation(s)
- Azzurra Irelli
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy
- Correspondence:
| | | | - Daniela Di Giacomo
- Pathology Unit, Department of Services, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Sara Malatesta
- Pathology Unit, Department of Services, AUSL 04 Teramo, 64100 Teramo, Italy
| | | | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Katia Cannita
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy
| |
Collapse
|
58
|
Scheuner MT, Sales P, Hoggatt K, Zhang N, Whooley MA, Kelley MJ. Genetics professionals are key to the integration of genetic testing within the practice of frontline clinicians. Genet Med 2023; 25:103-114. [PMID: 36301261 DOI: 10.1016/j.gim.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Genetic tests have become widely available. We sought to understand the use of genetic tests in the practice of frontline clinicians within the United States Department of Veterans Affairs (VA). METHODS We administered a web-based survey to clinicians at 20 VA facilities. Physicians, nurse practitioners, physician assistants, and pharmacists were eligible. We excluded genetics providers and clinicians not seeing patients. We used multiple logistic regression to evaluate the associations between clinician characteristics and experience with genetics. RESULTS The response rate was 11.3% (1207/10,680) and of these, 909 respondents were eligible. Only 20.8% of the respondents reported feeling prepared to use genetic tests and 13.0% of the respondents were currently ordering genetic tests; although, it was usually only 1 or 2 a year. Delivery of genetic tests without involving genetics providers was preferred by only 7.9% of the respondents. Characteristics positively associated with currently ordering genetic tests included practice in clinical and research settings, believing improving genetics knowledge could alter their practice, feeling prepared to use genetic tests, and referral of at least 1 patient to genetics in the past year. CONCLUSION Most VA clinicians don't feel prepared to use genetic tests. Those with genetic testing experience are more likely to consult genetics providers. The demand for genetics providers should increase as frontline clinicians use genetic tests in their practice.
Collapse
Affiliation(s)
- Maren T Scheuner
- Medicine Service, Hematology-Oncology Section, San Francisco VA Health Care System, San Francisco, CA; Department of Medicine, University of California San Francisco, San Francisco, CA; Department of Pediatrics, University of California San Francisco, San Francisco, CA.
| | - Paloma Sales
- Medicine Service, Hematology-Oncology Section, San Francisco VA Health Care System, San Francisco, CA
| | - Katherine Hoggatt
- Medicine Service, Hematology-Oncology Section, San Francisco VA Health Care System, San Francisco, CA; Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Ning Zhang
- Medicine Service, Hematology-Oncology Section, San Francisco VA Health Care System, San Francisco, CA
| | - Mary A Whooley
- Medicine Service, Hematology-Oncology Section, San Francisco VA Health Care System, San Francisco, CA; Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Michael J Kelley
- National Oncology Program, Specialty Care Services, Department of Veterans Affairs, Washington, DC; Durham VA Health Care System, Durham, NC; Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
59
|
Trapani D, Crimini E, Sandoval J, Curigliano G. Next-Generation Sequencing for Advanced Breast Cancer: What the Way to Go? Cancer Treat Res 2023; 188:343-351. [PMID: 38175352 DOI: 10.1007/978-3-031-33602-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid implementation of precision medicine tools in diagnosing and treating breast cancer (BC) has widened the potential therapeutic options for patients. The applications of gene sequencing, including next-generation gene sequencing (NGS), have led to numerous questions on how to validate, implement, interpret, prioritize and operationalize precision medicine tools to deliver meaningful and impactful interventions. Limited benefit has been portended with earlier experiences of NGS-driven treatment, in BC. However, the development and use of frameworks of clinical actionability of genomic alterations, for example, detected with NGS, has resulted in better patient selection, and potentially higher therapeutic value. The European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets (ESCAT) is a framework that includes five tiers of clinical actionability, with tier 1 reserved for approved drugs with demonstrated benefits for targetable genomic alterations. The re-analysis of clinical studies by grouping the genomic alterations and matched drugs with ESCAT, in high vs lower tiers has demonstrated a significant benefit portended by high tiers alterations, with the availability of efficacious treatments. As a result, frameworks for actionability, like ESCAT, should be fundamental in developing and implementing NGS-driven, and broadly, precision medicine research and treatments.
Collapse
Affiliation(s)
- Dario Trapani
- Division of New Drug Development for innovative therapies, European Institute of Oncology IRCCS, Milan, Italy.
| | - Edoardo Crimini
- Division of New Drug Development for innovative therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - José Sandoval
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Unit of Population Epidemiology, Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Giuseppe Curigliano
- Division of New Drug Development for innovative therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| |
Collapse
|
60
|
Witte HM, Fähnrich A, Künstner A, Riedl J, Fliedner SMJ, Reimer N, Hertel N, von Bubnoff N, Bernard V, Merz H, Busch H, Feller A, Gebauer N. Primary refractory plasmablastic lymphoma: A precision oncology approach. Front Oncol 2023; 13:1129405. [PMID: 36923431 PMCID: PMC10008852 DOI: 10.3389/fonc.2023.1129405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Introduction Hematologic malignancies are currently underrepresented in multidisciplinary molecular-tumor-boards (MTB). This study assesses the potential of precision-oncology in primary-refractory plasmablastic-lymphoma (prPBL), a highly lethal blood cancer. Methods We evaluated clinicopathological and molecular-genetic data of 14 clinically annotated prPBL-patients from initial diagnosis. For this proof-of-concept study, we employed our certified institutional MTB-pipeline (University-Cancer-Center-Schleswig-Holstein, UCCSH) to annotate a comprehensive dataset within the scope of a virtual MTB-setting, ultimately recommending molecularly stratified therapies. Evidence-levels for MTB-recommendations were defined in accordance with the NCT/DKTK and ESCAT criteria. Results Median age in the cohort was 76.5 years (range 56-91), 78.6% of patients were male, 50% were HIV-positive and clinical outcome was dismal. Comprehensive genomic/transcriptomic analysis revealed potential recommendations of a molecularly stratified treatment option with evidence-levels according to NCT/DKTK of at least m2B/ESCAT of at least IIIA were detected for all 14 prPBL-cases. In addition, immunohistochemical-assessment (CD19/CD30/CD38/CD79B) revealed targeted treatment-recommendations in all 14 cases. Genetic alterations were classified by treatment-baskets proposed by Horak et al. Hereby, we identified tyrosine-kinases (TK; n=4), PI3K-MTOR-AKT-pathway (PAM; n=3), cell-cycle-alterations (CC; n=2), RAF-MEK-ERK-cascade (RME; n=2), immune-evasion (IE; n=2), B-cell-targets (BCT; n=25) and others (OTH; n=4) for targeted treatment-recommendations. The minimum requirement for consideration of a drug within the scope of the study was FDA-fast-track development. Discussion The presented proof-of-concept study demonstrates the clinical potential of precision-oncology, even in prPBL-patients. Due to the aggressive course of the disease, there is an urgent medical-need for personalized treatment approaches, and this population should be considered for MTB inclusion at the earliest time.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Department of Hematology and Oncology, Federal Armed Forces Hospital, Ulm, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Jörg Riedl
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie M J Fliedner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Niklas Reimer
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Alfred Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| |
Collapse
|
61
|
Naito Y, Sunami K, Kage H, Komine K, Amano T, Imai M, Koyama T, Ennishi D, Kanai M, Kenmotsu H, Maeda T, Morita S, Sakai D, Watanabe K, Shirota H, Kinoshita I, Yoshioka M, Mamesaya N, Ito M, Kohsaka S, Saigusa Y, Yamamoto K, Hirata M, Tsuchihara K, Yoshino T. Concordance Between Recommendations From Multidisciplinary Molecular Tumor Boards and Central Consensus for Cancer Treatment in Japan. JAMA Netw Open 2022; 5:e2245081. [PMID: 36469316 PMCID: PMC9855299 DOI: 10.1001/jamanetworkopen.2022.45081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Importance Quality assurance of molecular tumor boards (MTBs) is crucial in cancer genome medicine. Objective To evaluate the concordance of recommendations by MTBs and centrally developed consensus treatment recommendations at all 12 leading institutions for cancer genomic medicine in Japan using 50 simulated cases. Design, Setting, and Participants This was a prospective quality improvement study of 50 simulated cancer cases. Molecular tumor boards from 12 core hospitals independently recommended treatment for 50 cases blinded to the centrally developed consensus treatment recommendations. The study's central committee consisted of representatives from all 12 core hospitals in Japan who selected the 50 simulated cases from The Cancer Genome Atlas database, including frequently observed genomic alterations. The central committee recommended centrally developed consensus treatment. The concordance rate for genomically matched treatments between MTBs and centrally developed consensus treatment recommendations was evaluated. Data analysis was conducted from January 22 to March 3, 2021. Exposures Simulated cases of cancer. Main Outcomes and Measures The primary outcome was concordance, defined as the proportion of recommendations by MTBs concordant with centrally developed consensus treatment recommendations. A mixed-effects logistic regression model, adjusted for institutes as a random intercept, was applied. High evidence levels were defined as established biomarkers for which the treatment was ready for routine use in clinical practice, and low evidence levels were defined as biomarkers for genomically matched treatment that were under investigation. Results The Clinical Practice Guidance for Next-Generation Sequencing in Cancer Diagnosis and Treatment (edition 2.1) was used for evidence-level definition. The mean concordance between MTBs and centrally developed consensus treatment recommendations was 62% (95% CI, 57%-65%). Each MTB concordance varied from 48% to 86%. The concordance rate was higher in the subset of patients with colorectal cancer (100%; 95% CI, 94.0%-100%), ROS1 fusion (100%; 95% CI, 85.5%-100%), and high evidence level A/R (A: 88%; 95% CI, 81.8%-93.0%; R:100%; 95% CI, 92.6%-100%). Conversely, the concordance rate was lower in cases of cervical cancer (11%; 95% CI, 3.1%-26.1%), TP53 mutation (16%; 95% CI, 12.5%-19.9%), and low evidence level C/D/E (C: 30%; 95% CI, 24.7%-35.9%; D: 25%; 95% CI, 5.5%-57.2%; and E: 18%; 95% CI, 13.8%-23.0%). Multivariate analysis showed that evidence level (high [A/R] vs low [C/D/E]: odds ratio, 4.4; 95% CI, 1.8-10.8) and TP53 alteration (yes vs no: odds ratio, 0.06; 95% CI, 0.03-0.10) were significantly associated with concordance. Conclusions and Relevance The findings of this study suggest that genomically matched treatment recommendations differ among MTBs, particularly in genomic alterations with low evidence levels wherein treatment is being investigated. Sharing information on matched therapy for low evidence levels may be needed to improve the quality of MTBs.
Collapse
Affiliation(s)
- Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Toraji Amano
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Mitsuho Imai
- Genomics Unit, Keio University School of Medicine, Tokyo, Japan
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachi Morita
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Sakai
- Center for Cancer Genomics and Personalized Medicine, Osaka University, Suita, Japan
| | - Kousuke Watanabe
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Masashiro Yoshioka
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Mamoru Ito
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinji Kohsaka
- Section of Knowledge Integration, Center for Cancer Genomics and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Yusuke Saigusa
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouji Yamamoto
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, Tokyo, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
62
|
Lopes-Brás R, Lopez-Presa D, Esperança-Martins M, Melo-Alvim C, Gallego L, Costa L, Fernandes I. Genomic Profiling of Sarcomas: A Promising Weapon in the Therapeutic Arsenal. Int J Mol Sci 2022; 23:14227. [PMID: 36430703 PMCID: PMC9693140 DOI: 10.3390/ijms232214227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Sarcomas are rare malignant mesenchymal neoplasms, and the knowledge of tumor biology and genomics is scarce. Chemotherapy is the standard of care in advanced disease, with poor outcomes. Identifying actionable genomic alterations may offer effective salvage therapeutic options when previous lines have failed. Here, we report a retrospective cohort study of sarcoma patients followed at our center and submitted to comprehensive genomic profiling between January 2020 and June 2021. Thirty patients were included, most (96.7%) with reportable genomic alterations. The most common alterations were linked to cell cycle regulation (TP53, CDKN2A/B, and RB1 deletions and CDK4, MDM2, and MYC amplifications). Most patients (96.7%) had microsatellite stability and low tumor mutational burden (≤10 muts/megabase (Mb); median 2 Muts/Mb). Two-thirds of patients had actionable mutations for targeted treatments, including five cases with alterations amenable to targeted therapies with clinical benefit within the patient's tumor type, ten cases with targetable alterations with clinical benefit in other tumor types, and five cases with alterations amenable to targeting with drugs under investigation in a clinical trial setting. A significant proportion of cases in this study had actionable genomic alterations with available targeted drugs. Next-generation sequencing is a feasible option for identifying molecular drivers that can provide therapeutic options for individual patients. Molecular Tumor Boards should be implemented in the clinical practice to discuss genomic findings and inform clinically relevant targeted therapies.
