51
|
Requirements for mouse mammary tumor virus Rem signal peptide processing and function. J Virol 2011; 86:214-25. [PMID: 22072771 DOI: 10.1128/jvi.06197-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.
Collapse
|
52
|
Sherer NM, Swanson CM, Hué S, Roberts RG, Bergeron JRC, Malim MH. Evolution of a species-specific determinant within human CRM1 that regulates the post-transcriptional phases of HIV-1 replication. PLoS Pathog 2011; 7:e1002395. [PMID: 22114565 PMCID: PMC3219727 DOI: 10.1371/journal.ppat.1002395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/09/2011] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) Rev protein regulates the nuclear export of intron-containing viral RNAs by recruiting the CRM1 nuclear export receptor. Here, we employed a combination of functional and phylogenetic analyses to identify and characterize a species-specific determinant within human CRM1 (hCRM1) that largely overcomes established defects in murine cells to the post-transcriptional stages of the HIV-1 life cycle. hCRM1 expression in murine cells promotes the cytoplasmic accumulation of intron-containing viral RNAs, resulting in a substantial stimulation of the net production of infectious HIV-1 particles. These stimulatory effects require a novel surface-exposed element within HEAT repeats 9A and 10A, discrete from the binding cleft previously shown to engage Rev's leucine-rich nuclear export signal. Moreover, we show that this element is a unique feature of higher primate CRM1 proteins, and discuss how this sequence has evolved from a non-functional, ancestral sequence.
Collapse
Affiliation(s)
- Nathan M. Sherer
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - Stéphane Hué
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Roland G. Roberts
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, United Kingdom
| | - Julien R. C. Bergeron
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael H. Malim
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| |
Collapse
|
53
|
Cavallari I, Rende F, D'Agostino DM, Ciminale V. Converging strategies in expression of human complex retroviruses. Viruses 2011; 3:1395-414. [PMID: 21994786 PMCID: PMC3185809 DOI: 10.3390/v3081395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as ‘simple’ and ‘complex’, respectively. Expression of most of these extra genes is achieved through the generation of alternatively spliced mRNAs. The present review summarizes the genetic organization and expression strategies of human complex retroviruses and highlights the converging mechanisms controlling their life cycles.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Francesca Rende
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
| | - Donna M. D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Vincenzo Ciminale
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+39-049-821-5885; Fax: +39-049-807-2854
| |
Collapse
|
54
|
Affiliation(s)
- Mark O. J. Olson
- Dept. Biochemistry, University of Mississippi Medical Center, North State St. 2500, Jackson, 39216 Mississippi USA
| |
Collapse
|
55
|
Bodem J, Schied T, Gabriel R, Rammling M, Rethwilm A. Foamy virus nuclear RNA export is distinct from that of other retroviruses. J Virol 2011; 85:2333-41. [PMID: 21159877 PMCID: PMC3067772 DOI: 10.1128/jvi.01518-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/07/2010] [Indexed: 01/09/2023] Open
Abstract
Most retroviruses express all of their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. Two pathways have been described that explain how retroviruses circumvent this nuclear export inhibition. One involves a constitutive transport element in the viral RNA that interacts with the cellular mRNA transporter proteins NXF1 and NXT1 to facilitate nuclear export. The other pathway relies on the recognition of a viral RNA element by a virus-encoded protein that interacts with the karyopherin CRM1. In this report, we analyze the protein factors required for the nuclear export of unspliced foamy virus (FV) mRNA. We show that this export is CRM1 dependent. In contrast to other complex retroviruses, FVs do not encode an export-mediating protein. Cross-linking experiments indicated that the cellular protein HuR binds to the FV RNA. Inhibition studies showed that both ANP32A and ANP32B, which are known to bridge HuR and CRM1, are essential for FV RNA export. By using this export pathway, FVs solve a central problem of viral replication.
