51
|
Heterogeneous Photoredox Catalysis Based on Silica Mesoporous Material and Eosin Y: Impact of Material Support on Selectivity of Radical Cyclization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020549. [PMID: 36677607 PMCID: PMC9865568 DOI: 10.3390/molecules28020549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Heterogenization of the photocatalyst appears to be a valuable solution to reach sustainable processes. Rapid and efficient synthesis of supported photocatalyst is still a remaining challenge and the choice of the support material is crucial. The present study aims at preparing a new generation of hybrid inorganic/organic photocatalysts based on silica mesoporous material and Eosin Y. These results highlight the influence of non-covalent interactions between the material support and the reagent impacting the selectivity of the reaction.
Collapse
|
52
|
Mahmood Z, He J, Cai S, Yuan Z, Liang H, Chen Q, Huo Y, König B, Ji S. Tuning the Photocatalytic Performance of Ruthenium(II) Polypyridine Complexes Via Ligand Modification for Visible-Light-Induced Phosphorylation of Tertiary Aliphatic Amines. Chemistry 2023; 29:e202202677. [PMID: 36250277 DOI: 10.1002/chem.202202677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy)3 ]2+ photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions. A series of cross-dehydrogenative coupling reactions were performed employing the RuII complexes as photocatalyst giving the corresponding α-aminophosphinoxides and α-aminophosphonates via carbon-phosphorus (C-P) bond formation.
Collapse
Affiliation(s)
- Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jia He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shuqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Zhanxiang Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
53
|
Fanini F, Luridiana A, Mazzarella D, Ilenia Alfano A, van der Heide P, Rincón JA, García-Losada P, Mateos C, Frederick MO, Nuño M, Noël T. Flow photochemical Giese reaction via silane-mediated activation of alkyl bromides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
54
|
Dulov DA, Bogdanov AV, Dorofeev SG, Magdesieva TV. N, N'-Diaryldihydrophenazines as a Sustainable and Cost-Effective Alternative to Precious Metal Complexes in the Photoredox-Catalyzed Alkylation of Aryl Alkyl Ketones. Molecules 2022; 28:221. [PMID: 36615415 PMCID: PMC9822323 DOI: 10.3390/molecules28010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
An inexpensive and highly efficient metal-free alternative to commonly used Ru- and Ir-based catalysts was proposed. It was shown that the new 2,7-di-tert-butyl-5,10-bis(4-trifluoromethylphenyl)-5,10-dihydrophenazine outcompeted the iridium phenylpyridyl complex in photoredox activity in the alkylation of silyl enol ethers yielding aryl alkyl ketones. The reaction occurred under visible light irradiation at room temperature and was also applicable to drug derivatives (ibuprofen and naproxen). In-depth photophysical, electrochemical, and quantum chemical studies showed that the aforementioned N,N-diaryldihydrophenazine exhibited enhanced properties that were essential for the photoredox catalysis (a long-lived triplet excited state, strong reducing ability, high stability of the radical cations formed in single-electron-transfer event, and chemical inertness of the catalyst with respect to reactants). Importantly, the substituted N,N'-diaryldihydrophenazines could be obtained directly from diaryl amines; a facile, easily handled and scaled-up one-pot synthetic procedure was elaborated.
