51
|
Mastanduno MA, Jiang S, DiFlorio-Alexander R, Pogue BW, Paulsen KD. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:2339-52. [PMID: 23082277 PMCID: PMC3470001 DOI: 10.1364/boe.3.002339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/18/2012] [Indexed: 05/20/2023]
Abstract
The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast.
Collapse
Affiliation(s)
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH
03755, USA
| | | | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH
03755, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH
03755, USA
- Department of Diagnostic Radiology, Geisel School of Medicine,
Lebanon, NH 03756, USA
| |
Collapse
|
52
|
Lang P, Seslija P, Chu MWA, Bainbridge D, Guiraudon GM, Jones DL, Peters TM. US–Fluoroscopy Registration for Transcatheter Aortic Valve Implantation. IEEE Trans Biomed Eng 2012; 59:1444-53. [DOI: 10.1109/tbme.2012.2189392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
53
|
Kuiran Chen T, Heffter T, Lasso A, Pinter C, Abolmaesumi P, Burdette EC, Fichtinger G. Automated intraoperative calibration for prostate cancer brachytherapy. Med Phys 2012; 38:6285-99. [PMID: 22047394 DOI: 10.1118/1.3651690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called "calibration". The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. METHODS A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. RESULTS Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 ± 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 ± 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 ± 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 ± 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. CONCLUSIONS The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.
Collapse
|
54
|
|
55
|
Abeysekera JM, Zahiri Azar R, Goksel O, Rohling R, Salcudean SE. Analysis of 2-D motion tracking in ultrasound with dual transducers. ULTRASONICS 2012; 52:156-168. [PMID: 21899871 DOI: 10.1016/j.ultras.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
We study displacement and strain measurement error of dual transducers (two linear arrays, aligned orthogonally and coplanar). Displacements along the beam of each transducer are used to obtain measurements in two-dimensions. Simulations (5MHz) and experiments (10MHz) are compared to measurements with a single linear array, with and without angular compounding. Translation simulations demonstrate factors of 1.07 larger and 8.0 smaller biases in the axial and lateral directions respectively, for dual transducers compared to angular compounding. As the angle between dual transducers decreases from 90° to 40°, for 1% compression simulations, the lateral RMS error ranges from 2.1 to 3.9μm compared to 9μm with angular compounding. Simulation of dual transducer misalignment of 1mm and 2° result in errors of less than 9μm. Experiments demonstrate factors of 3.0 and 5.2 lower biases for dual transducers in the axial and lateral directions respectively compared to angular compounding.
Collapse
Affiliation(s)
- Jeffrey M Abeysekera
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
56
|
Koolwal AB, Barbagli F, Carlson CR, Liang DH. A fast slam approach to freehand 3-d ultrasound reconstruction for catheter ablation guidance in the left atrium. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2037-2054. [PMID: 22014856 DOI: 10.1016/j.ultrasmedbio.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 07/31/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
We present a method for real-time, freehand 3D ultrasound (3D-US) reconstruction of moving anatomy, with specific application towards guiding the catheter ablation procedure in the left atrium. Using an intracardiac echo (ICE) catheter with a pose (position/orientation) sensor mounted to its tip, we continually mosaic 2D-ICE images of a left atrium phantom model to form a 3D-US volume. Our mosaicing strategy employs a probabilistic framework based on simultaneous localization and mapping (SLAM), a technique commonly used in mobile robotics for creating maps of unexplored environments. The measured ICE catheter tip pose provides an initial estimate for compounding 2D-ICE image data into the 3D-US volume. However, we simultaneously consider the overlap-consistency shared between 2D-ICE images and the 3D-US volume, computing a "corrected" tip pose if need be to ensure spatially-consistent reconstruction. This allows us to compensate for anatomic movement and sensor drift that would otherwise cause motion artifacts in the 3D-US volume. Our approach incorporates 2D-ICE data immediately after acquisition, allowing us to continuously update the registration parameters linking sensor coordinates to 3D-US coordinates. This, in turn, enables real-time localization and display of sensorized therapeutic catheters within the 3D-US volume for facilitating procedural guidance.
Collapse
Affiliation(s)
- Aditya B Koolwal
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
57
|
Caskey CF, Hlawitschka M, Qin S, Mahakian LM, Cardiff RD, Boone JM, Ferrara KW. An open environment CT-US fusion for tissue segmentation during interventional guidance. PLoS One 2011; 6:e27372. [PMID: 22132098 PMCID: PMC3223172 DOI: 10.1371/journal.pone.0027372] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/15/2011] [Indexed: 11/18/2022] Open
Abstract
Therapeutic ultrasound (US) can be noninvasively focused to activate drugs, ablate tumors and deliver drugs beyond the blood brain barrier. However, well-controlled guidance of US therapy requires fusion with a navigational modality, such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT). Here, we developed and validated tissue characterization using a fusion between US and CT. The performance of the CT/US fusion was quantified by the calibration error, target registration error and fiducial registration error. Met-1 tumors in the fat pads of 12 female FVB mice provided a model of developing breast cancer with which to evaluate CT-based tissue segmentation. Hounsfield units (HU) within the tumor and surrounding fat pad were quantified, validated with histology and segmented for parametric analysis (fat: −300 to 0 HU, protein-rich: 1 to 300 HU, and bone: HU>300). Our open source CT/US fusion system differentiated soft tissue, bone and fat with a spatial accuracy of ∼1 mm. Region of interest (ROI) analysis of the tumor and surrounding fat pad using a 1 mm2 ROI resulted in mean HU of 68±44 within the tumor and −97±52 within the fat pad adjacent to the tumor (p<0.005). The tumor area measured by CT and histology was correlated (r2 = 0.92), while the area designated as fat decreased with increasing tumor size (r2 = 0.51). Analysis of CT and histology images of the tumor and surrounding fat pad revealed an average percentage of fat of 65.3% vs. 75.2%, 36.5% vs. 48.4%, and 31.6% vs. 38.5% for tumors <75 mm3, 75–150 mm3 and >150 mm3, respectively. Further, CT mapped bone-soft tissue interfaces near the acoustic beam during real-time imaging. Combined CT/US is a feasible method for guiding interventions by tracking the acoustic focus within a pre-acquired CT image volume and characterizing tissues proximal to and surrounding the acoustic focus.