Collapse
Affiliation(s)
- Jochen Bodem
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Tanja Schied
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Richard Gabriel
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Matthias Rammling
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| |
Collapse
|
56
|
Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses 2010; 2:2618-48. [PMID: 21994634 PMCID: PMC3185594 DOI: 10.3390/v2122618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a lung cancer in sheep known as ovine pulmonary adenocarcinoma (OPA). The disease has been identified around the world in several breeds of sheep and goats, and JSRV infection typically has a serious impact on affected flocks. In addition, studies on OPA are an excellent model for human lung carcinogenesis. A unique feature of JSRV is that its envelope (Env) protein functions as an oncogene. The JSRV Env-induced transformation or oncogenesis has been studied in a variety of cell systems and in animal models. Moreover, JSRV studies have provided insights into retroviral genomic RNA export/expression mechanisms. JSRV encodes a trans-acting factor (Rej) within the env gene necessary for the synthesis of Gag protein from unspliced viral RNA. This review summarizes research pertaining to JSRV-induced pathogenesis, Env transformation, and other aspects of JSRV biology.
Collapse
|
57
|
Identification of novel endogenous betaretroviruses which are transcribed in the bovine placenta. J Virol 2010; 85:1237-45. [PMID: 21084469 DOI: 10.1128/jvi.01234-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sequences of retroviral origin occupy approximately 10% of mammalian genomes. Various infectious endogenous retroviruses (ERVs) and functional retroviral elements have been reported for several mammals but not cattle. Here, we identified two proviruses, designated bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2, containing full-length envelope (env) genes in the bovine genome. Phylogenetic analysis revealed that they belong to the genus Betaretrovirus. By reverse transcription (RT)-PCR, both BERV-K1 and -K2 env mRNAs were detected in the placenta and cultured bovine trophoblast cells. Real-time RT-PCR analysis using RNAs isolated from various bovine tissues revealed that BERV-K1 env mRNA was preferentially expressed in the placenta. Moreover, we also found the expression of doubly spliced transcripts, named the REBK1 and REBK2 genes. Both the REBK1 and REBK2 proteins have motifs for a putative nuclear localization signal and a nuclear export signal. REBK1 and REBK2 fused with green fluorescent proteins were localized mainly in the nuclei when they were expressed in bovine and porcine cells. In the env and 3' long terminal repeats of BERV-K1 and -K2, we found regulatory elements responsible for the splicing and transport of viral RNAs and/or translation of the env genes. Although we have not identified the expressed Env proteins in bovine tissues, these data suggest that both BERV-K1 and BERV-K2 express Env proteins and that these proteins may have physiological functions in vivo.
Collapse
|
58
|
Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2010; 2:2000-2012. [PMID: 21274409 PMCID: PMC3026287 DOI: 10.3390/v2092000] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 01/15/2023] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious cancer-inducing agent in the 1930s, has been used since that time as an animal model for the study of human breast cancer. Like other complex retroviruses, MMTV encodes a number of accessory proteins that both facilitate infection and affect host immune response. In vivo, the virus predominantly infects lymphocytes and mammary epithelial cells. High level infection of mammary epithelial cells ensures efficient passage of virus to the next generation. It also results in mammary tumor induction, since the MMTV provirus integrates into the mammary epithelial cell genome during viral replication and activates cellular oncogene expression. Thus, mammary tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Susan R Ross
- Department of Microbiology and Abramson Cancer Center, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
59
|
The noncanonical Gag domains p8 and n are critical for assembly and release of mouse mammary tumor virus. J Virol 2010; 84:11555-9. [PMID: 20739518 DOI: 10.1128/jvi.00652-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) Gag contains the unique domains pp21, p3, p8, and n. We investigated the contribution of these domains to particle assembly and found that the region spanning the p8 and n domains is critical for shape determination and assembly. Deletion of pp21 and p3 reduced the number of released particles, but deletion of the n domain resulted in frequent formation of aberrant particles, while deletion of p8 severely impaired assembly. Further investigation of p8 revealed that both the basic and the proline-rich motifs within p8 contribute to MMTV assembly.