Collapse
Affiliation(s)
- Dmitry A Dulov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Sergey G Dorofeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
55
|
Sellet N, Sebbat M, Elhabiri M, Cormier M, Goddard JP. Squaraines as near-infrared photocatalysts for organic reactions. Chem Commun (Camb) 2022; 58:13759-13762. [PMID: 36416727 DOI: 10.1039/d2cc04707a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herein, unprecedented uses of squaraine derivatives as new organic near-infrared photocatalysts are reported. These efficient molecular tools are able to promote oxidation and reduction for organic transformations through photocatalytic conditions. A mechanistic investigation is performed to distinguish between competitive Single Electron Transfer and Energy Transfer pathways.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Malik Sebbat
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Mourad Elhabiri
- Université de Strasbourg-CNRS-UHA UMR7042, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, Strasbourg F-67087, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| |
Collapse
|
56
|
Roy G, Gupta R, Ranjan Sahoo S, Saha S, Asthana D, Chandra Mondal P. Ferrocene as an iconic redox marker: From solution chemistry to molecular electronic devices. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Low J, Zhang C, Ma J, Murzin DY, Xiong Y. Heterogeneous photocatalysis: what is being overlooked? TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
58
|
Liu F, Zhang K, Zhao XF, Meng QX, Zhao TS, Tian WF, He YQ. Photoinduced Stereoselective Hydroalkylation of Terminal Arylalkynes via C(sp3)-H Functionalization. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
59
|
Simić S, Jakštaitė M, Huck WTS, Winkler CK, Kroutil W. Strategies for Transferring Photobiocatalysis to Continuous Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catal 2022; 12:14040-14049. [PMID: 36439034 PMCID: PMC9680640 DOI: 10.1021/acscatal.2c04444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
The challenges of light-dependent biocatalytic transformations of lipophilic substrates in aqueous media are manifold. For instance, photolability of the catalyst as well as insufficient light penetration into the reaction vessel may be further exacerbated by a heterogeneously dispersed substrate. Light penetration may be addressed by performing the reaction in continuous flow, which allows two modes of applying the catalyst: (i) heterogeneously, immobilized on a carrier, which requires light-permeable supports, or (ii) homogeneously, dissolved in the reaction mixture. Taking the light-dependent photodecarboxylation of palmitic acid catalyzed by fatty-acid photodecarboxylase from Chlorella variabilis (CvFAP) as a showcase, strategies for the transfer of a photoenzyme-catalyzed reaction into continuous flow were identified. A range of different supports were evaluated for the immobilization of CvFAP, whereby Eupergit C250 L was the carrier of choice. As the photostability of the catalyst was a limiting factor, a homogeneous system was preferred instead of employing the heterogenized enzyme. This implied that photolabile enzymes may preferably be applied in solution if repair mechanisms cannot be provided. Furthermore, when comparing different wavelengths and light intensities, extinction coefficients may be considered to ensure comparable absorption at each wavelength. Employing homogeneous conditions in the CvFAP-catalyzed photodecarboxylation of palmitic acid afforded a space-time yield unsurpassed by any reported batch process (5.7 g·L-1·h-1, 26.9 mmol·L-1·h-1) for this reaction, demonstrating the advantage of continuous flow in attaining higher productivity of photobiocatalytic processes.
Collapse
Affiliation(s)
- Stefan Simić
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Miglė Jakštaitė
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field
of Excellence BioHealth—University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
60
|
Medina E, Sandoval-Pauker C, Salvador P, Pinter B. Mechanistic Insights into the Oxidative and Reductive Quenching Cycles of Transition Metal Photoredox Catalysts through Effective Oxidation State Analysis. Inorg Chem 2022; 61:18923-18933. [DOI: 10.1021/acs.inorgchem.2c02945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Edinson Medina
- Department of Chemistry, Universidad Técnica Federico Santa María, Av. España 1680, 2390123 Valparaíso, Chile
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, Unites States
| | - Pedro Salvador
- Department de Química, Institut de Química Computacional I Catàlisi, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, Unites States
| |
Collapse
|
61
|
Jiao Y, Stoddart J. Electron / hole catalysis: A versatile strategy for promoting chemical transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
62
|
McClain EJ, Wortman AK, Stephenson CRJ. Radical generation enabled by photoinduced N-O bond fragmentation. Chem Sci 2022; 13:12158-12163. [PMID: 36349097 PMCID: PMC9600408 DOI: 10.1039/d2sc02953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Recent advances in synthetic chemistry have seen a resurgence in the development of methods for visible light-mediated radical generation. Herein, we report the development of a photoactive ester based on a quinoline N-oxide core structure, that provides a strong oxidant in its excited state. The heteroaromatic N-oxide provides access to primary, secondary, and tertiary radical intermediates, and its application toward the development of a photochemical Minisci alkylation is reported.