Collapse
Affiliation(s)
- Raquel Lopes-Brás
- Department of Medical Oncology, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Dolores Lopez-Presa
- Department of Pathology, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Miguel Esperança-Martins
- Department of Medical Oncology, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
- Sérgio Dias Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Cecília Melo-Alvim
- Department of Medical Oncology, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Lina Gallego
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Costa
- Department of Medical Oncology, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Isabel Fernandes
- Department of Medical Oncology, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
63
|
Rodríguez Ruiz N, Abd Own S, Ekström Smedby K, Eloranta S, Koch S, Wästerlid T, Krstic A, Boman M. Data-driven support to decision-making in molecular tumour boards for lymphoma: A design science approach. Front Oncol 2022; 12:984021. [PMID: 36457495 PMCID: PMC9705761 DOI: 10.3389/fonc.2022.984021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 09/10/2024] Open
Abstract
Background The increasing amount of molecular data and knowledge about genomic alterations from next-generation sequencing processes together allow for a greater understanding of individual patients, thereby advancing precision medicine. Molecular tumour boards feature multidisciplinary teams of clinical experts who meet to discuss complex individual cancer cases. Preparing the meetings is a manual and time-consuming process. Purpose To design a clinical decision support system to improve the multimodal data interpretation in molecular tumour board meetings for lymphoma patients at Karolinska University Hospital, Stockholm, Sweden. We investigated user needs and system requirements, explored the employment of artificial intelligence, and evaluated the proposed design with primary stakeholders. Methods Design science methodology was used to form and evaluate the proposed artefact. Requirements elicitation was done through a scoping review followed by five semi-structured interviews. We used UML Use Case diagrams to model user interaction and UML Activity diagrams to inform the proposed flow of control in the system. Additionally, we modelled the current and future workflow for MTB meetings and its proposed machine learning pipeline. Interactive sessions with end-users validated the initial requirements based on a fictive patient scenario which helped further refine the system. Results The analysis showed that an interactive secure Web-based information system supporting the preparation of the meeting, multidisciplinary discussions, and clinical decision-making could address the identified requirements. Integrating artificial intelligence via continual learning and multimodal data fusion were identified as crucial elements that could provide accurate diagnosis and treatment recommendations. Impact Our work is of methodological importance in that using artificial intelligence for molecular tumour boards is novel. We provide a consolidated proof-of-concept system that could support the end-to-end clinical decision-making process and positively and immediately impact patients. Conclusion Augmenting a digital decision support system for molecular tumour boards with retrospective patient material is promising. This generates realistic and constructive material for human learning, and also digital data for continual learning by data-driven artificial intelligence approaches. The latter makes the future system adaptable to human bias, improving adequacy and decision quality over time and over tasks, while building and maintaining a digital log.
Collapse
Affiliation(s)
- Núria Rodríguez Ruiz
- Department of Learning, Informatics, Management and Ethics (LIME), Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
| | - Sulaf Abd Own
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karin Ekström Smedby
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Eloranta
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Koch
- Department of Learning, Informatics, Management and Ethics (LIME), Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
| | - Tove Wästerlid
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Boman
- Department of Learning, Informatics, Management and Ethics (LIME), Health Informatics Centre, Karolinska Institutet, Stockholm, Sweden
- School of Electrical Engineering and Computer Science (EECS)/Software and Computer Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
64
|
Kunimasa K, Sugimoto N, Kawamura T, Yamasaki T, Honma K, Nagata S, Kukita Y, Fujisawa F, Inoue T, Yamaguchi Y, Kitasaka M, Wakamatsu T, Yamai T, Yamamoto S, Hayashi T, Inoue T, Tamiya M, Imamura F, Nishimura K, Nishino K. Clinical application of comprehensive genomic profiling panel to thoracic malignancies: A single-center retrospective study. Thorac Cancer 2022; 13:2970-2977. [PMID: 36100256 PMCID: PMC9626350 DOI: 10.1111/1759-7714.14643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The usefulness of comprehensive genomic profiling (CGP) panels for thoracic malignancies after completion of the standard treatment is unclear. METHODS The results of CGP panels for malignant thoracic diseases performed at our hospital between December 2019 and June 2022 were collected. We examined whether CGP panel results led to new treatment, correlated with the effectiveness of immune checkpoint inhibitors (ICIs), or revealed secondary findings related to hereditary tumors. RESULTS A total of 60 patients were enrolled, of which 52 (86.6%) had lung cancer. In six (10%) patients, the panel results led to treatment with insurance-listed molecular-targeted agents; four patients had EGFR mutations not detected by the real-time polymerase chain reaction assay and two had MET ex.14 skipping mutations. In small-cell lung cancer, the tumor mutation burden was high in 4/6 (66.7%) patients and pembrolizumab was available. Another MET ex.14 skipping mutation was detected in two cases with EGFR-tyrosine kinase inhibitor resistance. ICI efficacy was ≤1 year in patients with STK-11, KEAP1, and NEF2L2 mutations. A BRCA2 mutation with a high probability of germline mutation was detected in one patient. A thymic carcinoma with no detectable oncogenic mutation responded to second-line treatment with Tegafur-Gimeracil-Oteracil Potassium (TS-1) for ≥9 years. CONCLUSIONS CGP panels are useful in thoracic malignancies, especially lung cancer, because they can detect overlooked driver mutations and genetic alterations. We believe that the significance of conducting a CGP panel prior to treatment may also exist, as it may lead to the prediction of ICI treatment efficacy.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Naotoshi Sugimoto
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Medical OncologyOsaka International Cancer InstituteOsakaJapan
| | - Takahisa Kawamura
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Tomoyuki Yamasaki
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Endocrinology/Metabolism Internal Medicine, Clinical ExaminationOsaka International Cancer InstituteOsakaJapan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Yoji Kukita
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Laboratory of Genomic PathologyOsaka International Cancer InstituteOsakaJapan
| | - Fumie Fujisawa
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Medical OncologyOsaka International Cancer InstituteOsakaJapan
| | - Tazuko Inoue
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yuko Yamaguchi
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Mitsuko Kitasaka
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Toru Wakamatsu
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Musculoskeletal Oncology ServiceOsaka International Cancer InstituteOsakaJapan
| | - Takuo Yamai
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Hepatobiliary and Pancreatic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Sachiko Yamamoto
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of Gastrointestinal OncologyOsaka International Cancer InstituteOsakaJapan
| | - Takuji Hayashi
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of UrologyOsaka International Cancer InstituteOsakaJapan
| | - Takako Inoue
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Motohiro Tamiya
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Fumio Imamura
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Kazuo Nishimura
- Department of Genetic OncologyOsaka International Cancer InstituteOsakaJapan,Department of UrologyOsaka International Cancer InstituteOsakaJapan
| | - Kazumi Nishino
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| |
Collapse
|
65
|
Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K, Hirata M, Sunami K, Kubo T, Takasawa K, Takahashi S, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Yatabe Y, Yamamoto N. Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp Hematol Oncol 2022; 11:82. [PMID: 36316731 PMCID: PMC9620610 DOI: 10.1186/s40164-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year's State of the Union address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information and communication technology to MTBs while reducing the burden on MTB members and building a platform that enables more accurate and personalized medical care would be of great benefit to patients. In this review, we introduced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues that may arise in the future as we progress with AI implementation.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8303, Japan
| | - Tomohiro Yasuda
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Shuntaro Yui
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Kazuki Sudo
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kubo
- Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
66
|
Ciliberto G, Canfora M, Terrenato I, Agnoletto C, Agustoni F, Amoroso L, Baldassarre G, Curigliano G, Delmonte A, De Luca A, Fiorentino M, Gregorc V, Ibrahim T, Lazzari C, Mastronuzzi A, Pronzato P, Santoro A, Scambia G, Tommasi S, Vingiani A, Giacomini P, De Maria R. Bridging therapeutic opportunities: a survey by the Italian molecular tumor board workgroup of Alliance Against Cancer. J Exp Clin Cancer Res 2022; 41:305. [PMID: 36245005 PMCID: PMC9575294 DOI: 10.1186/s13046-022-02512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular tumor boards (MTBs) match molecular alterations with targeted anticancer drugs upon failure of the available therapeutic options. Special and local needs are most likely to emerge through the comparative analysis of MTB networks, but these are rarely reported. This manuscript summarizes the state-of-art of 16 active Italian MTBs, as it emerges from an online survey curated by Alliance Against Cancer (ACC). MAIN TEXT Most MTBs (13/16) are exclusively supported through local Institutional grants and meet regularly. All but one adopts a fully virtual or a mixed face-to-face/virtual calling/attendance meeting model. It appears that the ACC MTB initiative is shaping a hub-and-spoke virtual MTB network reminiscent of non-redundant, cost-effective healthcare organization models. Unfortunately, public awareness of MTB opportunities presently remains insufficient. Only one center has a website. Dedicated e-mail addresses are for the exclusive use of the MTB staff. More than half of ACC members consider a miscellanea of most or all solid and hematological malignancies, and more than one-third consider neoplasms arising at any anatomical location. The average number of Staff Members in MTBs is 9. More than 10 staff members simultaneously attend MTB meetings in 13 MTBs. A medical oncologist is invariably present and is in charge of introducing the clinical case either with (45%) or without previous discussion in organ-specific multidisciplinary Boards. All but two MTBs take charge of not only patients with no standard-of-care (SoC) therapy option, but also cases receiving NGS profiling in SoC settings, implying a larger number of yearly cases. All MTBs run targeted NGS panels. Three run whole-exome and/or RNAseq approaches. ESCAT-ESMO and/or Onco-KB levels of evidence are similarly used for diagnostic reporting. Most MTBs (11) provide a written diagnostic report within 15 days. Conclusions are invariably communicated to the patient by the medical oncologist. CONCLUSIONS MTB networking is crucial not only for molecular diagnosis and therapy assignment, but also for healthcare governance. Survey results show that MTBs review therapeutic opportunities at the crossover between standard-of-care with off-label, the former task being much beyond their scope. Societal and scientific implications of this beyond-the-scope MTB function may be relevant for healthcare in Italy and abroad.