Collapse
Affiliation(s)
- Charles F Caskey
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
58
|
Melvaer EL, Mørken K, Samset E. A motion constrained cross-wire phantom for tracked 2D ultrasound calibration. Int J Comput Assist Radiol Surg 2011; 7:611-20. [PMID: 22009307 DOI: 10.1007/s11548-011-0661-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
PURPOSE Ultrasound-guided 3D interventions require calibration to relate real-time 2D images with the position and orientation of the ultrasound probe. Capturing several images of a single fixed point from different viewpoints is a simple and commonly used approach, but it is cumbersome and tedious. A new phantom for calibration was designed, built and tested to simplify this process. METHODS A mechanical phantom that restricts the motion of the ultrasound probe was designed such that the ultrasound image always captures a designated fixed point. Software was implemented which computes calibration parameters. Although the software provides no scientific novelty, it is required to demonstrate the proof of concept and to assess the accuracy and precision of the calibration phantom. The software also illustrates how the phantom enables the fixed point to be located automatically, both in tracker device coordinates and in image pixel coordinates. RESULTS The phantom was used to capture several hundred images of a single fixed point in less than 1 min, with different probe positions and orientations around the fixed point and with the single fixed point located in different parts of the ultrasound image. It would not be feasible to capture the same number of images by manual alignment of the probe with the fixed point. CONCLUSION Images for single fixed point calibration can be captured easily and quickly with a new calibration phantom. Since a larger number of images can be used to compute the required parameters, the calibration robustness is increased.
Collapse
Affiliation(s)
- Eivind Lyche Melvaer
- Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, 0316, Oslo, Norway.
| | | | | |
Collapse
|
59
|
Navigated laparoscopic ultrasound in abdominal soft tissue surgery: technological overview and perspectives. Int J Comput Assist Radiol Surg 2011; 7:585-99. [PMID: 21892604 DOI: 10.1007/s11548-011-0656-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE Two-dimensinal laparoscopic ultrasound (LUS) is commonly used for many laparoscopic procedures, but 3D LUS and navigation technology are not conventional tools in the clinic. Navigated LUS can help the user understand and interpret the ultrasound images in relation to the laparoscopic view and preoperative images. When combined with information from MRI or CT, navigated LUS has the potential to provide information about anatomic shifts during the procedure. In this paper, we present an overview of the ongoing technological research and development related to LUS combined with navigation technology, The purpose of this overview is threefold: (1) an introduction for those new to the field of navigated LUS; (2) an overview for those working in the field and; and (3) as a reference for those searching for literature on technological developments related to navigation in ultrasound-guided laparoscopic surgery. METHODS Databases were searched to identify relevant publications from the last 10 years. RESULTS We were able to identify 18 key papers in the area of navigated LUS for the abdomen, originating from about 10-11 groups. We present the literature overview, including descriptions of our own experience in the field, and a discussion of the important clinical and technological aspects related to navigated LUS. CONCLUSIONS LUS integrated with miniaturized tracking technology is likely to play an important role in guiding future laparoscopic surgery.
Collapse
|
60
|
Fenster A, Parraga G, Bax J. Three-dimensional ultrasound scanning. Interface Focus 2011; 1:503-19. [PMID: 22866228 PMCID: PMC3262266 DOI: 10.1098/rsfs.2011.0019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/09/2011] [Indexed: 01/25/2023] Open
Abstract
The past two decades have witnessed developments of new imaging techniques that provide three-dimensional images about the interior of the human body in a manner never before available. Ultrasound (US) imaging is an important cost-effective technique used routinely in the management of a number of diseases. However, two-dimensional viewing of three-dimensional anatomy, using conventional two-dimensional US, limits our ability to quantify and visualize the anatomy and guide therapy, because multiple two-dimensional images must be integrated mentally. This practice is inefficient, and may lead to variability and incorrect diagnoses. Investigators and companies have addressed these limitations by developing three-dimensional US techniques. Thus, in this paper, we review the various techniques that are in current use in three-dimensional US imaging systems, with a particular emphasis placed on the geometric accuracy of the generation of three-dimensional images. The principles involved in three-dimensional US imaging are then illustrated with a diagnostic and an interventional application: (i) three-dimensional carotid US imaging for quantification and monitoring of carotid atherosclerosis and (ii) three-dimensional US-guided prostate biopsy.
Collapse
Affiliation(s)
- Aaron Fenster
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Medical Imaging, The University of Western Ontario, London, ON, Canada
- Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Medical Imaging, The University of Western Ontario, London, ON, Canada
- Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - Jeff Bax
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
61
|
Chen TK, Ellis RE, Abolmaesumi P. Improvement of freehand ultrasound calibration accuracy using the elevation beamwidth profile. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1314-1326. [PMID: 21683510 DOI: 10.1016/j.ultrasmedbio.2011.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 05/30/2023]
Abstract
This article presents a novel approach that incorporates an ultrasound slice-thickness profile into a filtered, weighted-least-square framework to improve the reconstruction accuracy of a real-time freehand calibration system. An important part of the system is a slice-thickness calibration device that aids in the extraction of the slice thickness across a wide range of imaging depths. Extensive experiments were conducted on a 10,000-image dataset to evaluate the effects of the framework on the calibration accuracy. The results showed that three-dimensional (3-D) reconstruction errors were significantly reduced in every experiment (p < 0.001). Real-time testing showed that the proposed method worked effectively with a small number of input images, suggesting great potential for intraoperative use where only a limited number of data may be available. This new framework can enable efficient quality control of calibration accuracy in real-time operating-room use.