Collapse
Affiliation(s)
- Edward J McClain
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Alan K Wortman
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| |
Collapse
|
63
|
Kim S, Landfester K, Ferguson CTJ. Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS NANO 2022; 16:17041-17048. [PMID: 36223132 PMCID: PMC9620398 DOI: 10.1021/acsnano.2c07156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Substrate accessibility is a key limiting factor for the efficiency of heterogeneous photoredox catalysis. Recently, a high photoactive surface area of conjugated microporous polymer nanoparticles (CMP NPs) has made them promising candidates for overcoming the mass transfer limitation to achieve high photocatalytic efficiency. However, this potential has not been realized due to limited dispersibility of CMP NPs in many solvents, particularly in water. Here, we report a polymer grafting strategy that furnishes versatile hairy CMP NPs with enhanced solvent-specific dispersibility. The method associates hundreds of solvent-miscible repeating units with one chain end of the photocatalyst surface, allowing minimal modification to the CMP network that preserves its photocatalytic activity. Therefore, the enhanced dispersibility of hairy CMP NPs in organic solvents or aqueous solutions affords high efficiency in various photocatalytic organic transformations.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United
Kingdom
| |
Collapse
|
64
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
65
|
Yu Gitlina A, Fadaei-Tirani F, Ruggi A, Plaice C, Severin K. Acid-base-induced fac → mer isomerization of luminescent iridium(iii) complexes. Chem Sci 2022; 13:10370-10374. [PMID: 36277648 PMCID: PMC9473533 DOI: 10.1039/d2sc02808e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Luminescent Ir(C^N)3 complexes (C^N = cyclometalated arylpyridine ligand) exist in the form of two stable isomers with distinct photophysical and electrochemical properties: fac and mer. Herein, we show that fac-Ir(C^N)3 complexes can be converted into the thermodynamically less stable mer forms by a consecutive reaction with first acid and then base. The chemically induced isomerization is fast, quantitative, and stereoselective, and it can be inversed by light. The new isomerization process opens the possibility to use highly luminescent Ir(C^N)3 complexes as molecular switches.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg 1700 Fribourg Switzerland
| | - Carolina Plaice
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
66
|
Zhang Y, Chen J, Huang H. Radical Brook Rearrangements: Concept and Recent Developments. Angew Chem Int Ed Engl 2022; 61:e202205671. [DOI: 10.1002/anie.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Jun‐Jie Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Huan‐Ming Huang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
67
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
68
|
Yadav P, Varma AA, A J P, Gopinath P. Photoredox mediated multicomponent reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pooja Yadav
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - A Anagha Varma
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Punnya A J
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
69
|
Juliá F. Ligand‐to‐Metal Charge Transfer (LMCT) Photochemistry at 3d‐Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabio Juliá
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry Av Paisos Catalans, 16 43007 Tarragona SPAIN
| |
Collapse
|
70
|
Lindroth R, Materna KL, Hammarström L, Wallentin CJ. Sustainable Ir-Photoredox Catalysis by Means of Heterogenization. ACS ORGANIC & INORGANIC AU 2022; 2:427-432. [PMID: 36855667 PMCID: PMC9955341 DOI: 10.1021/acsorginorgau.2c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
A heterogenized iridium catalyst was employed to perform photoredox catalysis for a collection of mechanistically orthogonal reactions using very low quantities of iridium (0.01-0.1 mol %). The heterogenized construct consists of an organometallic iridium coordination complex bonded to an aluminum metal oxide solid-state support via an anchoring group. The solid-state support allows for easy recovery and reusability of the catalyst. Evaluation of the catalytic activity was performed with five different reactions, showing broad applicability and demonstrating the general potential for a heterogenized strategy. Moreover, the heterogenized catalyst was shown to be reusable up to five times and also mediated the reactions with much higher efficiency than the original processes by employing the corresponding homogeneous catalyst. As a result of the low catalyst loadings employed, the feasibility of reusage, and faster reaction times, this catalyst offers a more sustainable option when precious metal catalysts are used in organic synthesis. Finally, the catalyst was successfully applied to a gram-scale reaction, showing it is susceptible to scalability.
