51
|
Long-Term Antibacterial Effect of Electrospun Polyvinyl Alcohol/Polyacrylate Sodium Nanofiber Containing Nisin-Loaded Nanoparticles. NANOMATERIALS 2020; 10:nano10091803. [PMID: 32927663 PMCID: PMC7559420 DOI: 10.3390/nano10091803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022]
Abstract
Response Surface Methodology (RSM) was used to assess the optimal conditions for a Water/Oil/Water (W/O/W) emulsion for encapsulated nisin (EN). Nano-encapsulated nisin had high encapsulation efficiencies (EE) (86.66 ± 1.59%), small particle size (320 ± 20 nm), and low polydispersity index (0.27). Biodegradable polyvinyl alcohol (PVA) and polyacrylate sodium (PAAS) were blended with EN and prepared by electrospinning. Scanning electron microscopy (SEM) revealed PVA/PAAS/EN nanofibers with good morphology, and that their EN activity and mechanical properties were enhanced. When the ultrasonication time was 15 min and 15% EN was added, the nanofibers had optimal mechanical, light transmittance, and barrier properties. Besides, the release behavior of nisin from the nanofibers fit the Korsemeyer–Peppas (KP) model, a maximum nisin release rate of 85.28 ± 2.38% was achieved over 16 days. At 4 °C, the growth of Escherichia coli and Staphylococcus aureus was inhibited for 16 days in nanofibers under different ultrasonic times. The application of the fiber in food packaging can effectively inhibit the activity of food microorganisms and prolong the shelf life of strawberries, displaying a great potential application for food preservation.
Collapse
|
52
|
Beikzadeh S, Ghorbani M, Shahbazi N, Izadi F, Pilevar Z, Mortazavian AM. The Effects of Novel Thermal and Nonthermal Technologies on the Properties of Edible Food Packaging. FOOD ENGINEERING REVIEWS 2020. [PMCID: PMC7280782 DOI: 10.1007/s12393-020-09227-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Edible packaging is influenced by factors such as formulation, production technology, and solvent and additive properties. With the increase in the request for coating and film quality, appropriate form, and high product safety and storage period, various technologies such as high hydrostatic pressure, irradiation, ultrasound, high-pressure homogenization, cold plasma, and microwave have been reviewed. The present study states definitions and mechanisms of novel technologies. The experimental condition, packaging matrix, and the results pertaining to the effects of these technologies on various types of edible packaging is also discussed. The most of the matrix used for packaging was whey protein, soy protein isolate, chitosan, and gelatin. The technologies conditions such as power, frequency, time, temperature, dose, pressure, and voltage can have a significant influence on the application of them in film and coating. Therefore, finding the optimum point for the features of the technologies is important because improper use of them reduces the properties of the edible packaging.
Collapse
|
53
|
Preparation and characterization of antioxidant packaging by chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and baicalein. Int J Biol Macromol 2020; 153:836-845. [DOI: 10.1016/j.ijbiomac.2020.03.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
|
54
|
Quilez-Molina AI, Heredia-Guerrero JA, Armirotti A, Paul UC, Athanassiou A, Bayer IS. Comparison of physicochemical, mechanical and antioxidant properties of polyvinyl alcohol films containing green tealeaves waste extracts and discarded balsamic vinegar. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
55
|
Fang S, Qiu W, Mei J, Xie J. Effect of Sonication on the Properties of Flaxseed Gum Films Incorporated with Carvacrol. Int J Mol Sci 2020; 21:E1637. [PMID: 32121050 PMCID: PMC7084845 DOI: 10.3390/ijms21051637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Carvacrol is a natural compound known to be a highly effective antibacterial; however, it is a hydrophobic molecule, which is a limitation to its use within food packaging. Flaxseed gum (FG) films containing different contents of carvacrol (C) were produced by a film-casting method with sonication. The effects of sonication power and time on the properties of the FG-C films were investigated by measuring the film thickness, mechanical properties, contact angle, opacity, water vapor permeability (WVP), water sorption isotherm, Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry (DSC), antibacterial and antioxidant activities, and microstructure. The results showed that sonication power and time had significant effects on mechanical and barrier properties, film opacity, and degradability (p < 0.05). The tensile strength (TS) and elongation at break (EB) values exhibited an obvious improvement after sonication, and FG-0.5C-6030 had the lowest TS (33.40 MPa) and EB (4.46%) values. FG-C films formed a denser structure and the contact angle was improved as a result of sonication, which improved the integration of carvacrol into the FG matrix. In terms of microstructure, sonication resulted in a homogeneous and continuous crosssection of FG-C films, and regular surface and cross-sectional images were obtained through the highest acoustic intensity and longest time treatment. The FG films incorporated with carvacrol displayed antibacterial properties against Staphylococcus aureus, Vibrio parahaemolyticus, Shewanella putrefaciens, and Pseudomonas fluorescens, as well as increased antioxidant properties, and sonication was proven to enhance both of them.