Collapse
|
62
|
Comparing two approaches to rigid registration of three-dimensional ultrasound and magnetic resonance images for neurosurgery. Int J Comput Assist Radiol Surg 2011; 7:125-36. [PMID: 21633799 DOI: 10.1007/s11548-011-0620-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
63
|
Gao G, Penney G, Ma Y, Gogin N, Cathier P, Arujuna A, Morton G, Caulfield D, Gill J, Aldo Rinaldi C, Hancock J, Redwood S, Thomas M, Razavi R, Gijsbers G, Rhode K. Registration of 3D trans-esophageal echocardiography to X-ray fluoroscopy using image-based probe tracking. Med Image Anal 2011; 16:38-49. [PMID: 21624845 DOI: 10.1016/j.media.2011.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 04/20/2011] [Accepted: 05/04/2011] [Indexed: 12/27/2022]
Abstract
Two-dimensional (2D) X-ray imaging is the dominant imaging modality for cardiac interventions. However, the use of X-ray fluoroscopy alone is inadequate for the guidance of procedures that require soft-tissue information, for example, the treatment of structural heart disease. The recent availability of three-dimensional (3D) trans-esophageal echocardiography (TEE) provides cardiologists with real-time 3D imaging of cardiac anatomy. Increasingly X-ray imaging is now supported by using intra-procedure 3D TEE imaging. We hypothesize that the real-time co-registration and visualization of 3D TEE and X-ray fluoroscopy data will provide a powerful guidance tool for cardiologists. In this paper, we propose a novel, robust and efficient method for performing this registration. The major advantage of our method is that it does not rely on any additional tracking hardware and therefore can be deployed straightforwardly into any interventional laboratory. Our method consists of an image-based TEE probe localization algorithm and a calibration procedure. While the calibration needs to be done only once, the GPU-accelerated registration takes approximately from 2 to 15s to complete depending on the number of X-ray images used in the registration and the image resolution. The accuracy of our method was assessed using a realistic heart phantom. The target registration error (TRE) for the heart phantom was less than 2mm. In addition, we assess the accuracy and the clinical feasibility of our method using five patient datasets, two of which were acquired from cardiac electrophysiology procedures and three from trans-catheter aortic valve implantation procedures. The registration results showed our technique had mean registration errors of 1.5-4.2mm and 95% capture range of 8.7-11.4mm in terms of TRE.
Collapse
Affiliation(s)
- Gang Gao
- Division of Imaging Sciences & Biomedical Engineering, King's College London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abeysekera JM, Rohling R. Alignment and calibration of dual ultrasound transducers using a wedge phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:271-279. [PMID: 21208730 DOI: 10.1016/j.ultrasmedbio.2010.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
We present a novel method of aligning two orthogonal ultrasound transducers into a coincident scan plane. A wedge phantom design provides visual feedback to the user to facilitate alignment. Calibration provides the transformation from one transducer to the other as well as a measure of the residual error in alignment. Mean alignment error is shown to be under 1° in the rotation axes and 1 mm in translation after repeated manual alignments. The repeatability of wedge based calibration has similar results compared with N-fiducial based calibration. The accuracy of the calibration for mapping points from one transducer to the other is found to have a mean error of 1.6 mm. The dual transducer system is well suited to imaging anatomy such as the breast and may be used for spatial compounding for improving B-mode images and motion estimation compounding for improving elastography results.
Collapse
Affiliation(s)
- Jeffrey M Abeysekera
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
65
|
Lee SL, Riga C, Crowie L, Hamady M, Cheshire N, Yang GZ. An Instantiability Index for Intra-operative Tracking of 3D Anatomy and Interventional Devices. ACTA ACUST UNITED AC 2011; 14:49-56. [DOI: 10.1007/978-3-642-23623-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
66
|
|
67
|
Luan K, Liao H, Ohya T, Kobayashi E, Sakuma I. Automatic and Robust Freehand Ultrasound Calibration Using a Tracked Pointer. ACTA ACUST UNITED AC 2011. [DOI: 10.5759/jscas.13.437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kuan Luan
- Graduate School of Engineering, The University of Tokyo
- College of Automation, Harbin Engineering University
| | - Hongen Liao
- Graduate School of Engineering, The University of Tokyo
| | - Takashi Ohya
- Graduate School of Engineering, The University of Tokyo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine
| | | | - Ichiro Sakuma
- Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
68
|
New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 2010; 6:507-22. [PMID: 20886304 DOI: 10.1007/s11548-010-0535-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this report is to present IBIS (Interactive Brain Imaging System) NeuroNav, a new prototype neuronavigation system that has been developed in our research laboratory over the past decade that uses tracked intraoperative ultrasound to address surgical navigation issues related to brain shift. The unique feature of the system is its ability, when needed, to improve the initial patient-to-preoperative image alignment based on the intraoperative ultrasound data. Parts of IBIS Neuronav source code are now publicly available on-line. METHODS Four aspects of the system are characterized in this paper: the ultrasound probe calibration, the temporal calibration, the patient-to-image registration and the MRI-ultrasound registration. In order to characterize its real clinical precision and accuracy, the system was tested in a series of adult brain tumor cases. RESULTS Three metrics were computed to evaluate the precision and accuracy of the ultrasound calibration. 1) Reproducibility: 1.77 mm and 1.65 mm for the bottom corners of the ultrasound image, 2) point reconstruction precision 0.62-0.90 mm: and 3) point reconstruction accuracy: 0.49-0.74 mm. The temporal calibration error was estimated to be 0.82 ms. The mean fiducial registration error (FRE) of the homologous-point-based patient-to-MRI registration for our clinical data is 4.9 ± 1.1 mm. After the skin landmark-based registration, the mean misalignment between the ultrasound and MR images in the tumor region is 6.1 ± 3.4 mm. CONCLUSIONS The components and functionality of a new prototype system are described and its precision and accuracy evaluated. It was found to have an accuracy similar to other comparable systems in the literature.
Collapse
|
69
|
Dai Y, Tian J, Dong D, Yan G, Zheng H. Real-time visualized freehand 3D ultrasound reconstruction based on GPU. ACTA ACUST UNITED AC 2010; 14:1338-45. [PMID: 20813647 DOI: 10.1109/titb.2010.2072993] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visualized freehand 3-D ultrasound reconstruction offers to image incremental reconstruction during acquisition and guide users to scan interactively for high-quality volumes. We originally used the graphics processing unit (GPU) to develop a visualized reconstruction algorithm that achieves real-time level. Each newly acquired image was transferred to the memory of the GPU and inserted into the reconstruction volume on the GPU. The partially reconstructed volume was then rendered using GPU-based incremental ray casting. After visualized reconstruction, hole-filling was performed on the GPU to fill remaining empty voxels in the reconstruction volume. We examine the real-time nature of the algorithm using in vitro and in vivo datasets. The algorithm can image incremental reconstruction at speed of 26-58 frames/s and complete 3-D imaging in the acquisition time for the conventional freehand 3-D ultrasound.