Collapse
Affiliation(s)
- Rickard Lindroth
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE41296, Sweden
| | - Kelly L. Materna
- Department
of Chemistry-Ångström Laboratories, Uppsala University, Box 523, Uppsala SE75120, Sweden, (K.L.M.)
| | - Leif Hammarström
- Department
of Chemistry-Ångström Laboratories, Uppsala University, Box 523, Uppsala SE75120, Sweden
| | - Carl-Johan Wallentin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE41296, Sweden, (C.J.W.)
| |
Collapse
|
71
|
Day C, Do CD, Odena C, Benet-Buchholz J, Xu L, Foroutan-Nejad C, Hopmann KH, Martin R. Room-Temperature-Stable Magnesium Electride via Ni(II) Reduction. J Am Chem Soc 2022; 144:13109-13117. [PMID: 35830190 PMCID: PMC9345648 DOI: 10.1021/jacs.2c01807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report the synthesis of highly reduced bipyridyl magnesium complexes and the first example of a stable organic magnesium electride supported by quantum mechanical computations and X-ray diffraction. These complexes serve as unconventional homogeneous reductants due to their high solubility, modular redox potentials, and formation of insoluble, non-coordinating byproducts. The applicability of these reductants is showcased by accessing low-valent (bipy)2Ni(0) species that are challenging to access otherwise.
Collapse
Affiliation(s)
- Craig
S. Day
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Cuong Dat Do
- Hylleraas Center for Quantum Molecular Sciences and Department of
Chemistry, UiT The Arctic University of
Norway, N-9037 Tromsø, Norway
| | - Carlota Odena
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Liang Xu
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Cina Foroutan-Nejad
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kathrin H. Hopmann
- Hylleraas Center for Quantum Molecular Sciences and Department of
Chemistry, UiT The Arctic University of
Norway, N-9037 Tromsø, Norway
| | - Ruben Martin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
72
|
Chen Z, Zheng S, Shen Z, Cheng J, Xiao S, Zhang G, Liu S, Hu J. Oxygen-Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angew Chem Int Ed Engl 2022; 61:e202204526. [PMID: 35579256 DOI: 10.1002/anie.202204526] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/30/2022]
Abstract
Photoredox catalysis has emerged as a robust tool for chemical synthesis. However, it remains challenging to implement photoredox catalysis under physiological conditions due to the complex microenvironment and the quenching of photocatalyst by biologically relevant molecules such as oxygen. Here, we report that UV-absorbing N,N'-dinitroso-1,4-phenylenediamine derivatives can be selectively activated by fac-Ir(ppy)3 photocatalyst within micellar nanoparticles under visible light irradiation (e.g., 500 nm) through photoredox catalysis in aerated aqueous solutions to form quinonediimine (QDI) residues with concomitant release of NO. Notably, the formation of QDI derivatives can actively scavenge the reactive oxygen species generated by fac-Ir(ppy)3 , thus avoiding oxygen quenching of the photocatalyst. Further, we exemplify that the oxygen-tolerant photoredox catalysis-mediated NO release can not only kill planktonic bacteria in vitro but also efficiently treat MRSA infections in vivo.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyan Xiao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
73
|
Sandoval-Pauker C, Pinter B. Quasi-Restricted Orbital Description of the Copper(I) Photoredox Catalytic Cycle. J Chem Phys 2022; 157:074306. [DOI: 10.1063/5.0094380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this computational study, the electronic structure changes along the oxidative and reductive quenching cycles of a homoleptic and a heteroleptic prototype Cu(I) photoredox catalyst, namely [Cu(dmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) and [Cu(phen)(POP)]+ (POP = bis[2-(diphenylphosphino)phenyl]ether) are scrutinized and characterized using quasi-restricted orbitals (QRO), electron density differences and spin densities. After validating our density functional theory-based computational protocol, the equilibrium geometries and wavefunctions (using QROs and atom/fragment compositions) of the four states involved in photoredox cycle (S0, T1, Dox and Dred) are systematically and thoroughly described. The formal ground and excited state ligand- and metal-centered redox events are substantiated by the QRO description of the open-shell triplet 3MLCT (d9L-1), Dox (d9L0) and Dred (d10L-1) species and the corresponding structural changes, e.g., flattening distortion, shortening/elongation of Cu-N/Cu-P bonds, are rationalized in terms of the underlying electronic structure transformations. Amongst others, we reveal the molecular-scale delocalization of the ligand-centered radical in the a 3MLCT (d9L-1) and Dred (d9L-1) states of homoleptic [Cu(dmp)2]+ and its localization to the redox-active phenanthroline ligand in the case of heteroleptic [Cu(phen)(POP)]+.