Collapse
Affiliation(s)
- Gennaro Ciliberto
- grid.417520.50000 0004 1760 5276IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Marco Canfora
- grid.417520.50000 0004 1760 5276IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Irene Terrenato
- grid.417520.50000 0004 1760 5276IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Chiara Agnoletto
- grid.419546.b0000 0004 1808 1697ROV, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Francesco Agustoni
- grid.419425.f0000 0004 1760 3027Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Loredana Amoroso
- grid.419504.d0000 0004 1760 0109IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gustavo Baldassarre
- grid.418321.d0000 0004 1757 9741Centro Di Riferimento Oncologico Di Aviano IRCCS, Aviano, Italy
| | - Giuseppe Curigliano
- grid.15667.330000 0004 1757 0843Istituto Europeo Di Oncologia IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Dipartimento Di Oncologia Ed Emato-Oncologia, Università La Statale Di Milano, Milan, Italy
| | - Angelo Delmonte
- grid.419563.c0000 0004 1755 9177Istituto Romagnolo Per Lo Studio Dei Tumori “Dino Amadori” - IRST IRCCS, Meldola, Italy
| | - Antonella De Luca
- grid.508451.d0000 0004 1760 8805Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | | | - Vanesa Gregorc
- grid.419555.90000 0004 1759 7675Istituto Di Candiolo - FPO (Fondazione del Piemonte Per L’Oncologia) IRCCS, Candiolo, Italy
| | - Toni Ibrahim
- grid.419038.70000 0001 2154 6641IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Chiara Lazzari
- grid.18887.3e0000000417581884IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angela Mastronuzzi
- grid.414125.70000 0001 0727 6809IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Paolo Pronzato
- grid.419504.d0000 0004 1760 0109IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Santoro
- grid.417728.f0000 0004 1756 8807IRCCS Humanitas Research Hospital-Humanitas Cancer Center, Rozzano, Milan Italy ,grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giovanni Scambia
- grid.8142.f0000 0001 0941 3192Dipartimento Di Ostetricia E Ginecologia, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Andrea Vingiani
- grid.417893.00000 0001 0807 2568Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Patrizio Giacomini
- grid.417520.50000 0004 1760 5276IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Ruggero De Maria
- grid.8142.f0000 0001 0941 3192Dipartimento Di Ostetricia E Ginecologia, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
67
|
Identification of Disparities in Personalized Cancer Care-A Joint Approach of the German WERA Consortium. Cancers (Basel) 2022; 14:cancers14205040. [PMID: 36291825 PMCID: PMC9600149 DOI: 10.3390/cancers14205040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In Molecular Tumor Boards (MTBs), clinicians and researchers discuss the biology of tumor samples from individual patients to find suitable therapies. MTBs have therefore become key elements of precision oncology programs. Patients living in urban areas with specialized medical centers can easily access MTBs. Dedicated efforts are necessary to also grant equal access for patients from rural areas. To address this challenge, the four German cancer centers in Würzburg, Erlangen, Regensburg and Augsburg collectively measured the regional efficacy of their MTBs. By jointly analyzing the residences of all MTB patients, we uncovered regional differences in our mostly rural catchment area. Mapping and further understanding these local differences—especially the underrepresented white spots—will help resolving inequalities in patient access to precision oncology. Our study represents a hands-on approach to assessing the regional efficacy of a precision oncology program. Moreover, this approach is transferable to other regions and clinical applications. Abstract (1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy.
Collapse
|
68
|
Fares AF, Martinez PH, Farina PH, Bicalho de Souza I, Araújo DV, Paiva NS, Orlando LF, Colombo TE, Mascarenhas E, Gelatti ACZ, Baldotto C, Zukin M, Araujo LH, Mathias C, Werutsky G, de Castro G, Cordeiro de Lima VC. Assessing Oncologists’ Attitudes Concerning Comprehensive Genomic Profiling in Stage IV Lung Adenocarcinoma in Brazil. JTO Clin Res Rep 2022; 3:100402. [PMID: 36193188 PMCID: PMC9526154 DOI: 10.1016/j.jtocrr.2022.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Advances in comprehensive genomic profiling (CGP) of lung adenocarcinomas (LUADs) led to personalized treatment for patients. This study evaluated medical oncologists’ attitudes toward CGP in a scenario where sponsored funding for CGP was available. Methods We designed an online survey assessing CGP use and treating physicians’ confidence, composed of three self-confidence domains, which are as follows: confidence in interpreting CGP results, confidence in treating oncogenic-driven LUAD, and confidence in managing tyrosine kinase inhibitor adverse events. The survey was distributed to medical oncologists who treat lung cancer in Brazil. Comparisons between groups were performed using the chi-square or Fisher’s exact test. Univariable and multivariable (adjusted OR) analyses were performed. Results Among 104 respondents who treat patients with lung cancer, 55% were from the Southeast region, 28% had high lung cancer clinical load, and 33% had in-house molecular testing. More than half (51%) of the participants request CGP systematically to stage IV LUAD. As for provider confidence, 67% stated being confident in all three domains: 76% confident in interpreting CGP, 84% confident in treating oncogenic-driven LUAD, and 81% in managing tyrosine kinase inhibitor adverse events. Providers’ confidence was associated with systematically requesting CGP to stage IV LUAD (p = 0.013). After controlling for the variables of interest, systematic requesting CGP for stage IV LUAD revealed a significant association with the provider’s confidence (adjusted OR = 0.35, p = 0.028, 95% CI: 0.14–0.84). The major challenge for properly requesting CGP was the long turnaround time and the fear of treatment delays. Conclusions Even though CGP for stage IV LUAD in Brazil is fully sponsored, only half of the oncologists in our survey systematically request it.. Requesting CGP was associated with providers’ confidence. Improving access and promoting providers’ awareness of CGP utility is necessary to increase CGP use and better inform treatment decisions.
Collapse
|
69
|
Walters MK, Ackerman AT, Weese JL, Ruggeri A, Mullane MP, Hunt A, Wilson A, Ramczyk BL, Thompson MA. Quantifying the Value of the Molecular Tumor Board: Discordance Recommendation Rate and Drug Cost Avoidance. JCO Precis Oncol 2022; 6:e2200132. [PMID: 36265115 DOI: 10.1200/po.22.00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023] Open
Abstract
PURPOSE Molecular tumor boards (MTBs) provide interventions that assist the patient's primary oncologist's interpretation and application of precision oncology and avoid clinical and financial toxicities of prescribing inappropriate targeted therapy. In this article, we describe a novel method for illustrating MTBs value and recommendation discordance rate and report associated drug cost avoidance data. METHODS From January 1, 2021, to December 31, 2021, patients assessed by our program's MTB were retrospectively evaluated. Recommendation discordance was defined as any disagreement between MTB therapeutic recommendations and those provided in the next-generation sequencing vendor's report. RESULTS In 2021, our program processed 1,119 next-generation sequencing orders via external vendors for 1,029 unique patients with a variety of solid tumor and hematologic malignancies. During this period, 962 patients were reviewed through our MTB process. MTB recommendation discordance rate was high (229 of 502; 45.6%) and varied across test vendors. Rationales for discordance included the following: low level of evidence (88% of patients), alternative standard of care available (60%), and tolerability concerns (42%), among others. Discordance was highest for Vendor C (30%), followed by Vendor A (24%) and Vendor B (8%). The most common drug classes not supported were mTOR, PARP, MEK, and PIK3CA inhibitors when recommended by vendors in off-label settings. MTB interventions accounted for $3,209,070 in US dollars in potential drug cost avoidance. CONCLUSION Therapeutic recommendation discordance rates can provide quantitative insight into the benefit of MTB. Discordance-associated drug cost avoidance further demonstrates MTB's financial value. These measures may be used as part of the justification for this service line within a cancer care program.
Collapse
Affiliation(s)
- Mary K Walters
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
| | - Andrew T Ackerman
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
| | - James L Weese
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
| | - Antony Ruggeri
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
| | - Michael P Mullane
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
- Hereditary Cancer Prevention and Management Center, Advocate Aurora Health, Milwaukee, WI
| | - Alicia Hunt
- ACL Laboratories, Advocate Aurora Health, West Allis, WI
| | - Amanda Wilson
- ACL Laboratories, Advocate Aurora Health, West Allis, WI
| | - Brenda L Ramczyk
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
- Hereditary Cancer Prevention and Management Center, Advocate Aurora Health, Milwaukee, WI
| | - Michael A Thompson
- Aurora Cancer Care, Oncology Precision Medicine, Advocate Aurora Health, Milwaukee, WI
- Tempus Labs, Chicago, IL
| |
Collapse
|
70
|
Jeong JC, Hands I, Kolesar JM, Rao M, Davis B, Dobyns Y, Hurt-Mueller J, Levens J, Gregory J, Williams J, Witt L, Kim EM, Burton C, Elbiheary AA, Chang M, Durbin EB. Local data commons: the sleeping beauty in the community of data commons. BMC Bioinformatics 2022; 23:386. [PMID: 36151511 PMCID: PMC9502580 DOI: 10.1186/s12859-022-04922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Public Data Commons (PDC) have been highlighted in the scientific literature for their capacity to collect and harmonize big data. On the other hand, local data commons (LDC), located within an institution or organization, have been underrepresented in the scientific literature, even though they are a critical part of research infrastructure. Being closest to the sources of data, LDCs provide the ability to collect and maintain the most up-to-date, high-quality data within an organization, closest to the sources of the data. As a data provider, LDCs have many challenges in both collecting and standardizing data, moreover, as a consumer of PDC, they face problems of data harmonization stemming from the monolithic harmonization pipeline designs commonly adapted by many PDCs. Unfortunately, existing guidelines and resources for building and maintaining data commons exclusively focus on PDC and provide very little information on LDC. Results This article focuses on four important observations. First, there are three different types of LDC service models that are defined based on their roles and requirements. These can be used as guidelines for building new LDC or enhancing the services of existing LDC. Second, the seven core services of LDC are discussed, including cohort identification and facilitation of genomic sequencing, the management of molecular reports and associated infrastructure, quality control, data harmonization, data integration, data sharing, and data access control. Third, instead of commonly developed monolithic systems, we propose a new data sharing method for data harmonization that combines both divide-and-conquer and bottom-up approaches. Finally, an end-to-end LDC implementation is introduced with real-world examples. Conclusions Although LDCs are an optimal place to identify and address data quality issues, they have traditionally been relegated to the role of passive data provider for much larger PDC. Indeed, many LDCs limit their functions to only conducting routine data storage and transmission tasks due to a lack of information on how to design, develop, and improve their services using limited resources. We hope that this work will be the first small step in raising awareness among the LDCs of their expanded utility and to publicize to a wider audience the importance of LDC.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Division of Biomedical Informatics, College of Medicine, University of Kentucky, Lexington, KY, USA. .,Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.
| | - Isaac Hands
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - Jill M Kolesar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bront Davis
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - York Dobyns
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - Joseph Hurt-Mueller
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - Justin Levens
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - Jenny Gregory
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - John Williams
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - Lisa Witt
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA.,Kentucky Cancer Registry, Lexington, KY, USA
| | - Eun Mi Kim
- Department of Computer Science, Eastern Kentucky University, Richmond, KY, USA
| | - Carlee Burton
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA
| | - Amir A Elbiheary
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA
| | - Mingguang Chang
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA
| | - Eric B Durbin
- Division of Biomedical Informatics, College of Medicine, University of Kentucky, Lexington, KY, USA. .,Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Lexington, KY, USA. .,Kentucky Cancer Registry, Lexington, KY, USA.
| |
Collapse
|
71
|
Louie BH, Kato S, Kim KH, Lim HJ, Okamura R, Eskander RN, Botta G, Patel H, Lee S, Lippman SM, Sicklick JK, Kurzrock R. Pan-cancer molecular tumor board experience with biomarker-driven precision immunotherapy. NPJ Precis Oncol 2022; 6:67. [PMID: 36138116 PMCID: PMC9500013 DOI: 10.1038/s41698-022-00309-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Despite remarkable responses to immune checkpoint blockade (ICB) in some advanced cancers, most patients do not benefit, perhaps due to the complexity of tumor/immune/genome interactions. We implemented a multidisciplinary Molecular Tumor Board (MTB) that reviewed multi-omic cancer characteristics to develop N-of-One therapies for patients in the pan-cancer, advanced, refractory setting. This study evaluates the experience of 80 patients who were presented to the MTB and received a treatment regimen that included ICB. Overall, 60/80 patients (75%) who received ICB following MTB discussion had a high degree of matching between tumor molecular characteristics, including ICB biomarkers (reflected by a high Matching Score (≥50%)) and therapy administered. Patients with high versus low Matching Score experienced significantly longer median progression-free survival (6.4 vs. 3.0 months; p = 0.011) and median overall survival (15.3 vs. 4.7 months; p = 0.014) and higher clinical benefit rates (stable disease ≥6 months/partial response/complete response) (53% vs. 21%, p = 0.019). Although most patients (52/80 (65%)) received a personalized combination therapy (e.g., targeted, hormonal, chemotherapy, or a second immunotherapy agent), administering >1 drug was not associated with outcome. Only degree of matching and age, but no other variables, including individual biomarkers (e.g., microsatellite status, tumor mutational burden, or PD-L1 status), were independently correlated with outcome. In the pan-cancer setting, the MTB facilitated a precision medicine strategy to match therapeutic regimens that included ICB alone or combined with matched targeted drugs to patients with advanced malignancy, which was associated with improved clinical outcomes.