Collapse
|
60
|
Retroviral Rem protein requires processing by signal peptidase and retrotranslocation for nuclear function. Proc Natl Acad Sci U S A 2010; 107:12287-92. [PMID: 20566871 DOI: 10.1073/pnas.1004303107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex murine retrovirus that encodes an HIV Rev-like export protein, Rem, from a doubly spliced version of envelope (Env) mRNA. Previously, the N-terminal 98-amino acid sequence of Rem, which is identical to Env signal peptide (SP), and full-length Rem were shown to be functional in a reporter assay that measures a postexport function. Here we show that MMTV-infected cells or cells transfected with rem or env cDNAs express SP, which is the active component in the reporter assay. Uncleaved Rem was partially glycosylated, but mutations in both glycosylation sites within the C terminus prevented Rem function. Mutations that reduced Rem or Env cleavage by signal peptidase greatly reduced SP levels and functional activity in the reporter assay and allowed accumulation of the uncleaved protein. Fluorescence microscopy revealed that GFP-tagged cleavage-site mutants are unstable and lack fluorescence compared with wild-type Rem, suggesting improper folding. Proteasome inhibitors allowed accumulation of uncleaved Rem relative to SP and increased reporter activity, consistent with SP retrotranslocation and proteasome escape before nuclear entry. Expression of a dominant-negative p97 ATPase did not alter levels of unprocessed Rem and SP but decreased reporter activity, suggesting p97-facilitated retrotranslocation of SP. Our results provide an example of a SP that is processed by signal peptidase and retrotranslocated to allow nuclear localization and function.
Collapse
|
61
|
Vallejos M, Ramdohr P, Valiente-Echeverría F, Tapia K, Rodriguez FE, Lowy F, Huidobro-Toro JP, Dangerfield JA, López-Lastra M. The 5'-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Res 2010; 38:618-32. [PMID: 19889724 PMCID: PMC2811009 DOI: 10.1093/nar/gkp890] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/19/2009] [Accepted: 10/05/2009] [Indexed: 01/04/2023] Open
Abstract
In this study, we demonstrate the identification of an internal ribosome entry site (IRES) within the 5'-untranslated region (5'-UTR) of the mouse mammary tumor virus (MMTV). The 5'-UTR of the full-length mRNA derived from the infectious, complete MMTV genome was cloned into a dual luciferase reporter construct containing an upstream Renilla luciferase gene (RLuc) and a downstream firefly luciferase gene (FLuc). In rabbit reticulocyte lysate, the MMTV 5'-UTR was capable of driving translation of the second cistron. In vitro translational activity from the MMTV 5'-UTR was resistant to the addition of m(7)GpppG cap-analog and cleavage of eIF4G by foot-and-mouth disease virus (FMDV) L-protease. IRES activity was also demonstrated in the Xenopus laevis oocyte by micro-injection of capped and polyadenylated bicistronic RNAs harboring the MMTV-5'-UTR. Finally, transfection assays showed that the MMTV-IRES exhibits cell type-dependent translational activity, suggesting a requirement for as yet unidentified cellular factors for its optimal function.
Collapse
Affiliation(s)
- Maricarmen Vallejos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Pablo Ramdohr
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Fernando Valiente-Echeverría
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Karla Tapia
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Felipe E. Rodriguez
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Fernando Lowy
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - J. Pablo Huidobro-Toro
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - John A. Dangerfield
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| |
Collapse
|
62
|
Overview of Retrovirology. RETROVIRUSES AND INSIGHTS INTO CANCER 2010. [PMCID: PMC7122640 DOI: 10.1007/978-0-387-09581-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.