Collapse
Affiliation(s)
- Christian Sandoval-Pauker
- The University of Texas at El Paso Department of Chemistry and Biochemistry, United States of America
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, The University of Texas at El Paso Department of Chemistry and Biochemistry, United States of America
| |
Collapse
|
74
|
Bryden MA, Millward F, Matulaitis T, Chen D, Villa M, Fermi A, Cetin S, Ceroni P, Zysman-Colman E. Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. J Org Chem 2022; 88:6364-6373. [PMID: 35820116 DOI: 10.1021/acs.joc.2c01137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbazolyl dicyanobenzene (CDCB) derivates exhibiting thermally activated delayed fluorescence (TADF) have shown themselves to be excellent photocatalysts over recent years, particularly 4CzIPN, although investigation into organic TADF compounds as photocatalysts outside of the CDCB group has been limited. Herein, we report an alternative donor-acceptor TADF structure, 9,9'-(sulfonylbis(pyrimidine-5,2-diyl))bis(3,6-di-tert-butyl-9H-carbazole), pDTCz-DPmS, for use as a photocatalyst (PC). A comparison of the electrochemical and photophysical properties of pDTCz-DPmS with 4CzIPN in a range of solvents identifies the former as a better ground state reducing agent and photoreductant, while both exhibit similar oxidation capabilities in the ground and excited state. The increased conjugation of pDTCz-DPmS relative to 4CzIPN presents a more intense CT band in the UV-vis absorption spectrum, aiding in the light absorption of this molecule. Prompt and delayed emission lifetimes are observed for pDTCz-DPmS, confirming the TADF nature, both of which are sufficiently long-lived to participate in productive photochemistry. These combined properties make pDTCz-DPmS useful in photocatalysis reactions, covering a range of photoredox oxidative and reductive quenching reactions, as well as those involving a dual Ni(II) cocatalyst, alongside energy transfer processes. The higher triplet energy and increased photostability of pDTCz-DPmS compared with 4CzIPN were found to be advantages of this organic PC.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Marco Villa
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Fermi
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.,Center for Chemical Catalysis-C3, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Sultan Cetin
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.,Center for Chemical Catalysis-C3, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
75
|
Ballav T, Chakrabortty R, Das A, Ghosh S, Ganesh V. Palladium‐Catalyzed Dual Catalytic Synthesis of Heterocycles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamal Ballav
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | | | - Aniruddha Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Suman Ghosh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Venkataraman Ganesh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry Department of Chemistry,Indian Institute Technology Kharagpur 721302 Kharagpur INDIA
| |
Collapse
|
76
|
Bellotti P, Huang HM, Faber T, Laskar R, Glorius F. Catalytic defluorinative ketyl-olefin coupling by halogen-atom transfer. Chem Sci 2022; 13:7855-7862. [PMID: 35865891 PMCID: PMC9258324 DOI: 10.1039/d2sc02732a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ketyl-olefin coupling reactions stand as one of the fundamental chemical transformations in synthetic chemistry and have been widely employed in the generation of complex molecular architectures and natural product synthesis. However, catalytic ketyl-olefin coupling, until the recent development of photoredox chemistry and electrosynthesis through single-electron transfer mechanisms, has remained largely undeveloped. Herein, we describe a new approach to achieve catalytic ketyl-olefin coupling reactions by a halogen-atom transfer mechanism, which provides innovative and efficient access to various gem-difluorohomoallylic alcohols under mild conditions with broad substrate scope. Preliminary mechanistic experimental and computational studies demonstrate that this radical-to-polar crossover transformation could be achieved by sequentially orchestrated Lewis acid activation, halogen-atom transfer, radical addition, single-electron reduction and β-fluoro elimination.