Collapse
Affiliation(s)
- Bryan H Louie
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
| | - Ki Hwan Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyo Jeong Lim
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Ryosuke Okamura
- Department of Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Ramez N Eskander
- Center for Personalized Cancer Therapy and Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Gregory Botta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Hitendra Patel
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, UC San Diego Health Sciences, San Diego, CA, USA
| | - Razelle Kurzrock
- WIN Consortium for Precision Medicine, Paris, France
- Medical College of Wisconsin Cancer Center and Genomic Sciences and Precision Medicine Center, Milwaukee, WI, USA
- University of Nebraska, Omaha, NE, USA
| |
Collapse
|
72
|
Kahraman A, Arnold FM, Hanimann J, Nowak M, Pauli C, Britschgi C, Moch H, Zoche M. MTPpilot: An Interactive Software for Visualization of Next-Generation Sequencing Results in Molecular Tumor Boards. JCO Clin Cancer Inform 2022; 6:e2200032. [PMID: 36007219 PMCID: PMC9470140 DOI: 10.1200/cci.22.00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comprehensive targeted next-generation sequencing (NGS) panels are routinely used in modern molecular cancer diagnostics. In molecular tumor boards, the detected genomic alterations are often discussed to decide the next treatment options for patients with cancer. With the increasing size and complexity of NGS panels, the discussion of these results becomes increasingly complex, especially if they are reported in a text-based form, as it is the standard in current molecular pathology.
Collapse
Affiliation(s)
- Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabian M Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Jacob Hanimann
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marta Nowak
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
73
|
Le Tourneau C, Perret C, Hackshaw A, Blay JY, Nabholz C, Geissler J, Do T, von Meyenn M, Dienstmann R. An Approach to Solving the Complex Clinicogenomic Data Landscape in Precision Oncology: Learnings From the Design of WAYFIND-R, a Global Precision Oncology Registry. JCO Precis Oncol 2022; 6:e2200019. [PMID: 35939770 PMCID: PMC9384950 DOI: 10.1200/po.22.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Precision oncology, where patients are given therapies based on their genomic profile and disease trajectory, is rapidly evolving to become a pivotal part of cancer management, supported by regulatory approvals of biomarker-matched targeted therapies and cancer immunotherapies. However, next-generation sequencing (NGS)-based technologies have revealed an increasing number of molecular-based cancer subtypes with rare patient populations, leading to difficulties in executing/recruiting for traditional clinical trials. Therefore, approval of novel therapeutics based on traditional interventional studies may be difficult and time consuming, with delayed access to innovative therapies. Real-world data (RWD) that describe the patient journey in routine clinical practice can help elucidate the clinical utility of NGS-based genomic profiling, multidisciplinary case discussions, and targeted therapies. We describe key learnings from the setup of WAYFIND-R (NCT04529122), a first-of-its-kind global cancer registry collecting RWD from patients with solid tumors who have undergone NGS-based genomic profiling. The meaning of 'generalizability' and 'high quality' for RWD across different geographic areas was revisited, together with patient recruitment processes, and data sharing and privacy. Inspired by these learnings, WAYFIND-R's design will help physicians discuss patient treatment plans with their colleagues, improve understanding of the impact of treatment decisions/cancer care processes on patient outcomes, and provide a platform to support the design and conduct of further clinical/epidemiologic research. WAYFIND-R demonstrates user-friendly, electronic case report forms, standardized collection of molecular tumor board-based decisions, and a dashboard providing investigators with access to local cohort-level data and the ability to interact with colleagues or search the entire registry to find rare populations. Overall, WAYFIND-R will inform on best practice for NGS-based treatment decisions by clinicians, foster global collaborations between cancer centers and enable robust conclusions regarding outcome data to be drawn, improve understanding of disparities in patients' access to advanced diagnostics and therapies, and ultimately drive advances in precision oncology.
Collapse
Affiliation(s)
- Christophe Le Tourneau
- Institut Curie, Department of Drug Development and Innovation (D3i), Paris-Saclay University, Paris & Saint-Cloud, France
| | | | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom
| | - Jean-Yves Blay
- Centre Léon Bérard and Université Claude Bernard, Lyon, France
| | | | | | - Thy Do
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.,UCB, Chemin de la Croix-Blanche 10, Bulle, Switzerland
| | | | - Rodrigo Dienstmann
- Oncoclínicas Grupo, São Paulo, Brazil.,Oncology Data Science, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
74
|
Crimini E, Repetto M, Tarantino P, Ascione L, Antonarelli G, Rocco EG, Barberis M, Mazzarella L, Curigliano G. Challenges and Obstacles in Applying Therapeutical Indications Formulated in Molecular Tumor Boards. Cancers (Basel) 2022; 14:3193. [PMID: 35804968 PMCID: PMC9264928 DOI: 10.3390/cancers14133193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Considering the rapid improvement of cancer drugs' efficacy and the discovery of new molecular targets, the formulation of therapeutical indications based on the multidisciplinary approach of MTB is becoming increasingly important for attributing the correct salience to the targets identified in a single patient. Nevertheless, one of the biggest stumbling blocks faced by MTBs is not the bare indication, but its implementation in the clinical practice. Indeed, administering the drug suggested by MTB deals with some relevant difficulties: the economical affordability and geographical accessibility represent some of the major limits in the patient's view, while bureaucracy and regulatory procedures are often a disincentive for the physicians. In this review, we explore the current literature reporting MTB experiences and precision medicine clinical trials, focusing on the challenges that authors face in applying their therapeutical indications. Furthermore, we analyze and discuss some of the solutions devised to overcome these difficulties to support the MTBs in finding the most suitable solution for their specific situation. In conclusion, we strongly encourage regulatory agencies and pharmaceutical companies to develop effective strategies with medical centers implementing MTBs to facilitate access to innovative drugs and thereby allow broader therapeutical opportunities to patients.
Collapse
Affiliation(s)
- Edoardo Crimini
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Matteo Repetto
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Paolo Tarantino
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Liliana Ascione
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Elena Guerini Rocco
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Mazzarella
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
75
|
McHugh JK, Offiah G, Daly S, El Beltagi N, Barry MK, O'Reilly S, McVeigh TP. Postgraduate training in Cancer Genetics-a cross-specialty survey exploring experience of clinicians in Ireland. Ir J Med Sci 2022; 191:1427-1434. [PMID: 34195919 PMCID: PMC8244677 DOI: 10.1007/s11845-021-02637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/01/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND As genomic profiling of constitutional and tumour-derived DNA becomes increasingly critical in cancer risk estimation, prognostication and treatment, there is a growing need for clinicians involved in cancer care to up-skill in Cancer Genetics. In the Republic of Ireland (ROI), this is particularly crucial, given a paucity of vocationally trained Clinical Geneticists per capita compared to other European countries. AIMS We aimed to assess the self-reported confidence of postgraduate medical/surgical trainees in ROI in requesting, interpreting, and managing genomic data in patients with cancer, and to assess their selfreported experience, and demand for future training in this area. METHODS A cross-sectional survey of postgraduate trainees in four specialties (Medical and Radiation Oncology, Surgery, and Obstetrics and Gynaecology (O&G)), training in ROI, was undertaken. A bespoke electronic questionnaire was designed to capture data regarding preceding experience, and confidence across several hypothetical clinical scenarios involving genomic testing. The survey was circulated to eligible participants by training programme administrators, after relevant institutional ethical approval. Data was collected anonymously. RESULTS The study cohort included 62 respondents. A paucity of cancer genetics training at every level was demonstrated, with "hardly any" or "none at all" reported by 47(76%), 62(100%), and 50(81%) during undergraduate, core specialty, and higher specialist training, respectively. A relative lack of confidence in all clinical scenarios was apparent, particularly among Surgery/O&G trainees. Most respondents would value more training in Cancer Genetics. CONCLUSIONS This study demonstrates an unmet need in dedicated Cancer Genetics training for postgraduate specialty trainees in ROI.
Collapse
Affiliation(s)
- Jana K McHugh
- Institute of Cancer Research, London, UK.
- Royal Marsden NHS Foundation Trust, London, UK.
| | - Gozie Offiah
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Daly
- Rotunda Hospital, Parnell Square E, Rotunda, Dublin 1, D01 P5W9, Dublin, Ireland
| | | | | | | | - Terri P McVeigh
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
76
|
Love TM, Anaya DA, Prime MS, Ardolino L, Ekinci O. Development and validation of ACTE-MTB: A tool to systematically assess the maturity of molecular tumor boards. PLoS One 2022; 17:e0268477. [PMID: 35560035 PMCID: PMC9106161 DOI: 10.1371/journal.pone.0268477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular tumor boards (MTBs) require specialized activities to leverage genomic data for therapeutic decision-making. Currently, there are no defined standards for implementing, executing, and tracking the impact of MTBs. This study describes the development and validation of ACTE-MTB, a tool to evaluate the maturity of an organization’s MTB to identify specific areas that would benefit from process improvements and standardization. The ACTE-MTB maturity assessment tool is composed of 3 elements: 1) The ACTE-MTB maturity model; 2) a 59-question survey on MTB processes and challenges; and 3) a 5-level MTB maturity scoring algorithm. This tool was developed to measure MTB maturity in the categories of Access, Consultation, Technology, and Evidence (ACTE) and was tested on 20 MTBs spanning the United States, Europe, and Asia-Pacific regions. Validity testing revealed that the average maturity score was 3.3 out of 5 (+/- 0.1; range 2.0–4.3) with MTBs in academic institutions showing significantly higher overall maturity levels than in non-academic institutions (3.7 +/- 0.2 vs. 3.1 +/- 0.2; P = .018). While maturity scores for academic institutions were higher for Consultation, Technology, and Evidence domains, the maturity score for the Access domain did not significantly differ between the two groups, highlighting a disconnect between MTB operations and the downstream impact on ability to access testing and/or therapies. To our knowledge, ACTE-MTB is the first tool of its kind to enable structured, maturity assessment of MTBs in a universally-applicable manner. In the process of establishing construct validity of this tool, opportunities for further investigation and improvements were identified that address the key functional areas of MTBs that would likely benefit from standardization and best practice recommendations. We believe a unified approach to assessment of MTB maturity will help to identify areas for improvement at both the organizational and system level.