Collapse
|
63
|
The bovine immunodeficiency virus rev protein: identification of a novel lentiviral bipartite nuclear localization signal harboring an atypical spacer sequence. J Virol 2009; 83:12842-53. [PMID: 19828621 DOI: 10.1128/jvi.01613-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine immunodeficiency virus (BIV) Rev protein (186 amino acids [aa] in length) is involved in the nuclear exportation of partially spliced and unspliced viral RNAs. Previous studies have shown that BIV Rev localizes in the nucleus and nucleolus of infected cells. Here we report the characterization of the nuclear/nucleolar localization signals (NLS/NoLS) of this protein. Through transfection of a series of deletion mutants of BIV Rev fused to enhanced green fluorescent protein and fluorescence microscopy analyses, we were able to map the NLS region between aa 71 and 110 of the protein. Remarkably, by conducting alanine substitution of basic residues within the aa 71 to 110 sequence, we demonstrated that the BIV Rev NLS is bipartite, maps to aa 71 to 74 and 95 to 101, and is predominantly composed of arginine residues. This is the first report of a bipartite Rev (or Rev-like) NLS in a lentivirus/retrovirus. Moreover, this NLS is atypical, as the length of the sequence between the motifs composing the bipartite NLS, e.g., the spacer sequence, is 20 aa. Further mutagenesis experiments also identified the NoLS region of BIV Rev. It localizes mainly within the NLS spacer sequence. In addition, the BIV Rev NoLS sequence differs from the consensus sequence reported for other viral and cellular nucleolar proteins. In summary, we conclude that the nucleolar and nuclear localizations of BIV Rev are mediated via novel NLS and NoLS motifs.
Collapse
|
64
|
Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J Virol 2009; 83:12483-98. [PMID: 19776124 DOI: 10.1128/jvi.01747-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses express Gag and Pol proteins by translation of unspliced genome-length viral RNA. For some retroviruses, transport of unspliced viral RNA to the cytoplasm is mediated by small regulatory proteins such as human immunodeficiency virus Rev, while other retroviruses contain constitutive transport elements in their RNAs that allow transport without splicing. In this study, we found that the betaretrovirus Jaagsiekte sheep retrovirus (JSRV) encodes within the env gene a trans-acting factor (Rej) necessary for the synthesis of Gag protein from unspliced viral RNA. Deletion of env sequences from a JSRV proviral expression plasmid (pTN3) abolished its ability to produce Gag polyprotein in transfected 293T cells, and Gag synthesis could be restored by cotransfection of an env expression plasmid (DeltaGP). Deletion analysis localized the complementing activity (Rej) to the putative Env signal peptide, and a signal peptide expression construct showed Rej activity. Two other betaretroviruses, mouse mammary tumor virus (MMTV) and human endogenous retrovirus type K, encode analogous factors (Rem and Rec, respectively) that are encoded from doubly spliced env mRNAs. Reverse transcriptase-PCR cloning and sequencing identified alternate internal splicing events in the 5' end of JSRV env that could signify analogous doubly spliced Rej mRNAs, and cDNA clones expressing two of them also showed Rej activity. The predicted Rej proteins contain motifs similar to those found in MMTV Rem and other analogous retroviral regulatory proteins. Interestingly, in most cell lines, JSRV expression plasmids with Rej deleted showed normal transport of unspliced JSRV RNA to the cytoplasm; however, in 293T cells Rej modestly enhanced export of unspliced viral RNA (2.8-fold). Metabolic labeling experiments with [(35)S]methionine indicated that JSRV Rej is required for the synthesis of viral Gag polyprotein. Thus, in most cell lines, the predominant function of Rej is to facilitate translation of unspliced viral mRNA.