Collapse
Affiliation(s)
- Yakang Dai
- Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | |
Collapse
|
70
|
Janvier MA, Soulez G, Allard L, Cloutier G. Validation of 3D reconstructions of a mimicked femoral artery with an ultrasound imaging robotic system. Med Phys 2010; 37:3868-79. [DOI: 10.1118/1.3447721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
71
|
Hartov A, Paulsen K, Ji S, Fontaine K, Furon ML, Borsic A, Roberts D. Adaptive spatial calibration of a 3D ultrasound system. Med Phys 2010; 37:2121-30. [PMID: 20527545 DOI: 10.1118/1.3373520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors present a method devised to calibrate the spatial relationship between a 3D ultrasound scanhead and its tracker completely automatically and reliably. The user interaction is limited to collecting ultrasound data on which the calibration is based. METHODS The method of calibration is based on images of a fixed plane of unknown location with respect to the 3D tracking system. This approach has, for advantage, to eliminate the measurement of the plane location as a source of error. The devised method is sufficiently general and adaptable to calibrate scanheads for 2D images and 3D volume sets using the same approach. The basic algorithm for both types of scanheads is the same and can be run unattended fully automatically once the data are collected. The approach was devised by seeking the simplest and most robust solutions for each of the steps required. These are the identification of the plane intersection within the images or volumes and the optimization method used to compute a calibration transformation matrix. The authors use adaptive algorithms in these two steps to eliminate data that would otherwise prevent the convergence of the procedure, which contributes to the robustness of the method. RESULTS The authors have run tests amounting to 57 runs of the calibration on two a scanhead that produce 3D imaging volumes, at all the available scales. The authors evaluated the system on two criteria: Robustness and accuracy. The program converged to useful values unattended for every one of the tests (100%). Its accuracy, based on the measured location of a reference plane, was estimated to be 0.7 +/- 0.6 mm for all tests combined. CONCLUSIONS The system presented is robust and allows unattended computations of the calibration parameters required for freehand tracked ultrasound based on either 2D or 3D imaging systems.
Collapse
Affiliation(s)
- Alex Hartov
- Dartmouth College, Hanover, New Hampshire 03766, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Bø LE, Gjerald SU, Brekken R, Tangen GA, Hernes TAN. Efficiency of ultrasound training simulators: method for assessing image realism. MINIM INVASIV THER 2010; 19:69-74. [PMID: 20337541 DOI: 10.3109/13645701003642826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although ultrasound has become an important imaging modality within several medical professions, the benefit of ultrasound depends to some degree on the skills of the person operating the probe and interpreting the image. For some applications, the possibility to educate operators in a clinical setting is limited, and the use of training simulators is considered an alternative approach for learning basic skills. To ensure the quality of simulator-based training, it is important to produce simulated ultrasound images that resemble true images to a sufficient degree. This article describes a method that allows corresponding true and simulated ultrasound images to be generated and displayed side by side in real time, thus facilitating an interactive evaluation of ultrasound simulators in terms of image resemblance, real-time characteristics and man-machine interaction. The proposed method could be used to study the realism of ultrasound simulators and how this realism affects the quality of training, as well as being a valuable tool in the development of simulation algorithms.
Collapse
Affiliation(s)
- Lars Eirik Bø
- SINTEF Technology and Society, Department of Medical Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
73
|
|
74
|
Peterhans M, Anderegg S, Gaillard P, Oliveira-Santos T, Weber S. A fully automatic calibration framework for navigated ultrasound imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1242-1245. [PMID: 21096125 DOI: 10.1109/iembs.2010.5626431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during image-guided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative US calibration being performed by the surgical user.
Collapse
Affiliation(s)
- Matthias Peterhans
- ARTORG Center for Computer-Aided Surgery at the Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland.
| | | | | | | | | |
Collapse
|
75
|
Lindseth F, Lovstakken L, Rygh OM, Tangen GA, Torp H, Unsgaard G. Blood flow imaging: an angle-independent ultrasound modality for intraoperative assessment of flow dynamics in neurovascular surgery. Neurosurgery 2009; 65:149-57; discussion 157. [PMID: 19934989 DOI: 10.1227/01.neu.0000345945.92559.c5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the clinical applicability of navigated blood flow imaging (BFI) in neurovascular applications. BFI is a new 2-dimensional ultrasound modality that offers angle-independent visualization of flow. When integrated with 3-dimensional (3D) navigation technology, BFI can be considered as a first step toward the ideal tool for surgical needs: a real-time, high-resolution, 3D visualization that properly portrays both vessel geometry and flow direction. METHODS A 3D model of the vascular tree was extracted from preoperative magnetic resonance angiographic data and used as a reference for intraoperative any-plane guided ultrasound acquisitions. A high-end ultrasound scanner was interconnected, and synchronized recordings of BFI and 3D navigation scenes were acquired. The potential of BFI as an intraoperative tool for flow visualization was evaluated in 3 cerebral aneurysms and 3 arteriovenous malformations. RESULTS The neurovascular flow direction was properly visualized in all cases using BFI. Navigation technology allowed for identification of the vessels of interest, despite the presence of brain shift. The surgeon found BFI to be very intuitive compared with conventional color Doppler methods. BFI allowed for quality control of sufficient flow in all distal arteries during aneurysm surgery and made it easier to discern between feeding arteries and draining veins during surgery for arteriovenous malformations. CONCLUSION BFI seems to be a promising modality for neurovascular flow visualization that may provide the neurosurgeon with a valuable tool for safer surgical interventions. However, further work is needed to establish the clinical usefulness of the proposed imaging setup.
Collapse
|
76
|
Hammer S, Jeays A, Allan PL, Hose R, Barber D, Easson WJ, Hoskins PR. Acquisition of 3-D arterial geometries and integration with computational fluid dynamics. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:2069-2083. [PMID: 19828230 DOI: 10.1016/j.ultrasmedbio.2009.06.1099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
A system for acquisition of 3-D arterial ultrasound geometries and integration with computational fluid dynamics (CFD) is described. The 3-D ultrasound is based on freehand B-mode imaging with positional information obtained using an optical tracking system. A processing chain was established, allowing acquisition of cardiac-gated 3-D data and segmentation of arterial geometries using a manual method and a semi-automated method, 3D meshing and CFD. The use of CFD allowed visualization of flow streamlines, 2-D velocity contours and 3-D wall shear stress. Three-dimensional positional accuracy was 0.17-1.8mm, precision was 0.06-0.47mm and volume accuracy was 4.4-15%. Patients with disease and volunteers were scanned, with data collection from one or more of the carotid bifurcation, femoral bifurcation and abdominal aorta. An initial comparison between a manual segmentation method and a semi-automated method suggested some advantages to the semi-automated method, including reduced operator time and the production of smooth surfaces suitable for CFD, but at the expense of over-smoothing in the diseased region. There were considerable difficulties with artefacts and poor image quality, resulting in 3-D geometry data that was unsuitable for CFD. These artefacts were exacerbated in disease, which may mean that future effort, in the integration of 3-D arterial geometry and CFD for clinical use, may best be served using alternative 3-D imaging modalities such as magnetic resonance imaging and computed tomography.