Collapse
Affiliation(s)
- Peter Bellotti
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Huan-Ming Huang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Teresa Faber
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Ranjini Laskar
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
77
|
Allen AR, Poon JF, McAtee RC, Watson NB, Pratt DA, Stephenson CR. Mechanism of Visible Light-Mediated Alkene Aminoarylation with Arylsulfonylacetamides. ACS Catal 2022; 12:8511-8526. [DOI: 10.1021/acscatal.2c02577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario K1N 6N5, Canada
| | - Rory C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nicholas B. Watson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario K1N 6N5, Canada
| | - Corey R.J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
78
|
You Y, Jeong DY. Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes. Synlett 2022. [DOI: 10.1055/a-1608-5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractOrganic photoredox catalysts with a long excited-state lifetime have emerged as promising alternatives to transition-metal-complex photocatalysts. This paper explains the effectiveness of using long-lifetime photoredox catalysts for organic transformations, focusing on the structures and photophysics that enable long excited-state lifetimes. The electrochemical potentials of the reported organic, long-lifetime photocatalysts are compiled and compared with those of the representative Ir(III)- and Ru(II)-based catalysts. This paper closes by providing recent demonstrations of the synthetic utility of the organic catalysts.1 Introduction2 Molecular Structure and Photophysics3 Photoredox Catalysis Performance4 Catalysis Mediated by Long-Lifetime Organic Photocatalysts4.1 Photoredox Catalytic Generation of a Radical Species and its Addition to Alkenes4.2 Photoredox Catalytic Generation of a Radical Species and its Addition to Arenes4.3 Photoredox Catalytic Generation of a Radical Species and its Addition to Imines4.4 Photoredox Catalytic Generation of a Radical Species and its Addition to Substrates Having C≡X Bonds (X=C, N)4.5 Photoredox Catalytic Generation of a Radical Species and its Bond Formation with Transition Metals4.6 Miscellaneous Reactions of Radical Species Generated by Photoredox Catalysis5 Conclusions
Collapse
|
79
|
Štrbac P, Margetić D. Complementarity of solution and solid state mechanochemical reaction conditions demonstrated by 1,2-debromination of tricyclic imides. Beilstein J Org Chem 2022; 18:746-753. [PMID: 35821693 PMCID: PMC9235900 DOI: 10.3762/bjoc.18.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/15/2022] [Indexed: 01/01/2023] Open
Abstract
The solution phase 1,2-debromination of polycyclic imides using the Zn/Ag couple was successfully transferred to solid state mechanochemical conditions. The Zn/Ag couple was replaced by the Zn/Cu couple which was prepared without any metal activation by in situ ball milling of zinc and copper dusts. The advantage of the ball milling process is that the whole procedure is operationally very simplified. The reactive alkene generated was trapped in situ by several dienes and the respective Diels-Alder cycloadducts were obtained. It was demonstrated that mechanochemical milling offers complementary conditions to solution (thermal) reaction by allowing chemical transformations to proceed which were not possible in solution and vice versa.
Collapse
Affiliation(s)
- Petar Štrbac
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia
| | - Davor Margetić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia
| |
Collapse
|
80
|
Dahiya A, Schoenebeck F. Orthogonal and Modular Arylation of Alkynylgermanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
81
|
Zhang Y, Chen JJ, Huang HM. Radical Brook Rearrangement: Concept and Recent Developments. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Zhang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Jun-Jie Chen
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Huan-Ming Huang
- ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia RoadPudong 201210 Shanghai CHINA
| |
Collapse
|
82
|
Kolusu SRN, Nappi M. Metal-free deoxygenative coupling of alcohol-derived benzoates and pyridines for small molecules and DNA-encoded libraries synthesis. Chem Sci 2022; 13:6982-6989. [PMID: 35774170 PMCID: PMC9200129 DOI: 10.1039/d2sc01621d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohols are among the most widely occurring functional groups found in naturally abundant, biologically relevant organic compounds, which in many cases are considered feedstock chemicals. Herein, we report a metal-free method for the deoxygenative coupling of alcohol-derived benzoates and pyridines promoted by visible light. Given the practical, mild and water-compatible conditions, small molecules and DNA headpieces can be successfully functionalized with a range of primary, secondary and tertiary alcohols. This protocol is distinguished by its wide substrate scope and broad applicability, even in the context of late-stage functionalization and DNA-drug coupling reactions.