Collapse
|
65
|
Identification and mutational analysis of a Rej response element in Jaagsiekte sheep retrovirus RNA. J Virol 2009; 83:12499-511. [PMID: 19776134 DOI: 10.1128/jvi.01754-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus causing a contagious lung cancer of sheep. JSRV encodes unspliced and spliced viral RNAs, among which unspliced RNA encodes Gag and Pol proteins and a singly spliced mRNA encodes Env protein. In another study we found that JSRV encodes a regulatory protein, Rej, that is responsible for synthesis of Gag polyprotein from unspliced viral RNA. Rej is encoded in the 5' end of env, and it enhances nuclear export or accumulation of cytoplasmic unspliced viral RNA in 293T cells but not in most other cell lines (A. Hofacre, T. Nitta, and H. Fan, J. Virol. 83:12483-12498, 2009). In this study, we found that mutations in the 3' end of env in the context of a cytomegalovirus-driven full-length JSRV expression construct abolished Gag protein synthesis and released viruses in 293T cells. These mutants also showed deficits in accumulation of unspliced viral RNA in the cytoplasm. These mutants defined a Rej-responsive element (RejRE). Inhibition of CRM1 but not Tap function prevented nuclear export/accumulation of cytoplasmic unspliced RNA in 293T cells, similarly to other complex retroviruses that express analogous regulator proteins (e.g., human immunodeficiency virus Rev). Structural modeling of the RejRE with Zuker M-fold indicated a region with a predicted stable secondary structure. Mutational analysis in this region indicated the importance of both secondary structures and primary nucleotide sequences in a central stem-bulge-stem structure. In contrast to 293T cells, mutations in the RejRE did not affect the levels of cytoplasmic unspliced RNA in 293 cells, although the unspliced RNA showed partial degradation, perhaps due to lack of translation. RejRE-containing RNA relocalized Rej protein from the nucleus to the cytoplasm in 293 and rat 208F cells, suggesting binding of Rej to the RejRE.
Collapse
|
66
|
Mertz JA, Chadee AB, Byun H, Russell R, Dudley JP. Mapping of the functional boundaries and secondary structure of the mouse mammary tumor virus Rem-responsive element. J Biol Chem 2009; 284:25642-52. [PMID: 19632991 DOI: 10.1074/jbc.m109.012476] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3' long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3' long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3'-end of the mouse mammary tumor virus genome, but further deletions at the 5'- or 3'-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3'-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5'- and 3'-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, The University of Texas, Austin, Texas 78712-0162, USA
| | | | | | | | | |
Collapse
|
67
|
Ruggieri A, Maldener E, Sauter M, Mueller-Lantzsch N, Meese E, Fackler OT, Mayer J. Human endogenous retrovirus HERV-K(HML-2) encodes a stable signal peptide with biological properties distinct from Rec. Retrovirology 2009; 6:17. [PMID: 19220907 PMCID: PMC2649029 DOI: 10.1186/1742-4690-6-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/16/2009] [Indexed: 11/26/2022] Open
Abstract
Background The human endogenous retrovirus HERV-K(HML-2) family is associated with testicular germ cell tumors (GCT). Various HML-2 proviruses encode viral proteins such as Env and Rec. Results We describe here that HML-2 Env gives rise to a 13 kDa signal peptide (SP) that harbors a different C-terminus compared to Rec. Subsequent to guiding Env to the endoplasmatic reticulum (ER), HML-2 SP is released into the cytosol. Biochemical analysis and confocal microscopy demonstrated that similar to Rec, SP efficiently translocates to the granular component of nucleoli. Unlike Rec, SP does not shuttle between nucleus and cytoplasm. SP is less stable than Rec as it is subjected to proteasomal degradation. Moreover, SP lacks export activity towards HML-2 genomic RNA, the main function of Rec in the original viral context, and SP does not interfere with Rec's RNA export activity. Conclusion SP is a previously unrecognized HML-2 protein that, besides targeting and translocation of Env into the ER lumen, may exert biological functions distinct from Rec. HML-2 SP represents another functional similarity with the closely related Mouse Mammary Tumor Virus that encodes an Env-derived SP named p14. Our findings furthermore support the emerging concept of bioactive SPs as a conserved retroviral strategy to modulate their host cell environment, evidenced here by a "retroviral fossil". While the specific role of HML-2 SP remains to be elucidated in the context of human biology, we speculate that it may be involved in immune evasion of GCT cells or tumorigenesis.