Collapse
Affiliation(s)
- Steven Hammer
- Medical Physics, Sheffield University, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
77
|
Liao H, Tsuzuki M, Mochizuki T, Kobayashi E, Chiba T, Sakuma I. Fast image mapping of endoscopic image mosaics with three-dimensional ultrasound image for intrauterine fetal surgery. MINIM INVASIV THER 2009; 18:332-40. [DOI: 10.3109/13645700903201217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
78
|
Meir A, Rubinsky B. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm. PLoS One 2009; 4:e7974. [PMID: 19936236 PMCID: PMC2775631 DOI: 10.1371/journal.pone.0007974] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 10/25/2009] [Indexed: 12/03/2022] Open
Abstract
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.
Collapse
Affiliation(s)
- Arie Meir
- Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
79
|
A probabilistic framework for freehand 3D ultrasound reconstruction applied to catheter ablation guidance in the left atrium. Int J Comput Assist Radiol Surg 2009; 4:425-37. [DOI: 10.1007/s11548-009-0354-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
|
80
|
Ahmad A, Adie SG, Chaney EJ, Sharma U, Boppart SA. Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography. OPTICS EXPRESS 2009; 17:8125-36. [PMID: 19434144 PMCID: PMC2883319 DOI: 10.1364/oe.17.008125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a novel image acquisition technique for Optical Coherence Tomography (OCT) that enables manual lateral scanning. The technique compensates for the variability in lateral scan velocity based on feedback obtained from correlation between consecutive A-scans. Results obtained from phantom samples and biological tissues demonstrate successful assembly of OCT images from manually-scanned datasets despite non-uniform scan velocity and abrupt stops encountered during data acquisition. This technique could enable the acquisition of images during manual OCT needle-guided biopsy or catheter-based imaging, and for assembly of large field-of-view images with hand-held probes during intraoperative in vivo OCT imaging.
Collapse
Affiliation(s)
- Adeel Ahmad
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Steven G. Adie
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Eric J. Chaney
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Utkarsh Sharma
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Department of Medicine, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
81
|
Solberg OV, Langø T, Tangen GA, Mårvik R, Ystgaard B, Rethy A, Hernes TAN. Navigated ultrasound in laparoscopic surgery. MINIM INVASIV THER 2009; 18:36-53. [PMID: 18855204 DOI: 10.1080/13645700802383975] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Laparoscopic surgery is performed through small incisions that limit free sight and possibility to palpate organs. Although endoscopes provide an overview of organs inside the body, information beyond the surface of the organs is missing. Ultrasound can provide real-time essential information of inside organs, which is valuable for increased safety and accuracy in guidance of procedures. We have tested the use of 2D and 3D ultrasound combined with 3D CT data in a prototype navigation system. In our laboratory, micro-positioning sensors were integrated into a flexible intraoperative ultrasound probe, making it possible to measure the position and orientation of the real-time 2D ultrasound image as well as to perform freehand 3D ultrasound acquisitions. Furthermore, we also present a setup with the probe optically tracked from the shaft with the flexible part locked in one position. We evaluated the accuracy of the 3D laparoscopic ultrasound solution and obtained average values ranging from 1.6% to 3.6% volume deviation from the phantom specifications. Furthermore, we investigated the use of an electromagnetic tracking in the operating room. The results showed that the operating room setup disturbs the electromagnetic tracking signal by increasing the root mean square (RMS) distance error from 0.3 mm to 2.3 mm in the center of the measurement volume, but the surgical instruments and the ultrasound probe added no further inaccuracies. Tracked surgical tools, such as endoscopes, pointers, and probes, allowed surgeons to interactively control the display of both registered preoperative medical images, as well as intraoperatively acquired 3D ultrasound data, and have potential to increase the safety of guidance of surgical procedures.
Collapse
Affiliation(s)
- O V Solberg
- Department of Medical Technology, SINTEF Health Research, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
82
|
Chen TK, Thurston AD, Ellis RE, Abolmaesumi P. A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:79-93. [PMID: 18829150 DOI: 10.1016/j.ultrasmedbio.2008.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/16/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Abstract
This article describes a fully automatic, real-time, freehand ultrasound calibration system. The system was designed to be simple and sterilizable, intended for operating-room usage. The calibration system employed an automatic-error-retrieval and accuracy-control mechanism based on a set of ground-truth data. Extensive validations were conducted on a data set of 10,000 images in 50 independent calibration trials to thoroughly investigate the accuracy, robustness, and performance of the calibration system. On average, the calibration accuracy (measured in three-dimensional reconstruction error against a known ground truth) of all 50 trials was 0.66 mm. In addition, the calibration errors converged to submillimeter in 98% of all trials within 12.5 s on average. Overall, the calibration system was able to consistently, efficiently and robustly achieve high calibration accuracy with real-time performance.
Collapse
|
83
|
Karadayi K, Managuli R, Kim Y. Three-Dimensional Ultrasound: From Acquisition to Visualization and From Algorithms to Systems. IEEE Rev Biomed Eng 2009. [DOI: 10.1109/rbme.2009.2034132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Ji S, Wu Z, Hartov A, Roberts DW, Paulsen KD. Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med Phys 2008; 35:4612-24. [PMID: 18975707 DOI: 10.1118/1.2977728] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An image-based re-registration scheme has been developed and evaluated that uses fiducial registration as a starting point to maximize the normalized mutual information (nMI) between intraoperative ultrasound (iUS) and preoperative magnetic resonance images (pMR). We show that this scheme significantly (p<0.001) reduces tumor boundary misalignment between iUS pre-durotomy and pMR from an average of 2.5 mm to 1.0 mm in six resection surgeries. The corrected tumor alignment before dural opening provides a more accurate reference for assessing subsequent intraoperative tumor displacement, which is important for brain shift compensation as surgery progresses. In addition, we report the translational and rotational capture ranges necessary for successful convergence of the nMI registration technique (5.9 mm and 5.2 deg, respectively). The proposed scheme is automatic, sufficiently robust, and computationally efficient (<2 min), and holds promise for routine clinical use in the operating room during image-guided neurosurgical procedures.