Collapse
Affiliation(s)
- Sai Rohini Narayanan Kolusu
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela A Coruña Spain https://nappichem.com
| | - Manuel Nappi
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela A Coruña Spain https://nappichem.com
| |
Collapse
|
83
|
Chen Z, Zheng S, Shen Z, Cheng J, Xiao S, Zhang G, Liu S, Hu J. Oxygen‐Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenhua Chen
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaoqiu Zheng
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiqiang Shen
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jian Cheng
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyan Xiao
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Guoying Zhang
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyong Liu
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinming Hu
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
84
|
|
85
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
86
|
Wang X, Liu F, Xu T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
87
|
Liu RY, Guo S, Luo SXL, Swager TM. Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts. Nat Commun 2022; 13:2775. [PMID: 35624102 PMCID: PMC9142596 DOI: 10.1038/s41467-022-29811-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
In contemporary organic synthesis, substances that access strongly oxidizing and/or reducing states upon irradiation have been exploited to facilitate powerful and unprecedented transformations. However, the implementation of light-driven reactions in large-scale processes remains uncommon, limited by the lack of general technologies for the immobilization, separation, and reuse of these diverse catalysts. Here, we report a new class of photoactive organic polymers that combine the flexibility of small-molecule dyes with the operational advantages and recyclability of solid-phase catalysts. The solubility of these polymers in select non-polar organic solvents supports their facile processing into a wide range of heterogeneous modalities. The active sites, embedded within porous microstructures, display elevated reactivity, further enhanced by the mobility of excited states and charged species within the polymers. The independent tunability of the physical and photochemical properties of these materials affords a convenient, generalizable platform for the metamorphosis of modern photoredox catalysts into active heterogeneous equivalents.
Collapse
Affiliation(s)
- Richard Y Liu
- Institute for Soldier Nanotechnologies, 500 Technology Square, Cambridge, MA, 02139, USA
- Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sheng Guo
- Institute for Soldier Nanotechnologies, 500 Technology Square, Cambridge, MA, 02139, USA
- Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Shao-Xiong Lennon Luo
- Institute for Soldier Nanotechnologies, 500 Technology Square, Cambridge, MA, 02139, USA
- Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Institute for Soldier Nanotechnologies, 500 Technology Square, Cambridge, MA, 02139, USA.
- Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
88
|
Speckmeier E, Maier TC. ART─An Amino Radical Transfer Strategy for C(sp 2)-C(sp 3) Coupling Reactions, Enabled by Dual Photo/Nickel Catalysis. J Am Chem Soc 2022; 144:9997-10005. [PMID: 35613328 DOI: 10.1021/jacs.2c03220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introducing the novel concept of amino radical transfer (ART) enables the use of easily accessible and commercially available alkyl boronic esters as cross-coupling partners for aryl halides in dual photoredox/nickel catalysis mediated by visible light. Activation of otherwise photochemically innocent boronic esters by radicals generated from primary or secondary alkylamines gives rise to an outstanding functional group tolerance in a mild, fast, and air-stable reaction. As shown in more than 50 examples including unprotected alcohols, amines, and carboxylic acids, this reaction allows quick access to relevant scaffolds for organic synthesis and medicinal chemistry. In comparison with existing methods for C(sp2)-C(sp3) couplings an extraordinary generality could be realized via the ART concept, employing a single set of optimized reaction conditions. Due to its selectivity, the transformation can also be used for late-stage functionalization, as demonstrated with three exemplary syntheses of drug molecules. Furthermore, the successful one-to-one scalability of this reaction up to gram scale without the necessity of any further precautions or flow systems is demonstrated.
Collapse
Affiliation(s)
- Elisabeth Speckmeier
- Sanofi, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Thomas C Maier
- Sanofi, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
89
|
Flores DM, Neville ML, Schmidt VA. Intermolecular 2+2 imine-olefin photocycloadditions enabled by Cu(I)-alkene MLCT. Nat Commun 2022; 13:2764. [PMID: 35589714 PMCID: PMC9120151 DOI: 10.1038/s41467-022-30393-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
2 + 2 Photocycloadditions are idealized, convergent construction approaches of 4-membered heterocyclic rings, including azetidines. However, methods of direct excitation are limited by the unfavorable photophysical properties of imines and electronically unbiased alkenes. Here, we report copper-catalyzed photocycloadditions of non-conjugated imines and alkenes to produce a variety of substituted azetidines. Design principles allow this base metal-catalyzed method to achieve 2 + 2 imine-olefin photocycloaddition via selective alkene activation through a coordination-MLCT pathway supported by combined experimental and computational mechanistic studies.