Collapse
Affiliation(s)
- Tara M. Love
- Roche Information Solutions, Roche Diagnostics Corporation, Santa Clara, California, United States of America
- * E-mail:
| | - Daniel A. Anaya
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Matthew S. Prime
- Roche Information Solutions, Roche Diagnostics Corporation, Basel, Switzerland
| | - Luke Ardolino
- Department of Medical Oncology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Okan Ekinci
- Roche Information Solutions, Roche Diagnostics Corporation, Santa Clara, California, United States of America
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
77
|
Ilié M, Hofman V, Bontoux C, Heeke S, Lespinet-Fabre V, Bordone O, Lassalle S, Lalvée S, Tanga V, Allegra M, Salah M, Bohly D, Benzaquen J, Marquette CH, Long-Mira E, Hofman P. Setting Up an Ultra-Fast Next-Generation Sequencing Approach as Reflex Testing at Diagnosis of Non-Squamous Non-Small Cell Lung Cancer; Experience of a Single Center (LPCE, Nice, France). Cancers (Basel) 2022; 14:2258. [PMID: 35565387 PMCID: PMC9104603 DOI: 10.3390/cancers14092258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
The number of genomic alterations required for targeted therapy of non-squamous non-small cell lung cancer (NS-NSCLC) patients has increased and become more complex these last few years. These molecular abnormalities lead to treatment that provides improvement in overall survival for certain patients. However, these treated tumors inexorably develop mechanisms of resistance, some of which can be targeted with new therapies. The characterization of the genomic alterations needs to be performed in a short turnaround time (TAT), as indicated by the international guidelines. The origin of the tissue biopsies used for the analyses is diverse, but their size is progressively decreasing due to the development of less invasive methods. In this respect, the pathologists are facing a number of different challenges requiring them to set up efficient molecular technologies while maintaining a strategy that allows rapid diagnosis. We report here our experience concerning the development of an optimal workflow for genomic alteration assessment as reflex testing in routine clinical practice at diagnosis for NS-NSCLC patients by using an ultra-fast-next generation sequencing approach (Ion Torrent Genexus Sequencer, Thermo Fisher Scientific). We show that the molecular targets currently available to personalized medicine in thoracic oncology can be identified using this system in an appropriate TAT, notably when only a small amount of nucleic acids is available. We discuss the new challenges and the perspectives of using such an ultra-fast NGS in daily practice.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
| | - Olivier Bordone
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
| | - Virginie Tanga
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Maryline Allegra
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Myriam Salah
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Doriane Bohly
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Jonathan Benzaquen
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Pasteur Hospital, 06000 Nice, France
| | - Charles-Hugo Marquette
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Pasteur Hospital, 06000 Nice, France
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| |
Collapse
|
78
|
Wolff L, Kiesewetter B. Applicability of ESMO-MCBS and ESCAT for molecular tumor boards. MEMO - MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2022. [DOI: 10.1007/s12254-022-00800-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SummaryScoring systems for classifying genomic alterations (GAs) with respect to their potential targeted anticancer therapies (TTs) may be useful for rational and evidence-based decision-making, for example in molecular tumor boards. Therefore, a working group of the European Society for Medical Oncology (ESMO) has developed a comprehensive and reproducible classification score that allows the ranking of GAs and TTs according to their level of evidence and clinical relevance. This score is called the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT). Another score not explicitly developed for TTs but helpful in grading novel TTs is the ESMO-Magnitude of Clinical Benefit Scale (ESMO-MCBS). This tool was designed to objectively quantify the clinical benefit of novel approved therapies. The current review summarizes the status quo of these scores and their applicability for molecular tumor boards.
Collapse
|
79
|
Mateo J, Steuten L, Aftimos P, André F, Davies M, Garralda E, Geissler J, Husereau D, Martinez-Lopez I, Normanno N, Reis-Filho JS, Stefani S, Thomas DM, Westphalen CB, Voest E. Delivering precision oncology to patients with cancer. Nat Med 2022; 28:658-665. [PMID: 35440717 DOI: 10.1038/s41591-022-01717-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
With the increasing use of genomic profiling for diagnosis and therapy guidance in many tumor types, precision oncology is rapidly reshaping cancer care. However, the current trajectory of drug development in oncology results in a paradox: if patients cannot access advanced diagnostics, we may be developing drugs that will reach few patients. In this Perspective, we outline the major challenges to the implementation of precision oncology and discuss critical steps toward resolving these, including facilitation of equal access to genomics tests, ensuring that clinical studies provide robust evidence for new drugs and technologies, enabling physicians to interpret genomics data, and empowering patients toward shared decision-making. A multi-stakeholder approach to evidence generation, value assessment, and healthcare delivery is necessary to translate advances in precision oncology into benefits for patients with cancer globally.
Collapse
Affiliation(s)
- Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lotte Steuten
- Office of Health Economics, London, UK
- City University of London, London, UK
| | - Philippe Aftimos
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Villejuif, France
| | | | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Iciar Martinez-Lopez
- Unit of Genetics and Genomics of the Balearic Islands, Son Espases University Hospital, Illes, Balears, Spain
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS 'Fondazione G. Pascale', Naples, Italy
| | | | | | - David M Thomas
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - C Benedikt Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium (DKTK partner site Munich), Heidelberg, Germany
| | - Emile Voest
- Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
80
|
Westphalen CB, Fine AD, André F, Ganesan S, Heinemann V, Rouleau E, Turnbull C, Garcia Palacios L, Lopez JA, Sokol ES, Mateo J. Pan-cancer Analysis of Homologous Recombination Repair-associated Gene Alterations and Genome-wide Loss-of-Heterozygosity Score. Clin Cancer Res 2022; 28:1412-1421. [PMID: 34740923 PMCID: PMC8982267 DOI: 10.1158/1078-0432.ccr-21-2096] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE To study associations across tumor types between genome-wide loss of heterozygosity (gLOH) and alterations in homologous recombination repair (HRR)-associated genes beyond BRCA1 and BRCA2. EXPERIMENTAL DESIGN Genomic profiling using a targeted next-generation sequencing assay examining 324-465 genes (FoundationOne, FoundationOne Heme, and FoundationOne CDx; Foundation Medicine, Inc.) was performed in a cohort of 160,790 samples across different tumor types. Zygosity predictions and gLOH status were calculated and linked with alterations in 18 HRR-associated genes (BRCA1, BRCA2, PALB2, BARD1, ATR, ATRX, ATM, BAP1, RAD51B, RAD51C, RAD51D, BRIP1, NBN, CHEK1, CHEK2, FANCA, FANCC, MRE11) and other genomic features, using Fisher's exact test and Mann-Whitney U tests. RESULTS We identified a strong correlation between elevated gLOH and biallelic alterations in a core set of HRR-associated genes beyond BRCA1 and BRCA2, such as BARD1, PALB2, FANCC, RAD51C, and RAD51D (particularly in breast, ovarian, pancreatic, and prostate cancer). Monoallelic/heterozygous alterations in HRR-associated genes were not associated with elevated gLOH. gLOH was also independently associated with TP53 loss. Co-occurrence of TP53 loss and alterations in HRR-associated genes, and combined loss of TP53-PTEN or TP53-RB1, was associated with a higher gLOH than each of the events separately. CONCLUSIONS Biallelic alterations in core HRR-associated genes are frequent, strongly associated with elevated gLOH, and enriched in breast, ovarian, pancreatic, and prostate cancer. This analysis could inform the design of the next generation of clinical trials examining DNA repair-targeting agents, including PARP inhibitors.
Collapse
Affiliation(s)
- C. Benedikt Westphalen
- Comprehensive Cancer Center Munich and Department of Medicine III, Ludwig Maximilian University of Munich, Munich, Germany
| | - Alexander D. Fine
- Cancer Genomics Research, Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Villejuif, France
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Volker Heinemann
- Comprehensive Cancer Center Munich and Department of Medicine III, Ludwig Maximilian University of Munich, Munich, Germany
| | - Etienne Rouleau
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Villejuif, France
| | | | | | | | - Ethan S. Sokol
- Cancer Genomics Research, Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d’Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
81
|
Burton KA, Mahen E, Konnick EQ, Blau S, Dorschner MO, Ramirez AB, Schmechel SC, Song C, Parulkar R, Parker S, Senecal FM, Pritchard CC, Mecham BH, Szeto C, Spilman P, Zhu J, Gadi VK, Ronen R, Stilwell J, Kaldjian E, Dutkowski J, Benz SC, Rabizadeh S, Soon-Shiong P, Blau CA. Safety, Feasibility, and Merits of Longitudinal Molecular Testing of Multiple Metastatic Sites to Inform mTNBC Patient Treatment in the Intensive Trial of Omics in Cancer. JCO Precis Oncol 2022; 6:e2100280. [PMID: 35294224 PMCID: PMC8939922 DOI: 10.1200/po.21.00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with metastatic triple-negative breast cancer (mTNBC) have poor outcomes. The Intensive Trial of Omics in Cancer (ITOMIC) sought to determine the feasibility and potential efficacy of informing treatment decisions through multiple biopsies of mTNBC deposits longitudinally over time, accompanied by analysis using a distributed network of experts. In the Intensive Trial of Omics in Cancer (ITOMIC), the feasibility and potential efficacy of informing treatment decisions through omics analysis of multiple biopsies of mTNBC deposits over time was assessed. An ITOMIC Tumor Board (ITB) that comprised experts discussed tumor profile findings and made treatment recommendations to each subject's physician. Study-directed omics analysis revealed that of the 31 enrolled subjects, two were found to have lung cancer, one a carcinoma of unknown primary site that and tumor samples from five subjects showed some receptor-positivity. Several subjects survived well beyond what would be expected for this patient group, supporting the merits of further investigation of this approach.![]()
Collapse
Affiliation(s)
- Kimberly A Burton
- Department of Medicine, University of Washington, Seattle, WA.,Center for Cancer Innovation, University of Washington, Seattle, WA.,Northwest Medical Specialties, Puyallup and Tacoma, WA.,South Sound CARE Foundation, Seattle, WA
| | - Elisabeth Mahen
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Medicine/Hematology, University of Washington, Seattle, WA
| | | | - Sibel Blau
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Northwest Medical Specialties, Puyallup and Tacoma, WA
| | - Michael O Dorschner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Center for Precision Diagnostics, University of Washington, Seattle, WA
| | | | - Stephen C Schmechel
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Chaozhong Song
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Medicine/Hematology, University of Washington, Seattle, WA
| | | | - Stephanie Parker
- Northwest Medical Specialties, Puyallup and Tacoma, WA.,South Sound CARE Foundation, Seattle, WA
| | - Francis Mark Senecal
- Northwest Medical Specialties, Puyallup and Tacoma, WA.,South Sound CARE Foundation, Seattle, WA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | | | - Jingchun Zhu
- Computational Genomics Lab, University of California at Santa Cruz, Santa Cruz, CA
| | - Vijayakrishna K Gadi
- Department of Medicine, University of Illinois, Chicago, IL.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | | | | | | - C Anthony Blau
- Center for Cancer Innovation, University of Washington, Seattle, WA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Medicine/Hematology, University of Washington, Seattle, WA.,All4Cure Inc, Seattle, WA
| |
Collapse
|
82
|
Milbury CA, Creeden J, Yip WK, Smith DL, Pattani V, Maxwell K, Sawchyn B, Gjoerup O, Meng W, Skoletsky J, Concepcion AD, Tang Y, Bai X, Dewal N, Ma P, Bailey ST, Thornton J, Pavlick DC, Frampton GM, Lieber D, White J, Burns C, Vietz C. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS One 2022; 17:e0264138. [PMID: 35294956 PMCID: PMC8926248 DOI: 10.1371/journal.pone.0264138] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
FoundationOne®CDx (F1CDx) is a United States (US) Food and Drug Administration (FDA)-approved companion diagnostic test to identify patients who may benefit from treatment in accordance with the approved therapeutic product labeling for 28 drug therapies. F1CDx utilizes next-generation sequencing (NGS)-based comprehensive genomic profiling (CGP) technology to examine 324 cancer genes in solid tumors. F1CDx reports known and likely pathogenic short variants (SVs), copy number alterations (CNAs), and select rearrangements, as well as complex biomarkers including tumor mutational burden (TMB) and microsatellite instability (MSI), in addition to genomic loss of heterozygosity (gLOH) in ovarian cancer. CGP services can reduce the complexity of biomarker testing, enabling precision medicine to improve treatment decision-making and outcomes for cancer patients, but only if test results are reliable, accurate, and validated clinically and analytically to the highest standard available. The analyses presented herein demonstrate the extensive analytical and clinical validation supporting the F1CDx initial and subsequent FDA approvals to ensure high sensitivity, specificity, and reliability of the data reported. The analytical validation included several in-depth evaluations of F1CDx assay performance including limit of detection (LoD), limit of blank (LoB), precision, and orthogonal concordance for SVs (including base substitutions [SUBs] and insertions/deletions [INDELs]), CNAs (including amplifications and homozygous deletions), genomic rearrangements, and select complex biomarkers. The assay validation of >30,000 test results comprises a considerable and increasing body of evidence that supports the clinical utility of F1CDx to match patients with solid tumors to targeted therapies or immunotherapies based on their tumor's genomic alterations and biomarkers. F1CDx meets the clinical needs of providers and patients to receive guideline-based biomarker testing, helping them keep pace with a rapidly evolving field of medicine.