Collapse
Affiliation(s)
- Alessia Ruggieri
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
68
|
Mertz JA, Lozano MM, Dudley JP. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Retrovirology 2009; 6:10. [PMID: 19192308 PMCID: PMC2661877 DOI: 10.1186/1742-4690-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE). Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
69
|
Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009; 6:8. [PMID: 19166625 PMCID: PMC2657110 DOI: 10.1186/1742-4690-6-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/24/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors.
Collapse
|
70
|
Müllner M, Salmons B, Günzburg WH, Indik S. Identification of the Rem-responsive element of mouse mammary tumor virus. Nucleic Acids Res 2008; 36:6284-94. [PMID: 18835854 PMCID: PMC2577329 DOI: 10.1093/nar/gkn608] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) has previously been shown to encode a functional homolog of the human immunodeficiency virus-1 (HIV-1) nuclear export protein Rev, termed Rem. Here, we show that deletion of the rem gene from a MMTV molecular clone interfered with the nucleo-cytoplasmic transport of genomic length viral mRNA and resulted in a loss of viral capsid (Gag) protein production. Interestingly, nuclear export of single-spliced env mRNA was only moderately affected, suggesting that this transcript is, at least to some extent, transported via a distinct, Rem-independent export mechanism. To identify and characterize a cis-acting RNA element required for Rem responsiveness (RmRE), extensive computational and functional analyses were performed. By these means a region of 490 nt corresponding to positions nt 8517–nt 9006 in the MMTV reference strain was identified as RmRE. Deletion of this fragment, which spans the env-U3 junction region, abolished Gag expression. Furthermore, insertion of this sequence into a heterologous HIV-1-based reporter construct restored, in the presence of Rem, HIV-1 Gag expression to levels determined for the Rev/RRE export system. These results clearly demonstrate that the identified region, whose geometry resembles that of other retroviral-responsive elements, is capable to functionally substitute, in the presence of Rem, for Rev/RRE and thus provide unequivocal evidence that MMTV is a complex retrovirus.
Collapse
Affiliation(s)
- Matthias Müllner
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
71
|
Ross SR. MMTV infectious cycle and the contribution of virus-encoded proteins to transformation of mammary tissue. J Mammary Gland Biol Neoplasia 2008; 13:299-307. [PMID: 18661104 PMCID: PMC2715138 DOI: 10.1007/s10911-008-9090-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/04/2008] [Indexed: 02/08/2023] Open
Abstract
Mouse mammary tumor virus has served as a major model for the study of breast cancer since its discovery 1920's as a milk-transmitted agent. Much is known about in vivo infection by this virus, which initially occurs in lymphocytes that then carry virus to mammary tissue. In addition to the virion proteins, MMTV encodes a number of accessory proteins that facilitate high level in vivo infection. High level infection of lymphoid and mammary epithelial cells ensures efficient passage of virus to the next generation. Since MMTV causes mammary tumors by insertional activation of oncogenes, which is thought to be a stochastic process, mammary epithelial cell transformation is a by-product of the infectious cycle. The envelope protein may also participate in transformation. Although there have been several reports of a similar virus in human breast cancer, the existence of a human MTV has not been definitely established.