Collapse
Affiliation(s)
- Shiyuan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
56
|
Yaneva Z, Ivanova D, Nikolova N, Tzanova M. The 21st century revival of chitosan in service to bio-organic chemistry. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1731333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Nevena Nikolova
- Faculty of Veterinary Medicine, Radioecology and Ecology Unit, Trakia University, Stara Zagora, Bulgaria
| | - Milena Tzanova
- Faculty of Agriculture, Department of Biochemistry, Microbiology and Physics, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
57
|
Luzi F, Pannucci E, Santi L, Kenny JM, Torre L, Bernini R, Puglia D. Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers (Basel) 2019; 11:E1999. [PMID: 31816935 PMCID: PMC6960607 DOI: 10.3390/polym11121999] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023] Open
Abstract
Gallic acid (GA) and quercetin (QC) were used as active ingredients in poly(vinyl alcohol) (PVA) film formulations obtained by solvent casting process. The effect of two different percentages (5 and 10 % wt.) on morphological behavior, thermal stability, optical, mechanical, and release properties of PVA were investigated, while migration with food stimulants and antioxidant properties were tested taking into account the final application as food packaging systems. The results showed how different dispersability in PVA water solutions gave different results in term of deformability (mean value of ε PVA/5GA = 280% and ε PVA/5QC = 255%, with 190% for neat PVA), comparable values for antioxidant activity at the high contents (Radical Scavenging Activity, RSA(%) PVA/10GA = 95 and RSA(%) PVA/10QC = 91) and different coloring attitude of the polymeric films. It was proved that GA, even if it represents the best antioxidant ingredient to be used with PVA and can be easily dispersed in water, it gives more rigid films in comparison to QC, that indeed was more efficient in tuning the deformability of the PVA films, due the presence of sole hydroxyl groups carrying agent. The deviation of the film coloring towards greenish tones for GA films and redness for QC films after 7 and within 21 days in the simulated conditions confirmed the possibility of using easy processable PVA films as active and intelligent films in food packaging.
Collapse
Affiliation(s)
- Francesca Luzi
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Elisa Pannucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - José Maria Kenny
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Luigi Torre
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| |
Collapse
|
58
|
He L, Lan W, Ahmed S, Qin W, Liu Y. Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
59
|
Zhang R, Wang Y, Ma D, Ahmed S, Qin W, Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. ULTRASONICS SONOCHEMISTRY 2019; 59:104731. [PMID: 31442767 DOI: 10.1016/j.ultsonch.2019.104731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 05/04/2023]
Abstract
Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), graphene oxide (GO), and zinc oxide nanoparticles (ZnO NPs) were prepared by and ultrasonic processing, and electrospinning. The performance of the membranes containing different GO-to-ZnO NP mass ratios was comprehensively investigated in terms of density, mechanical properties, water vapor permeability, optical property, biodegradability and antimicrobial properties. The results showed that an appropriate sonication time (30 min) improved the membrane performance; the composite nanofibrous membrane with a GO-to-ZnO NP mass ratio of 3:7 and 30 min sonication exhibited the best performance with a water vapor permeability of (0.62 ± 0.01) × 10-2 g·h-1 m-2 pa-1, and strain and stress values of 307.84 ± 2.96% and 12.82 ± 0.56 MPa, respectively. Particularly, the UV barrier property of the composite nanofibrous membrane was enhanced. Furthermore, the membrane exhibited strong antibacterial activity against foodborne pathogenic and spoilage bacteria. Thu, it can thus be used as an active food packaging material to ensure the safety of food products and to extend their shelf-life.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
60
|
Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Preparation and Characterization of Ultrasound Treated Polyvinyl Alcohol/Chitosan/DMC Antimicrobial Films. COATINGS 2019. [DOI: 10.3390/coatings9090582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this research, chitosan (CS) and poly (vinyl alcohol) (PVA) were adopted as a material, methacryloyloxyethyl trimethyl ammonium chloride (DMC) was added in various concentrations and was treated ultrasonically for the formation of films with the use of the polymer blending method. The influences exerted by the ultrasonication period on PVA/CS/DMC antimicrobial active materials underwent material characteristic tests. The consequences revealed that at the break of the compound films, ultrasonication raised the elongation and tensile strength on the whole. Ultrasonication further or also enhanced the light transmittance performance and composite films’ barrier property. Furthermore, the compound film with a DMC concentration of 2% had good antibacterial properties, the film’s inhibition rates against Staphylococcus aureus and Escherichia coli after ultrasonication were 79.23% ± 1.92% and 72.31% ± 1.35%, respectively.