Collapse
Affiliation(s)
- Coren A. Milbury
- Department Product Development, Cambridge, MA, United States of America
| | - James Creeden
- Global Medical Affairs, Basel, MA, United States of America
| | - Wai-Ki Yip
- Department Product Development, Cambridge, MA, United States of America
| | - David L. Smith
- Department of Franchise Development, Cambridge, MA, United States of America
| | - Varun Pattani
- Department Product Development, Cambridge, MA, United States of America
| | - Kristi Maxwell
- Department of Health Economic and Outcomes Research & Payer Policy, Reimbursement, Cambridge, MA, United States of America
| | - Bethany Sawchyn
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Ole Gjoerup
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Wei Meng
- Department Product Development, Cambridge, MA, United States of America
| | - Joel Skoletsky
- Department Product Development, Cambridge, MA, United States of America
| | | | - Yanhua Tang
- Department Product Development, Cambridge, MA, United States of America
| | - Xiaobo Bai
- Department Product Development, Cambridge, MA, United States of America
| | - Ninad Dewal
- Department Product Development, Cambridge, MA, United States of America
| | - Pei Ma
- Department Product Development, Cambridge, MA, United States of America
| | - Shannon T. Bailey
- Department Product Development, Cambridge, MA, United States of America
| | - James Thornton
- Department Product Development, Cambridge, MA, United States of America
| | - Dean C. Pavlick
- Department of Cancer Genomics, Cambridge, MA, United States of America
| | | | - Daniel Lieber
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Jared White
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Christine Burns
- Department Product Development, Cambridge, MA, United States of America
| | - Christine Vietz
- Department Product Development, Cambridge, MA, United States of America
| |
Collapse
|
83
|
Louie BH, Kato S, Kim KH, Lim HJ, Lee S, Okamura R, Fanta PT, Kurzrock R. Precision medicine-based therapies in advanced colorectal cancer: The University of California San Diego Molecular Tumor Board experience. Mol Oncol 2022; 16:2575-2584. [PMID: 35238467 PMCID: PMC9251876 DOI: 10.1002/1878-0261.13202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 11/06/2022] Open
Abstract
Treatment for advanced colorectal cancer is often limited by complex molecular profiles, which promote resistance to systemic agents and targeted monotherapies. Recent studies suggest that a personalized, combinatorial approach of matching drugs to tumor alterations may be more effective. We implemented a precision medicine strategy by forming a Molecular Tumor Board (MTB), a multidisciplinary team of clinicians, scientists, bioinformaticians and geneticists. The MTB integrated molecular profiling information and patient characteristics to develop N-of-One treatments for 51 patients with advanced colorectal cancer. All patients had metastatic disease and 63% had received ≥3 prior therapy lines. Overall, 34/51 patients (67%) were matched to ≥1 drug recommended by the MTB based on individual tumor characteristics whereas 17/51 (33%) patients received unmatched therapies. Patients who received matched therapy demonstrated significantly longer progression-free survival (hazard ratio [HR], 0.41; 95% CI, 0.21-0.81; P=0.01) and a trend towards higher clinical benefit rates (41% vs. 18% P=0.058) (all multivariate) compared to patients receiving unmatched therapy. The MTB facilitated personalized matching of drugs to tumor characteristics, which was associated with improved progression-free survival in patients with advanced colorectal cancer.
Collapse
Affiliation(s)
- Bryan H Louie
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Ki Hwan Kim
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA.,Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyo Jeong Lim
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA.,Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Paul T Fanta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
84
|
Shah SM, Demidova EV, Lesh RW, Hall MJ, Daly MB, Meyer JE, Edelman MJ, Arora S. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat Rev 2022; 104:102337. [PMID: 35051883 PMCID: PMC9016579 DOI: 10.1016/j.ctrv.2021.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
DNA repair vulnerabilities are present in a significant proportion of cancers. Specifically, germline alterations in DNA repair not only increase cancer risk but are associated with treatment response and clinical outcomes. The therapeutic landscape of cancer has rapidly evolved with the FDA approval of therapies that specifically target DNA repair vulnerabilities. The clinical success of synthetic lethality between BRCA deficiency and poly(ADP-ribose) polymerase (PARP) inhibition has been truly revolutionary. Defective mismatch repair has been validated as a predictor of response to immune checkpoint blockade associated with durable responses and long-term benefit in many cancer patients. Advances in next generation sequencing technologies and their decreasing cost have supported increased genetic profiling of tumors coupled with germline testing of cancer risk genes in patients. The clinical adoption of panel testing for germline assessment in high-risk individuals has generated a plethora of genetic data, particularly on DNA repair genes. Here, we highlight the therapeutic relevance of germline aberrations in DNA repair to identify patients eligible for precision treatments such as PARP inhibitors (PARPis), immune checkpoint blockade, chemotherapy, radiation therapy and combined treatment. We also discuss emerging mechanisms that regulate DNA repair.
Collapse
Affiliation(s)
- Shreya M Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Science Scholars Program, Temple University, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Kazan Federal University, Kazan, Russian Federation
| | - Randy W Lesh
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
85
|
Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform 2022; 23:bbab408. [PMID: 34619752 PMCID: PMC8769705 DOI: 10.1093/bib/bbab408] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
For an increasing number of preclinical samples, both detailed molecular profiles and their responses to various drugs are becoming available. Efforts to understand, and predict, drug responses in a data-driven manner have led to a proliferation of machine learning (ML) methods, with the longer term ambition of predicting clinical drug responses. Here, we provide a uniquely wide and deep systematic review of the rapidly evolving literature on monotherapy drug response prediction, with a systematic characterization and classification that comprises more than 70 ML methods in 13 subclasses, their input and output data types, modes of evaluation, and code and software availability. ML experts are provided with a fundamental understanding of the biological problem, and how ML methods are configured for it. Biologists and biomedical researchers are introduced to the basic principles of applicable ML methods, and their application to the problem of drug response prediction. We also provide systematic overviews of commonly used data sources used for training and evaluation methods.
Collapse
Affiliation(s)
- Farzaneh Firoozbakht
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Behnam Yousefi
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
- Sorbonne Université, École Doctorale Complexite du Vivant, Paris, France
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
86
|
Bruehl FK, Kim AS, Li MM, Lindeman NI, Moncur JT, Souers RJ, Vasalos P, Voelkerding KV, Xian RR, Surrey LF. Tiered Somatic Variant Classification Adoption Has Increased Worldwide With Some Practice Differences Based on Location and Institutional Setting. Arch Pathol Lab Med 2022; 146:822-832. [PMID: 34979564 DOI: 10.5858/arpa.2021-0179-cp] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The 2017 Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists (CAP) tier classification guideline provides a framework to standardize interpretation and reporting of somatic variants. OBJECTIVE.— To evaluate the adoption and performance of the 2017 guideline among laboratories performing somatic next-generation sequencing (NGS). DESIGN.— A survey was distributed to laboratories participating in NGS CAP proficiency testing for solid tumors (NGSST) and hematologic malignancies (NGSHM). RESULTS.— Worldwide, 64.4% (152 of 236) of NGSST and 66.4% (87 of 131) of NGSHM participants used tier classification systems, of which the 2017 guideline was used by 84.9% (129 of 152) of NGSST and 73.6% (64 of 87) of NGSHM participants. The 2017 guideline was modified by 24.4% (30 of 123) of NGSST and 21.7% (13 of 60) of NGSHM laboratories. Laboratories implementing the 2017 guideline were satisfied or very satisfied (74.2% [89 of 120] NGSST and 69.5% [41 of 59] NGSHM), and the impression of tier classification reproducibility was high (mean of 3.9 [NGSST] and 3.6 [NGSHM] on a 5-point scale). Of nonusers, 35.2% (38 of 108) of NGSST and 39.4% (26 of 66) of NGSHM laboratories were planning implementation. For future guideline revisions, respondents favored including variants to monitor disease (63.9% [78 of 122] NGSST, 80.0% [48 of 60] NGSHM) and germline variants (55.3% [63 of 114] NGSST, 75.0% [45 of 60] NGSHM). Additional subtiers were not favored by academic laboratories compared to nonacademic laboratories (P < .001 NGSST and P = .02 NGSHM). CONCLUSIONS.— The 2017 guideline has been implemented by more than 50.0% of CAP laboratories. While most laboratories using the 2017 guideline report satisfaction, thoughtful guideline modifications may further enhance the quality, reproducibility, and clinical utility of the 2017 guideline for tiered somatic variant classification.
Collapse
Affiliation(s)
- Frido K Bruehl
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Bruehl)
| | - Annette S Kim
- The Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Kim, Lindeman)
| | - Marilyn M Li
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Li, Surrey)
| | - Neal I Lindeman
- The Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Kim, Lindeman)
| | - Joel T Moncur
- The Joint Pathology Center, Office of the Director, Silver Spring, Maryland (Moncur), College of American Pathologists, Northfield, Illinois
| | - Rhona J Souers
- Biostatistics Department (Souers), College of American Pathologists, Northfield, Illinois
| | - Patricia Vasalos
- Proficiency Testing (Vasalos), College of American Pathologists, Northfield, Illinois
| | | | - Rena R Xian
- The Department of Pathology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland (Xian)
| | - Lea F Surrey
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Li, Surrey)
| |
Collapse
|
87
|
Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer 2022; 126:4-9. [PMID: 34837074 PMCID: PMC8727615 DOI: 10.1038/s41416-021-01633-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence (AI) is concretely reshaping the landscape and horizons of oncology, opening new important opportunities for improving the management of cancer patients. Analysing the AI-based devices that have already obtained the official approval by the Federal Drug Administration (FDA), here we show that cancer diagnostics is the oncology-related area in which AI is already entered with the largest impact into clinical practice. Furthermore, breast, lung and prostate cancers represent the specific cancer types that now are experiencing more advantages from AI-based devices. The future perspectives of AI in oncology are discussed: the creation of multidisciplinary platforms, the comprehension of the importance of all neoplasms, including rare tumours and the continuous support for guaranteeing its growth represent in this time the most important challenges for finalising the 'AI-revolution' in oncology.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy.
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy.
| | - Antonio Pea
- Department of Surgery, the Pancreas Institute, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy.
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy.
| |
Collapse
|
88
|
Russo A, Incorvaia L, Capoluongo E, Tagliaferri P, Galvano A, Del Re M, Malapelle U, Chiari R, Conte P, Danesi R, Fassan M, Ferrara R, Genuardi M, Ghiorzo P, Gori S, Guadagni F, Marchetti A, Marchetti P, Midiri M, Normanno N, Passiglia F, Pinto C, Silvestris N, Tallini G, Vatrano S, Vincenzi B, Cinieri S, Beretta G. The challenge of the Molecular Tumor Board empowerment in clinical oncology practice: A Position Paper on behalf of the AIOM- SIAPEC/IAP-SIBioC-SIC-SIF-SIGU-SIRM Italian Scientific Societies. Crit Rev Oncol Hematol 2022; 169:103567. [PMID: 34896250 DOI: 10.1016/j.critrevonc.2021.103567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022] Open
Abstract
The development of innovative technologies and the advances in the genetics and genomics, have offered new opportunities for personalized treatment in oncology. Although the selection of the patient based on the molecular characteristics of the neoplasm has the potential to revolutionize the therapeutic scenario of oncology, this approach is extremely challenging. The access, homogeneity, and economic sustainability of the required genomic tests should be warranted in the clinical practice, as well as the specific scientific and clinical expertise for the choice of medical therapies. All these elements make essential the collaboration of different specialists within the Molecular Tumor Boards (MTBs). In this position paper, based on experts' opinion, the AIOM-SIAPEC/IAP-SIBioC-SIC-SIF-SIGU-SIRM Italian Scientific Societies critically discuss the available molecular profiling technologies, the proposed criteria for the selection of patients candidate for evaluation by the MTB, the criteria for the selection and analysis of biological samples, and the regulatory and pharmaco-economic issues.