Collapse
Affiliation(s)
- Songbai Ji
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | | | |
Collapse
|
85
|
Comparing calibration approaches for 3D ultrasound probes. Int J Comput Assist Radiol Surg 2008; 4:203-13. [DOI: 10.1007/s11548-008-0258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
|
86
|
Hsu PW, Treece GM, Prager RW, Houghton NE, Gee AH. Comparison of freehand 3-D ultrasound calibration techniques using a stylus. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1610-1621. [PMID: 18420335 DOI: 10.1016/j.ultrasmedbio.2008.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 02/09/2008] [Accepted: 02/21/2008] [Indexed: 05/26/2023]
Abstract
In a freehand 3-D ultrasound system, a probe calibration is required to find the rigid body transformation from the corner of the B-scan to the electrical center of the position sensor. The most intuitive way to perform such a calibration is by locating fiducial points in the scan plane directly with a stylus. The main problem of this approach is the difficulty in aligning the tip of the stylus with the scan plane. The thick beamwidth makes the tip of the stylus visible in the B-scan, even if the tip is not exactly at the elevational center of the scan plane. We present a novel stylus and phantom that simplify the alignment process for more accurate probe calibration. We also compare our calibration techniques with a range of styli. We show that our stylus and cone phantom are both simple in design and can achieve a point reconstruction accuracy of 2.2 mm and 1.8 mm, respectively, an improvement from 3.2 mm and 3.6 mm with the sharp and spherical stylus. The performance of our cone stylus and phantom lie between the state-of-the-art Z-phantom and Cambridge phantom, where accuracies of 2.5 mm and 1.7 mm are achieved.
Collapse
Affiliation(s)
- Po-Wei Hsu
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
87
|
Estépar RSJ, Stylopoulos N, Ellis R, Samset E, Westin CF, Thompson C, Vosburgh K. Towards scarless surgery: an endoscopic ultrasound navigation system for transgastric access procedures. ACTA ACUST UNITED AC 2008; 12:311-24. [PMID: 18066947 DOI: 10.3109/10929080701746892] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Scarless surgery is an innovative and promising technique that may herald a new era in surgical procedures. We have created a navigation system, named IRGUS, for endoscopic and transgastric access interventions and have validated it in in vivo pilot studies. Our hypothesis is that endoscopic ultrasound procedures will be performed more easily and efficiently if the operator is provided with approximately registered 3D and 2D processed CT images in real time that correspond to the probe position and ultrasound image. MATERIALS AND METHODS The system provides augmented visual feedback and additional contextual information to assist the operator. It establishes correspondence between the real-time endoscopic ultrasound image and a preoperative CT volume registered using electromagnetic tracking of the endoscopic ultrasound probe position. Based on this positional information, the CT volume is reformatted in approximately the same coordinate frame as the ultrasound image and displayed to the operator. RESULTS The system reduces the mental burden of probe navigation and enhances the operator's ability to interpret the ultrasound image. Using an initial rigid body registration, we measured the mis-registration error between the ultrasound image and the reformatted CT plane to be less than 5 mm, which is sufficient to enable the performance of novice users of endoscopic systems to approach that of expert users. CONCLUSIONS Our analysis shows that real-time display of data using rigid registration is sufficiently accurate to assist surgeons in performing endoscopic abdominal procedures. By using preoperative data to provide context and support for image interpretation and real-time imaging for targeting, it appears probable that both preoperative and intraoperative data may be used to improve operator performance.
Collapse
|
88
|
Baumhauer M, Feuerstein M, Meinzer HP, Rassweiler J. Navigation in Endoscopic Soft Tissue Surgery: Perspectives and Limitations. J Endourol 2008; 22:751-66. [PMID: 18366319 DOI: 10.1089/end.2007.9827] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Matthias Baumhauer
- Division of Medical and Biological Informatics, German Cancer Research Center, Heidelberg, Germany
| | - Marco Feuerstein
- Computer Aided Medical Procedures (CAMP), Technical University Munich (TUM), Munich, Germany
| | - Hans-Peter Meinzer
- Division of Medical and Biological Informatics, German Cancer Research Center, Heidelberg, Germany
| | - J. Rassweiler
- Department of Urology, Clinic Heilbronn, University of Heidelberg, Heilbronn, Germany
| |
Collapse
|
89
|
Hsu PW, Prager RW, Gee AH, Treece GM. Real-time freehand 3D ultrasound calibration. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:239-251. [PMID: 17935870 DOI: 10.1016/j.ultrasmedbio.2007.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 06/22/2007] [Accepted: 07/27/2007] [Indexed: 05/25/2023]
Abstract
Z-fiducial phantoms allow three-dimensional ultrasound probe calibration with a single B-scan. One of the main difficulties in using this phantom is the need for reliable segmentation of the wires in the ultrasound images, which necessitates manual intervention. In this article, we have shown how we can solve this problem by mounting a thin rubber membrane on top of the phantom. The membrane is segmented automatically and the wires can be easily located as they are at known positions relative to the membrane. This enables us to segment the wires automatically at the full PAL frame rate of 25 Hz, to produce calibrations in real-time, while achieving accuracies similar to those reported in the literature. We have also devised a technique to improve the estimation of the elevational offset (calibration parameter) by capturing a few images of the planar membrane. If spatial calibration is known, fully automatic wire segmentation allows the fiducials to be tracked in real-time. This also enables temporal calibration to be performed in real-time as the probe is moved away from the phantom. We have evaluated the performance of our phantom by calibrating a probe at 8 cm and 15 cm depth. The precision of the calibrations are 0.7 mm and 1.2 mm, respectively. The point reconstruction accuracies of fiducial points provided by the same Z-phantom are slightly below 1.5 mm. The point reconstruction accuracies obtained by scanning the end of a wire tip are 2.5 mm and 3.0 mm. These results match the accuracies achieved in the literature. It takes approximately 2 min to set up the experiment, submerge the phantom in the water bath, locate the phantom in space with a pointer and capture six images of the planar membrane. After this, spatial calibration can be performed in less than a second. Temporal calibration can be completed in approximately 3 s.