Collapse
|
62
|
Liang X, Feng S, Ahmed S, Qin W, Liu Y. Effect of Potassium Sorbate and Ultrasonic Treatment on the Properties of Fish Scale Collagen/Polyvinyl Alcohol Composite Film. Molecules 2019; 24:molecules24132363. [PMID: 31248023 PMCID: PMC6651731 DOI: 10.3390/molecules24132363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Composite films containing different amounts of potassium sorbate (KS) were prepared by using fish scale collagen (Col) and polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR), light transmittance, mechanical, water vapor transmission rate (WVTR), and the antibacterial properties of the composite films were analyzed. The results showed that the addition of Col significantly reduced the light transmittance of the composite film, but KS had no significant effect on the light transmission. The tensile strength decreased first and then increased with the addition of KS, while the WVTR increased first and then decreased. The composite film exhibited a certain degree of antibacterial properties against E. coli and S. aureus. In addition, we found that ultrasonic treatment reduced the WVTR, and also improved tensile strength and elongation at break of the composite films, but had no significant effect on other properties. The KS/Col/PVA films have the potential to be used as antimicrobial food packaging.
Collapse
Affiliation(s)
- Xue Liang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shiyi Feng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
63
|
Lan W, Liang X, Lan W, Ahmed S, Liu Y, Qin W. Electrospun Polyvinyl Alcohol/d-Limonene Fibers Prepared by Ultrasonic Processing for Antibacterial Active Packaging Material. Molecules 2019; 24:molecules24040767. [PMID: 30791596 PMCID: PMC6412656 DOI: 10.3390/molecules24040767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/24/2022] Open
Abstract
Novel fibers containing different ratios of PVA and d-limonene were fabricated using electrospinning for antibacterial active packaging applications. The PVA/d-limonene fibers were thoroughly characterized using a scanning electron microscope, fourier-transform infrared spectrometry, thermal gravimetry, differential scanning calorimetry, tensile tests, and oxygen permeability tests. The results of these analyses showed that the highest tensile strength and elongation at break values of 3.87 ± 0.25 MPa and 55.62 ± 2.93%, respectively, were achieved for a PVA/d-limonene ratio of 7:3 (v/v) and an ultrasonication time of 15 min during processing. This material also showed the lowest oxygen permeation and the best degradability and bacteriostatic properties of all samples.
Collapse
Affiliation(s)
- Weijie Lan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France.
| | - Xue Liang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wenting Lan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
64
|
Xiong W, Wang Y, Zhang C, Wan J, Shah BR, Pei Y, Zhou B, Li J, Li B. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. ULTRASONICS SONOCHEMISTRY 2016; 65:105049. [PMID: 26964953 DOI: 10.1016/j.ultsonch.2020.105049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/01/2020] [Indexed: 05/06/2023]
Abstract
Influence of high intensity ultrasound (HIUS) on the structure and properties of ovalbumin (OVA) were investigated. It was found that the subunits and secondary structure of OVA did not change significantly with HIUS treatment from the electrophoretic patterns and circular dichroism (CD) spectrum. The amount of free sulfhydryl groups increased and intrinsic fluorescence spectra analysis indicated changes in the tertiary structure and partial unfold of OVA after sonication increased. Compared with the untreated OVA, HIUS treatment increased the emulsifying activity and foaming ability, and decreased interface tension (oil-water and air-water interface), which due to the increased surface hydrophobicity and decreased the surface net charge in OVA, while the emulsifying and foaming stability had no remarkable differences. The increased particle size may be attributed to formation of protein aggregates. Moreover, the gelation temperatures of HIUS-treated samples were higher than the untreated OVA according to the temperature sweep model rheology, and this effect was consistent with the increased in surface hydrophobicity for ultrasound treated OVA. These changes in functional properties of OVA would promote its application in food industry.
Collapse
Affiliation(s)
- Wenfei Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yuntao Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Chunlan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Bakht Ramin Shah
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yaqiong Pei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Bin Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Jin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|