Collapse
Affiliation(s)
- Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ettore Capoluongo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131, Naples, Italy; CEINGE, Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80131, Naples, Italy
| | - Pierosandro Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80138, Naples, Italy
| | - Rita Chiari
- Medical Oncology, AULSS 6 Euganea, South Padova Hospital, Monselice, PD, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Medical Oncology 2, Istituto Oncologico Veneto - IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Roberto Ferrara
- Department of Medical Oncology, Thoracic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Maurizio Genuardi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Roma, Italy; UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Stefania Gori
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Fiorella Guadagni
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Antonio Marchetti
- Center of Predictive Molecular Medicine, University-Foundation, CeSI Biotech Chieti, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Midiri
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Turin, Italy
| | - Carmine Pinto
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS-AUSL di Reggio Emilia, Reggio Emilia, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO), University of Bari, Bari, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Simona Vatrano
- Department of Pathology, Cannizzaro Hospital, Catania, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University, 00128, Rome, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | | |
Collapse
|
89
|
Cho D, Lord SJ, Simes J, Cooper W, Friedlander M, Bae S, Lee CK. Next-generation sequencing, should I use anti-HER2 therapy for HER2-amplified tumors off-label? Illustrating an extrapolation framework. Ther Adv Med Oncol 2022; 14:17588359221112822. [PMID: 35923921 PMCID: PMC9340898 DOI: 10.1177/17588359221112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Next-generation sequencing is used to increase targeted treatment opportunities, particularly for patients who have exhausted standard options. Where randomized controlled trial evidence for a targeted therapy is available for molecular alterations in one tumor type, the dilemma for the clinician is whether ‘matching’ targeted agents should be recommended off-label for the same molecular alterations detected in other tumor types, for which no trial data are available to guide practice. To judge the likely benefits, it may be possible to extrapolate evidence from cancers where treatment benefits have been established. Methods: We present a framework for assessing the appropriateness of extrapolation using trastuzumab, an anti-HER2 antibody, for HER2-amplified tumors where trastuzumab use would be off-label as an illustrative example. Results: The following should be considered for the tumor type where trastuzumab would be off-label: (a) reliability of the NGS assay for detecting HER2 amplification; (b) criteria for defining HER2 positivity; (c) strength of evidence supporting the actionability of HER2 amplification and trastuzumab; (d) whether better clinical outcomes with trastuzumab are due to a more favorable natural history rather than trastuzumab effect; (e) signals of trastuzumab activity and whether it translates to clinically meaningful benefit; (f) whether the safety profile of trastuzumab differs from established indications; and (g) discussion points for shared decision making (SDM) to facilitate informed consent. Conclusion: We present a systematic approach for appraising evidence to support extrapolating trastuzumab benefits from established indications to off-label applications. Extrapolation criteria and areas of uncertainty to inform SDM are outlined. This framework is potentially generalizable to other tumor-agnostic biomarker-targeted therapy scenarios. It is a practical approach for clinicians to apply in routine practice and should be considered by molecular tumor boards who make off-label recommendations.
Collapse
Affiliation(s)
- Doah Cho
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Locked Bag 77, Camperdown, NSW 1450, Australia
| | - Sarah J. Lord
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - John Simes
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Wendy Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Discipline of Pathology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Susie Bae
- Department of Oncology, Eastern Health, Box Hill, VIC, Australia
- Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Chee Khoon Lee
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| |
Collapse
|
90
|
Incorvaia L, Russo A, Cinieri S. The molecular tumor board: a tool for the governance of precision oncology in the real world. TUMORI JOURNAL 2021; 108:288-290. [PMID: 34918610 DOI: 10.1177/03008916211062266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical oncology is going through a period of profound change. Targeted therapy, and more recently immunotherapy, have revolutionized the natural history and outcomes of many solid tumors. Clinical oncology is now indissoluble from molecular oncology, a rapidly evolving field. This profound transformation is the rationale for molecular tumor board (MTB) implementation. MTBs represent a resource for the development of precision oncology and clinical practice implementation is a complex and important challenge for the future of clinical and molecular oncology. Economic sustainability of genomic tests, access to drugs or clinical trials according to the MTB recommendation, and expanded use of existing anticancer drugs are required for MTBs to become a useful tool for the governance of precision oncology in the real world. This is an ongoing process, with establishment of MTBs the first step. Continuing to work in collaboration with scientific societies, MTBs are poised to become a homogeneous and well-structured reality that can make the care pathway of the patient with cancer more efficient, with the ultimate goal to offer personalized therapy based on the most advanced scientific knowledge.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| |
Collapse
|
91
|
Yoon S, Kim M, Hong YS, Kim HS, Kim ST, Kim J, Yun H, Yoo C, Ahn HK, Kim HS, Lee IH, Kim IH, Park I, Jeong JH, Cheon J, Kim JW, Yun J, Lim SM, Cha Y, Jang SJ, Zang DY, Kim TW, Kang JH, Kim JH. Recommendations for the Use of Next-Generation Sequencing and the Molecular Tumor Board for Patients with Advanced Cancer: A Report from KSMO and KCSG Precision Medicine Networking Group. Cancer Res Treat 2021; 54:1-9. [PMID: 34902959 PMCID: PMC8756119 DOI: 10.4143/crt.2021.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Next-generation sequencing (NGS) is becoming essential in the fields of precision oncology. With implementation of NGS in daily clinic, the needs for continued education, facilitated interpretation of NGS results and optimal treatment delivery based on NGS results have been addressed. Molecular tumor board (MTB) is multidisciplinary approach to keep pace with the growing knowledge of complex molecular alterations in patients with advanced solid cancer. Although guidelines for NGS use and MTB have been developed in western countries, there is limitation for reflection of Korea’s public health environment and daily clinical practice. These recommendations provide a critical guidance from NGS panel testing to final treatment decision based on MTB discussion.
Collapse
Affiliation(s)
- Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Kyung Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Inkeun Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jin Won Kim
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jina Yun
- Division of Medical Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yongjun Cha
- Center for Colorectal Cancer, National Cancer Center, Research Institute and Hospital, Goyang, Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Young Zang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University, Anyang, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
92
|
Kong BY, Sim HW, Nowak AK, Yip S, Barnes EH, Day BW, Buckland ME, Verhaak R, Johns T, Robinson C, Thomas MA, Giardina T, Lwin Z, Scott AM, Parkinson J, Jeffree R, Lourenco RDA, Hovey EJ, Cher LM, Kichendasse G, Khasraw M, Hall M, Tu E, Amanuel B, Koh ES, Gan HK. LUMOS - Low and Intermediate Grade Glioma Umbrella Study of Molecular Guided TherapieS at relapse: Protocol for a pilot study. BMJ Open 2021; 11:e054075. [PMID: 37185327 PMCID: PMC8719186 DOI: 10.1136/bmjopen-2021-054075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Grades 2 and 3 gliomas (G2/3 gliomas), when combined, are the second largest group of malignant brain tumours in adults. The outcomes for G2/3 gliomas at progression approach the dismal outcomes for glioblastoma (GBM), yet there is a paucity of trials for Australian patients with relapsed G2/3 gliomas compared with patients with GBM. LUMOS will be a pilot umbrella study for patients with relapsed G2/3 gliomas that aims to match patients to targeted therapies based on molecular screening with contemporaneous tumour tissue. Participants in whom no actionable or no druggable mutation is found, or in whom the matching drug is not available, will form a comparator arm and receive standard of care chemotherapy. The objective of the LUMOS trial is to assess the feasibility of this approach in a multicentre study across five sites in Australia, with a view to establishing a national molecular screening platform for patient treatment guided by the mutational analysis of contemporaneous tissue biopsies Methods and analysis This study will be a multicentre pilot study enrolling patients with recurrent grade 2/3 gliomas that have previously been treated with radiotherapy and chemotherapy at diagnosis or at first relapse. Contemporaneous tumour tissue at the time of first relapse, defined as tissue obtained within 6 months of relapse and without subsequent intervening therapy, will be obtained from patients. Molecular screening will be performed by targeted next-generation sequencing at the reference laboratory (PathWest, Perth, Australia). RNA and DNA will be extracted from representative formalin-fixed paraffin embedded tissue scrolls or microdissected from sections on glass slides tissue sections following a review of the histology by pathologists. Extracted nucleic acid will be quantified by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). Library preparation and targeted capture will be performed using the TruSight Tumor 170 (TST170) kit and samples sequenced on NextSeq 550 (Illumina) using NextSeq V.2.5 hi output reagents, according to the manufacturer’s instructions. Data analysis will be performed using the Illumina BaseSpace TST170 app v1.02 and a custom tertiary pipeline, implemented within the Clinical Genomics Workspace software platform from PierianDx (also refer to section 3.2). Primary outcomes for the study will be the number of patients enrolled and the number of patients who complete molecular screening. Secondary outcomes will include the proportion of screened patients enrolled; proportion of patients who complete molecular screening; the turn-around time of molecular screening; and the value of a brain tumour specific multi-disciplinary tumour board, called the molecular tumour advisory panel as measured by the proportion of patients in whom the treatment recommendation was refined compared with the recommendations from the automated bioinformatics platform of the reference laboratory testing. Ethics and dissemination The study was approved by the lead Human Research Ethics Committee of the Sydney Local Health District: Protocol No. X19-0383. The study will be conducted in accordance with the principles of the Declaration of Helsinki 2013, guidelines for Good Clinical Practice and the National Health and Medical Research Council National Statement on Ethical Conduct in Human Research (2007, updated 2018 and as amended periodically). Results will be disseminated using a range of media channels including newsletters, social media, scientific conferences and peer-reviewed publications. Trial registration number ACTRN12620000087954; Pre-results.
Collapse
Affiliation(s)
- Benjamin Y Kong
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Anna K Nowak
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | | | - Bryan W Day
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Sid Faithfull Brain Cancer Laboratory, Cell and Molecular Biology Department, QIMR Berghofer, Herston, Queensland, Australia
| | - Michael E Buckland
- Department of Neuropathology, Brain and Mind Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Terrance Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Cleo Robinson
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Marc A Thomas
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Tindaro Giardina
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Zarnie Lwin
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Jonathon Parkinson
- Department of Neurosurgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rosalind Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- University of Queensland School of Medicine, Herston, Queensland, Australia
| | - Richard de Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology, Ultimo, New South Wales, Australia
| | - Elizabeth J Hovey
- Department of Medical Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Lawrence M Cher
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Ganessan Kichendasse
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
- Department of Medical Oncology, Flinders Centre for Innovation in Cancer, Bedford Park, South Australia, Australia
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Merryn Hall
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Emily Tu
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Benhur Amanuel
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Eng-Siew Koh
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales, Australia
- Department of Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool, New South Wales, Australia
- Collaboration for Cancer Outcomes, Research and Evaluation, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
93
|
The storm of NGS in NSCLC diagnostic-therapeutic pathway: How to sun the real clinical practice. Crit Rev Oncol Hematol 2021; 169:103561. [PMID: 34856311 DOI: 10.1016/j.critrevonc.2021.103561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing number of approved drugs along with next generation sequencing (NGS) technologies look out as potential revolution of biomolecular characterization of non-small-cell lung cancer (NSCLC). Nevertheless, several aspects impact on success rate of NGS in clinical practice: a multidisciplinary approach and thorough knowledge of strengths and limits of each technologic diagnostic tool are required. Crucial preliminary step is the selection of the best available sample before testing, aware of clinical condition and setting of disease. Genomic data should be than integrated in the clinical context and matched with available therapeutic options; Molecular Tumor Boards (MTB) are worldwide emerging interdisciplinary groups implemented to transfer the impact of precision medicine in clinical practice. In order to guarantee equity in treatment, these considerations should find their application widely and rapidly. Aim of this review is offering an overview of emerging biomarkers, relative upcoming targeted drugs, and new diagnostic chances with an authors' perspective about a real-life diagnostic-therapeutic algorithm useful for daily clinical practice.