Collapse
Affiliation(s)
- Po-Wei Hsu
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
90
|
Laporte C, Arbel T. Combinatorial and probabilistic fusion of noisy correlation measurements for untracked freehand 3-D ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:984-994. [PMID: 18599403 DOI: 10.1109/tmi.2008.923704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In freehand 3-D ultrasound (US), the relative positions of US images are usually measured using a position tracking device despite its cumbersome nature. The probe trajectory can instead be estimated from image data, using registration techniques to recover in-plane motion and speckle decorrelation to recover out-of-plane transformations. The relationship between speckle decorrelation and elevational separation is typically represented by a single curve, estimated from calibration data. Distances read off such a curve are corrupted by bias and uncertainty, and only provide an absolute estimate of elevational displacement. This paper presents a probabilistic model of the relationship between correlation measurements and elevational separation. This representation captures the skewed distribution of distance estimates based on high correlations and the uncertainties attached to each measurement. Multiple redundant correlation measurements can then be integrated within a maximum likelihood estimation framework. This paper also introduces a new method based on the traveling salesman problem for resolving sign ambiguities in data sets resulting from nonmonotonic probe motion and frame intersections. Experiments with real and synthetic US data show that by combining these new methods, out-of-plane US probe motion is recovered with improved accuracy over baseline methods using a deterministic model and fewer measurements.
Collapse
Affiliation(s)
- Catherine Laporte
- Centre for Intelligent Machines, 3480 University Street, McGill University, Montreal, QC H3A 2A7, Canada.
| | | |
Collapse
|
91
|
Hefny M, Abolmaesumi P, Karimaghaloo Z, Gobbi DG, Ellis R, Fichtinger G. Quantification of edematic effects in prostate brachytherapy interventions. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2008; 11:493-500. [PMID: 18982641 PMCID: PMC2980499 DOI: 10.1007/978-3-540-85990-1_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a quantitative model to analyze the detrimental effects of for edema on the quality of prostate brachytherapy implants We account for both tissue expansion and implant migration by mapping intra-operative ultrasound and post-implant CT. We pre-process the ultrasound with a phase congruency filter, and map it to the volume CT using a B-spline deformable mutual information similarity metric. To test the method, we implanted a standard training phantom with 48 seeds, imaged the phantom with ultrasound and CT and registered the two for ground truth. Edema was simulated by distorting the CT volume by known transformations. The objective was to match the distorted implant to the intra-operative ultrasound. Performance was measured relative to ground truth. We successfully mapped 100% of deformed seeds to ground truth under edematic expansion up to 40% of volume growth. Seed matching performance was 98% with random seed migration of 3mm superimposed on 10% edematic volume growth. This method promises to be clinically applicable as the first quantitative analysis tool to measure edematic implant deformations occurring between the operating room and post-operative CT imaging.
Collapse
|
92
|
Reinertsen I, Lindseth F, Unsgaard G, Collins DL. Clinical validation of vessel-based registration for correction of brain-shift. Med Image Anal 2007; 11:673-84. [PMID: 17681484 DOI: 10.1016/j.media.2007.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 05/04/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
In this paper, we have tested and validated a vessel-based registration technique for correction of brain-shift using retrospective clinical data from five patients: three patients with brain tumors, one patient with an aneurysm and one patient with an arteriovenous malformation. The algorithm uses vessel centerlines extracted from segmented pre-operative MRA data and intra-operative power Doppler ultrasound images to compute first a linear fit and then a thin-plate spline transform in order to achieve non-linear registration. The method was validated using (i) homologous landmarks identified in the original data, (ii) selected vessels, excluded from the fitting procedure and (iii) manually segmented, non-vascular structures. The tracking of homologous landmarks show that we are able to correct the deformation to within 1.25 mm, and the validation using excluded vessels and anatomical structures show an accuracy of 1mm. Pre-processing of the data can be completed in 30 s per dataset, and registrations can be performed in less than 30s. This makes the technique well suited for intra-operative use.
Collapse
Affiliation(s)
- I Reinertsen
- Montreal Neurological Institute (MNI), McGill University, Montréal, Canada.
| | | | | | | |
Collapse
|
93
|
Janvier MA, Destrempes F, Soulez G, Cloutier G. Validation of a new 3D-US imaging robotic system to detect and quantify lower limb arterial stenoses. ACTA ACUST UNITED AC 2007; 2007:339-42. [PMID: 18001959 DOI: 10.1109/iembs.2007.4352293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stenosis degree is the most common criterion used to assess the severity of atherosclerosis. This form of peripheral arterial disease (PAD) is often present in lower limb arteries. However, to detect and quantify distributed arterial stenoses in lower limbs, a high precision is required over a long segment. Moreover, to plan the appropriate therapy, a 3D representation of the vessel is desirable. Most 3D-ultrasound (US) developments are not optimally adapted for this application. A new 3D-US imaging robotic system that can control and standardize the 3D-US acquisition process for any scanning distance is presented. A calibration study is performed to determine the spatial transform to relate the US probe image plane attached to the robotic system, to the robot coordinates. Additionally, 3D-US reconstructions of in-vitro stenoses were obtained with the robotic scanner and the spatial calibration transform computed. Thereafter, stenoses were detected and quantified from the 3D reconstructed model. Altogether, these results demonstrate the potential of the robot for the clinical evaluation of lower limb vessels over long and tortuous segments starting from the iliac artery down to the popliteal artery below the knee.
Collapse
Affiliation(s)
- Marie-Ange Janvier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Canada
| | | | | | | |
Collapse
|
94
|
Solberg OV, Lindseth F, Torp H, Blake RE, Nagelhus Hernes TA. Freehand 3D ultrasound reconstruction algorithms--a review. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:991-1009. [PMID: 17512655 DOI: 10.1016/j.ultrasmedbio.2007.02.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/31/2007] [Accepted: 02/25/2007] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) ultrasound (US) is increasingly being introduced in the clinic, both for diagnostics and image guidance. Although dedicated 3D US probes exist, 3D US can also be acquired with the still frequently used two-dimensional (2D) US probes. Obtaining 3D volumes with 2D US probes is a two-step process. First, a positioning sensor must be attached to the probe; second, a reconstruction of a 3D volume can be performed into a regular voxel grid. Various algorithms have been used for performing 3D reconstruction based on 2D images. Up till now, a complete overview of the algorithms, the way they work and their benefits and drawbacks due to various applications has been missing. The lack of an overview is made clear by confusions about algorithm and group names in the existing literature. This article is a review aimed at explaining and categorizing the various algorithms into groups, according to algorithm implementation. The algorithms are compared based on published data and our own laboratory results. Positive and practical uses of the various algorithms for different applications are discussed, with a focus on image guidance.