Collapse
Affiliation(s)
- Daniel M Flores
- University of California San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Element Biosciences, 9880 Campus Point Drive #210, San Diego, CA, 92121, USA
| | - Michael L Neville
- University of California San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Valerie A Schmidt
- University of California San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
90
|
Herron AN, Hsu CP, Yu JQ. δ-C-H Halogenation Reactions Enabled by a Nitrogen-Centered Radical Precursor. Org Lett 2022; 24:3652-3656. [PMID: 35549294 DOI: 10.1021/acs.orglett.2c01261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen-centered radicals are versatile synthetic intermediates with the ability to undergo diverse reactions such as hydrogen atom transfer (HAT), β-scission, and addition across unsaturated systems. A long-standing impediment to the wider adoption of these intermediates in synthesis has been the difficulty of their generation. Herein we disclose a new hydrazonyl carboxylic acid precursor to nitrogen-centered radicals and its application toward remote C-H fluorination and chlorination reactions of sulfonyl-protected alkyl amines via 1,5-HAT.
Collapse
Affiliation(s)
- Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ching-Pei Hsu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
91
|
Anwar K, Merkens K, Aguilar Troyano FJ, Gómez-Suárez A. Radical Deoxyfunctionalisation Strategies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Khadijah Anwar
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemistry GERMANY
| | - Kay Merkens
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemstry GERMANY
| | | | - Adrián Gómez-Suárez
- Bergische Universitat Wuppertal Organische Chemie Gaußstr. 20 42119 Wuppertal GERMANY
| |
Collapse
|
92
|
Jeong DY, Lee DS, Lee HL, Nah S, Lee JY, Cho EJ, You Y. Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Da Seul Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ha Lim Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghee Nah
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
93
|
Peng X, Xu K, Zhang Q, Liu L, Tan J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
94
|
Bi H, Zhou Y, Jiang W, Liu J. Electrophotocatalytic C−H Hydroxyalkylation of Heteroaromatics with Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huihua Bi
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
| | - Yu Zhou
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
| | - Jie Liu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
95
|
Riente P, Fianchini M, Pericàs MA, Noel T. Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi2O3 with Amines: Experiment and Computation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Riente
- University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica Chemistry NETHERLANDS
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Timothy Noel
- University of Amsterdam Van't Hoff Institute for Molecular Science PO Box 94157Science Park 904 1090 GD Amsterdam NETHERLANDS
| |
Collapse
|
96
|
Abstract
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
97
|
Yamaguchi Y, Seino Y, Suzuki A, Kamei Y, Yoshino T, Kojima M, Matsunaga S. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis. Org Lett 2022; 24:2441-2445. [DOI: 10.1021/acs.orglett.2c00700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
98
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
99
|
Xu M, Hua Y, Fu X, Liu J. Efficient Photocatalytic Carbonyl Alkylative Amination Enabled by Titanium‐Dioxide‐Mediated Decarboxylation. Chemistry 2022; 28:e202104394. [DOI: 10.1002/chem.202104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Mei Xu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Ying Hua
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Xin Fu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University 410082 Changsha P.R. China
| |
Collapse
|
100
|
Li H, He Y, Zhang D, Yang L, Zhang J, Long RL, Lu J, Wei J, Yang L, Wei S, Yi D, Zhang Z, Fu Q. Hydrogen bond serving as a protecting group to enable the photocatalytic [2+2] cycloaddition of redox-active aliphatic-amine-containing indole derivatives. Chem Commun (Camb) 2022; 58:3194-3197. [PMID: 35171972 DOI: 10.1039/d1cc06935g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox-sensitive functionalities such as aliphatic amines with low oxidation potentials and easily oxidized by photocatalysts are generally not compatible with photocatalytic reactions. We describe a hydrogen-bond-assisted visible-light-mediated [2+2] cycloaddition of redox-sensitive aliphatic-amine-containing indole derivatives providing a range of cyclobutane-fused polycyclic indoline derivatives, especially bridged-cyclic indolines. Mechanistic studies indicated that the success of the reaction was based on on the formation of H-bonds between the N-atom and alcohol proton of TFE or HFIP, with this formation preventing or blocking the single-electron transfer from the aliphatic amine functionality to the excited photocatalyst.
Collapse
Affiliation(s)
- Hao Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yishu He
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Di Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Li Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,Department of Pharmacy, Chengdu Seventh People's Hospital, Chengdu 610000, China
| | - Jiarui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rui-Ling Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhijie Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|