Collapse
|
94
|
Buglioni S, Marino M. Pitfalls in Molecular Testing and the Added Value of the Cancer Research Biomedical Community. J Thorac Oncol 2021; 16:1976-1978. [PMID: 34809799 DOI: 10.1016/j.jtho.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Simonetta Buglioni
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mirella Marino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
95
|
Borchert F, Mock A, Tomczak A, Hügel J, Alkarkoukly S, Knurr A, Volckmar AL, Stenzinger A, Schirmacher P, Debus J, Jäger D, Longerich T, Fröhling S, Eils R, Bougatf N, Sax U, Schapranow MP. Knowledge bases and software support for variant interpretation in precision oncology. Brief Bioinform 2021; 22:bbab134. [PMID: 33971666 PMCID: PMC8574624 DOI: 10.1093/bib/bbab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Precision oncology is a rapidly evolving interdisciplinary medical specialty. Comprehensive cancer panels are becoming increasingly available at pathology departments worldwide, creating the urgent need for scalable cancer variant annotation and molecularly informed treatment recommendations. A wealth of mainly academia-driven knowledge bases calls for software tools supporting the multi-step diagnostic process. We derive a comprehensive list of knowledge bases relevant for variant interpretation by a review of existing literature followed by a survey among medical experts from university hospitals in Germany. In addition, we review cancer variant interpretation tools, which integrate multiple knowledge bases. We categorize the knowledge bases along the diagnostic process in precision oncology and analyze programmatic access options as well as the integration of knowledge bases into software tools. The most commonly used knowledge bases provide good programmatic access options and have been integrated into a range of software tools. For the wider set of knowledge bases, access options vary across different parts of the diagnostic process. Programmatic access is limited for information regarding clinical classifications of variants and for therapy recommendations. The main issue for databases used for biological classification of pathogenic variants and pathway context information is the lack of standardized interfaces. There is no single cancer variant interpretation tool that integrates all identified knowledge bases. Specialized tools are available and need to be further developed for different steps in the diagnostic process.
Collapse
Affiliation(s)
- Florian Borchert
- Digital Health Center, Hasso Plattner Institute (HPI), University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
| | - Andreas Mock
- Department of Translational Medical Oncology (TMO), National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Aurelie Tomczak
- Institute of Pathology Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Jonas Hügel
- Department of Medical Informatics, University Medical Center Göttingen, Von-Siebold-Str. 3, 37099 Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Samer Alkarkoukly
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne
| | - Alexander Knurr
- Division of Medical Informatics for Translational Oncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Clinical Coorporation Unit Applied Tumor-Immunity, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology (TMO), National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Roland Eils
- Health Data Science Unit, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
- Center for Digital Health, Berlin Institute of Health and Charité Universitötsmedizin Berlin, Kapelle-Ufer 2, 10117 Berlin, Germany
| | - Nina Bougatf
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Ulrich Sax
- Department of Medical Informatics, University Medical Center Göttingen, Von-Siebold-Str. 3, 37099 Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Matthieu-P Schapranow
- Digital Health Center, Hasso Plattner Institute (HPI), University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
| |
Collapse
|
96
|
Jain NM, Schmalz L, Cann C, Holland A, Osterman T, Lang K, Wiesner GL, Pal T, Lovly C, Stricker T, Micheel C, Balko JM, Johnson DB, Park BH, Iams W. Framework for Implementing and Tracking a Molecular Tumor Board at a National Cancer Institute-Designated Comprehensive Cancer Center. Oncologist 2021; 26:e1962-e1970. [PMID: 34390291 PMCID: PMC8571748 DOI: 10.1002/onco.13936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/30/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Over the past few years, tumor next-generation sequencing (NGS) panels have evolved in complexity and have changed from selected gene panels with a handful of genes to larger panels with hundreds of genes, sometimes in combination with paired germline filtering and/or testing. With this move toward increasingly large NGS panels, we have rapidly outgrown the available literature supporting the utility of treatments targeting many reported gene alterations, making it challenging for oncology providers to interpret NGS results and make a therapy recommendation for their patients. METHODS To support the oncologists at Vanderbilt-Ingram Cancer Center (VICC) in interpreting NGS reports for patient care, we initiated two molecular tumor boards (MTBs)-a VICC-specific institutional board for our patients and a global community MTB open to the larger oncology patient population. Core attendees include oncologists, hematologist, molecular pathologists, cancer geneticists, and cancer genetic counselors. Recommendations generated from MTB were documented in a formal report that was uploaded to our electronic health record system. RESULTS As of December 2020, we have discussed over 170 patient cases from 77 unique oncology providers from VICC and its affiliate sites, and a total of 58 international patient cases by 25 unique providers from six different countries across the globe. Breast cancer and lung cancer were the most presented diagnoses. CONCLUSION In this article, we share our learning from the MTB experience and document best practices at our institution. We aim to lay a framework that allows other institutions to recreate MTBs. IMPLICATIONS FOR PRACTICE With the rapid pace of molecularly driven therapies entering the oncology care spectrum, there is a need to create resources that support timely and accurate interpretation of next-generation sequencing reports to guide treatment decision for patients. Molecular tumor boards (MTB) have been created as a response to this knowledge gap. This report shares implementation strategies and best practices from the Vanderbilt experience of creating an institutional MTB and a virtual global MTB for the larger oncology community. This report describe a reproducible framework that can be adopted to initiate MTBs at other institutions.
Collapse
Affiliation(s)
- Neha M. Jain
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Christopher Cann
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Adara Holland
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Travis Osterman
- Division of Hematology/Oncology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical Informatics, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Katie Lang
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Georgia L. Wiesner
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tuya Pal
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Hematology/Oncology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Christine Lovly
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Thomas Stricker
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Christine Micheel
- Division of Hematology/Oncology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Justin M. Balko
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Douglas B. Johnson
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ben Ho Park
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Hematology/Oncology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Wade Iams
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Hematology/Oncology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
97
|
Green MF, Bell JL, Hubbard CB, McCall SJ, McKinney MS, Riedel JE, Menendez CS, Abbruzzese JL, Strickler JH, Datto MB. Implementation of a Molecular Tumor Registry to Support the Adoption of Precision Oncology Within an Academic Medical Center: The Duke University Experience. JCO Precis Oncol 2021; 5:PO.21.00030. [PMID: 34568718 PMCID: PMC8457820 DOI: 10.1200/po.21.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Comprehensive genomic profiling to inform targeted therapy selection is a central part of oncology care. However, the volume and complexity of alterations uncovered through genomic profiling make it difficult for oncologists to choose the most appropriate therapy for their patients. Here, we present a solution to this problem, The Molecular Registry of Tumors (MRT) and our Molecular Tumor Board (MTB). PATIENTS AND METHODS MRT is an internally developed system that aggregates and normalizes genomic profiling results from multiple sources. MRT serves as the foundation for our MTB, a team that reviews genomic results for all Duke University Health System cancer patients, provides notifications for targeted therapies, matches patients to biomarker-driven trials, and monitors the molecular landscape of tumors at our institution. RESULTS Among 215 patients reviewed by our MTB over a 6-month period, we identified 176 alterations associated with therapeutic sensitivity, 15 resistance alterations, and 51 alterations with potential germline implications. Of reviewed patients, 17% were subsequently treated with a targeted therapy. For 12 molecular therapies approved during the course of this work, we identified between two and 71 patients who could qualify for treatment based on retrospective MRT data. An analysis of 14 biomarker-driven clinical trials found that MRT successfully identified 42% of patients who ultimately enrolled. Finally, an analysis of 4,130 comprehensive genomic profiles from 3,771 patients revealed that the frequency of clinically significant therapeutic alterations varied from approximately 20% to 70% depending on the tumor type and sequencing test used. CONCLUSION With robust informatics tools, such as MRT, and the right MTB structure, a precision cancer medicine program can be developed, which provides great benefit to providers and patients with cancer.
Collapse
Affiliation(s)
- Michelle F Green
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Jonathan L Bell
- Department of Pathology, Duke University Medical Center, Durham, NC
| | | | - Shannon J McCall
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Matthew S McKinney
- Division of Hematologic Malignancies, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jinny E Riedel
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Carolyn S Menendez
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Department of Surgery, Duke University Medical Center, Durham, NC
| | - James L Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - John H Strickler
- Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Michael B Datto
- Department of Pathology, Duke University Medical Center, Durham, NC
| |
Collapse
|
98
|
Di Capua D, Bracken-Clarke D, Ronan K, Baird AM, Finn S. The Liquid Biopsy for Lung Cancer: State of the Art, Limitations and Future Developments. Cancers (Basel) 2021; 13:cancers13163923. [PMID: 34439082 PMCID: PMC8391249 DOI: 10.3390/cancers13163923] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development and progression of lung tumors, processes such as necrosis and vascular invasion shed tumor cells or cellular components into various fluid compartments. Liquid biopsies consist of obtaining a bodily fluid, typically peripheral blood, in order to isolate and investigate these shed tumor constituents. Circulating tumor cells (CTCs) are one such constituent, which can be isolated from blood and can act as a diagnostic aid and provide valuable prognostic information. Liquid-based biopsies may also have a potential future role in lung cancer screening. Circulating tumor DNA (ctDNA) is found in small quantities in blood and, with the recent development of sensitive molecular and sequencing technologies, can be used to directly detect actionable genetic alterations or monitor for resistance mutations and guide clinical management. While potential benefits of liquid biopsies are promising, they are not without limitations. In this review, we summarize the current state and limitations of CTCs and ctDNA and possible future directions. Abstract Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.
Collapse
Affiliation(s)
- Daniel Di Capua
- Department of Histopathology, St. James’s Hospital, D08NHY1 Dublin, Ireland;
| | - Dara Bracken-Clarke
- Department of Medical Oncology, St. James’ Hospital, D08NHY1 Dublin, Ireland;
| | - Karine Ronan
- Faculty of Medicine, University College Dublin, D04V1W8 Dublin, Ireland;
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College, D02PN40 Dublin, Ireland;
| | - Stephen Finn
- Department of Histopathology, St. James’s Hospital, D08NHY1 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
99
|
Horak P, Leichsenring J, Goldschmid H, Kreutzfeldt S, Kazdal D, Teleanu V, Endris V, Gieldon L, Allgäuer M, Volckmar AL, Dikow N, Renner M, Kirchner M, Penzel R, Ploeger C, Brandt R, Seker-Cin H, Budczies J, Heilig CE, Neumann O, Schaaf CP, Schirmacher P, Fröhling S, Stenzinger A. Assigning evidence to actionability: An introduction to variant interpretation in precision cancer medicine. Genes Chromosomes Cancer 2021; 61:303-313. [PMID: 34331337 DOI: 10.1002/gcc.22987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022] Open
Abstract
Modern concepts in precision cancer medicine are based on increasingly complex genomic analyses and require standardized criteria for the functional evaluation and reporting of detected genomic alterations in order to assess their clinical relevance. In this article, we propose and address the necessary steps in systematic variant evaluation consisting of bioinformatic analysis, functional annotation and clinical interpretation, focusing on the latter two aspects. We discuss the role and clinical application of current variant classification systems and point out their scope and limitations. Finally, we highlight the significance of the molecular tumor board as a platform for clinical decision-making based on genomic analyses.
Collapse
Affiliation(s)
- Peter Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Jonas Leichsenring
- Institut für Pathologie, Zytologie und molekulare Diagnostik, Regiomed Klinikum Coburg, Coburg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Goldschmid
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Veronica Teleanu
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Gieldon
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Marcus Renner
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Ploeger
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Regine Brandt
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Huriye Seker-Cin
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Budczies
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Christoph E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Schirmacher
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| |
Collapse
|
100
|
Laßmann S, Hummel M. [Molecular tumor boards - insights and perspectives]. DER PATHOLOGE 2021; 42:357-362. [PMID: 34170386 DOI: 10.1007/s00292-021-00955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
The rapid development of molecular technologies and targeted therapies has fostered the implementation of specialized tumor conferences, known as molecular tumor boards (MTBs). MTBs become particularly important when treatment recommendations are needed based on molecular alterations beyond the approved targeted therapies. While an MTB's goals are based on individualized diagnostics and therapies of tumor patients using innovative technologies and biomarkers, the procedures of MTBs are still quite heterogeneous. This applies to the primary inclusion criteria for tumor patients, the composition of MTBs, the applied diagnostic tests and their assessment and reporting, the evaluation of their clinical value and implementation in a therapeutic strategy, and the associated quality assurance measurements as well as knowledge-gaining, economical, legal, and ethical aspects.This article provides an overview of the spectrum of MTBs, their challenges, and the potential for individualized cancer medicine.
Collapse
Affiliation(s)
- Silke Laßmann
- Institut für Klinische Pathologie, Universitätsklinikum Freiburg, Breisacher Str. 115A, 79106, Freiburg, Deutschland.
| | - Michael Hummel
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|