Collapse
|
95
|
Emery SP, Kreutzer J, Sherman FR, Fujimoto KL, Jaramaz B, Nikou C, Tobita K, Keller BB. Computer-assisted navigation applied to fetal cardiac intervention. Int J Med Robot 2007; 3:187-98. [PMID: 17729376 DOI: 10.1002/rcs.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prenatal cardiac interventions (PCI) for human fetal aortic valve (AoV) stenosis can reduce left ventricular hypoplasia and restore ventricular growth and function. However, 'freehand' needle delivery from the maternal skin through the uterine wall, fetal chest and ventricular apex to cross the fetal AoV remains technically challenging and time intensive, and is the rate-limiting step in the procedure. METHODS We developed a computer-assisted navigation (CANav) system that tracks the position and orientation of a two-dimensional (2D) ultrasound image relative to the trajectory of an electromagnetic (EM) embedded needle and stylet. We tested the CANav system in vitro using a water bath phantom, then in vivo using adult rats and pregnant (fetal) sheep. RESULTS The CANav system accurately tracked the delivered needle position in both in vitro phantom and adult rat model experiments. We performed 22 PCI attempts with or without CANav in a fetal sheep model. Maternal laparotomy was required to adjust the fetal position in 50% of the procedures. The time required to deliver the needle from the skin into the left ventricle (LV) using CANav was 2.9 +/- 1.7 (range 2-7) min (n = 14) vs. 5.5 +/- 4.3 (range 1-12) min (n = 8) without CANav (p < 0.05). The time needed to cross the aortic valve once the needle was within the LV was similar with and without CANav (p = 0.19). CONCLUSIONS CANav reduces the PCI time required to accurately deliver a needle to the fetal heart. Adaptations of this technical approach may be relevant to other congenital cardiac conditions and ultrasound-guided medical procedures.
Collapse
Affiliation(s)
- Stephen P Emery
- Department of Obstetrics and Gynecology, Magee-Women's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Laporte C, Arbel T. Probabilistic speckle decorrelation for 3D ultrasound. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2007; 10:925-932. [PMID: 18051147 DOI: 10.1007/978-3-540-75757-3_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent developments in freehand 3D ultrasound (US) have shown how image registration and speckle decorrelation methods can be used for 3D reconstruction instead of relying on a tracking device. Estimating elevational separation between untracked US images using speckle decorrelation is error prone due to the uncertainty that plagues the correlation measurements. In this paper, using maximum entropy estimation methods, the uncertainty is directly modeled from the calibration data normally used to estimate an average decorrelation curve. Multiple correlation measurements can then be fused within a maximum likelihood estimation framework in order to reduce the drift in elevational pose estimation over large image sequences. The approach is shown to be effective through empirical results on simulated and phantom US data.
Collapse
Affiliation(s)
- Catherine Laporte
- Centre for Intelligent Machines, McGill University, Montréal, Canada.
| | | |
Collapse
|
97
|
Lange T, Hünerbein M, Eulenstein S, Beller S, Schlag PM. Development of navigation systems for image-guided laparoscopic tumor resections in liver surgery. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2006; 167:13-36. [PMID: 17044294 DOI: 10.1007/3-540-28137-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Lange
- Klinik für Chirurgie und Chirurgische Onkologie, Robert-Rössle-Klinik, Berlin, Germany
| | | | | | | | | |
Collapse
|
98
|
Rousseau F, Hellier P, Letteboer MMJ, Niessen WJ, Barillot C. Quantitative evaluation of three calibration methods for 3-D freehand ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2006; 25:1492-501. [PMID: 17117778 DOI: 10.1109/tmi.2006.882134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this paper, three different calibration methods for three-dimensional (3-D) freehand ultrasound (US) are evaluated. Calibration is the process of estimating the rigid transformation from US image coordinates to the coordinate system of the tracking sensor mounted onto the probe. Calibration accuracy has an important impact on quantitative studies. Geometrical precision can also be crucial in many interventions and surgery. The proposed evaluation framework relies on a single point phantom and a 3-D US phantom which mimics the US characteristics of human liver. Four quality measures are used: 3-D point localization criterion, distance and volume measurements, and shape based criterion. Results show that during the acquisition procedure, volumetric measurements and shapes of the reconstructed object depend on probe motion used, particularly fan motions for which errors are larger. It is also shown that accurate calibration is essential to obtain reliable quantitative information.
Collapse
Affiliation(s)
- François Rousseau
- IRISA, CNRS-INRIA-INSERM-University of Rennes 1, F-35042 Rennes, France.
| | | | | | | | | |
Collapse
|
99
|
Abstract
Ultrasound imaging is now in very widespread clinical use. The most important underpinning technologies include transducers, beam forming, pulse compression, tissue harmonic imaging, contrast agents, techniques for measuring blood flow and tissue motion, and three-dimensional imaging. Specialized and emerging technologies include tissue characterization and image segmentation, microscanning and intravascular scanning, elasticity imaging, reflex transmission imaging, computed tomography, Doppler tomography, photoacoustics and thermoacoustics. Phantoms and quality assurance are necessary to maintain imaging performance. Contemporary ultrasonic imaging procedures seem to be safe but studies of bioeffects are continuing. It is concluded that advances in ultrasonic imaging have primarily been pushed by the application of physics and innovations in engineering, rather than being pulled by the identification of specific clinical objectives in need of scientific solutions. Moreover, the opportunities for innovation to continue into the future are both challenging and exciting.
Collapse
Affiliation(s)
- P N T Wells
- Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK.
| |
Collapse
|
100
|
Hsu PW, Prager RW, Gee AH, Treece GM. Rapid, easy and reliable calibration for freehand 3D ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:823-35. [PMID: 16785005 DOI: 10.1016/j.ultrasmedbio.2006.02.1427] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 02/16/2006] [Accepted: 02/23/2006] [Indexed: 05/10/2023]
Abstract
This paper presents improvements to the plane-based technique for calibrating freehand 3D ultrasound systems. The improvements are designed to make it easier for inexperienced users to perform plane-based calibration and to know that they have got a reliable result. In particular, we enable the calibration to be performed using water at room temperature while producing a result that is valid for average soft tissue and we show how it is possible to provide feedback on the reliability of the calibration using a metric based on the curvature of the calibration criterion function. We present comprehensive results showing that these innovations improve the precision of the calibration and offer useful feedback to the user.
Collapse
Affiliation(s)
- Po-Wei Hsu
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom.
| | | | | | | |
Collapse
|