Collapse
Affiliation(s)
- Susan R Ross
- Department of Microbiology/Abramson Family Cancer Center, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 1914, USA.
| |
Collapse
|
72
|
The RNA transport element RTE is essential for IAP LTR-retrotransposon mobility. Virology 2008; 377:88-99. [PMID: 18485438 DOI: 10.1016/j.virol.2008.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/17/2008] [Accepted: 04/03/2008] [Indexed: 11/21/2022]
Abstract
We previously identified an RNA transport element (RTE) present at a high copy number in the mouse genome. Here, we show that a related element, RTE-D, is part of a mobile LTR-retrotransposon, which belongs to a family of intracisternal A-particle related elements (IAP). We demonstrate that RTE-D is essential for the mobility of the retrotransposon and it can be substituted by other known RNA export signals. RTE-deficient IAP transcripts are retained in the nucleus, while the RTE-containing transcripts accumulate in the cytoplasm allowing Gag protein expression. RTE-D acts as a posttranscriptional control element in a heterologous reporter mRNA and is activated by the cellular RNA binding protein 15 (RBM15), as reported for the previously described RTE. We identified a complex family of RTE-containing IAPs in mouse and mapped the active RTE-D-containing IAPs to the Mmr10 group of LTR-retrotransposons. These data reveal that, despite a complex evolutionary history, retroelements and retroviruses share the dependency on posttranscriptional regulation.
Collapse
|
73
|
Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; 72:157-96, table of contents. [PMID: 18322038 PMCID: PMC2268285 DOI: 10.1128/mmbr.00033-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
74
|
Dultz E, Hildenbeutel M, Martoglio B, Hochman J, Dobberstein B, Kapp K. The signal peptide of the mouse mammary tumor virus Rem protein is released from the endoplasmic reticulum membrane and accumulates in nucleoli. J Biol Chem 2008; 283:9966-76. [PMID: 18270201 DOI: 10.1074/jbc.m705712200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal signal sequences mediate endoplasmic reticulum (ER) targeting and insertion of nascent secretory and membrane proteins and are, in most cases, cleaved off by signal peptidase. The mouse mammary tumor virus envelope protein and its alternative splice variant Rem have an unusually long signal sequence, which contains a nuclear localization signal. Although the envelope protein is targeted to the ER, inserted, and glycosylated, Rem has been described as a nuclear protein. Rem as well as a truncated version identical to the cleaved signal sequence have been shown to function as nuclear export factors for intron-containing transcripts. Using transiently transfected cells, we found that Rem is targeted to the ER, where the C-terminal portion is translocated and glycosylated. The signal sequence is cleaved off and accumulates in nucleoli. In a cell-free in vitro system, the generation of the Rem signal peptide depends on the presence of microsomal membranes. In vitro and in cells, the signal peptide initially accumulates in the membrane and is subsequently released into the cytosol. This release does not depend on processing by signal peptide peptidase, an intramembrane cleaving protease that can mediate the liberation of signal peptide fragments from the ER membrane. Our study suggests a novel pathway by which a signal peptide can be released from the ER membrane to fulfill a post-targeting function in a different compartment.
Collapse
Affiliation(s)
- Elisa Dultz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Mayerhofstrasse 1, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Indik S, Günzburg WH, Kulich P, Salmons B, Rouault F. Rapid spread of mouse mammary tumor virus in cultured human breast cells. Retrovirology 2007; 4:73. [PMID: 17931409 PMCID: PMC2169256 DOI: 10.1186/1742-4690-4-73] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 10/11/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of mouse mammary tumor virus (MMTV) as a causative agent in human breast carcinogenesis has recently been the subject of renewed interest. The proposed model is based on the detection of MMTV sequences in human breast cancer but not in healthy breast tissue. One of the main drawbacks to this model, however, was that until now human cells had not been demonstrated to sustain productive MMTV infection. RESULTS Here, we show for the first time the rapid spread of mouse mammary tumor virus, MMTV(GR), in cultured human mammary cells (Hs578T), ultimately leading to the infection of every cell in culture. The replication of the virus was monitored by quantitative PCR, quantitative RT-PCR and immunofluorescence imaging. The infected human cells expressed, upon cultivation with dexamethasone, MMTV structural proteins and released spiked B-type virions, the infectivity of which could be neutralized by anti-MMTV antibody. Replication of the virus was efficiently blocked by an inhibitor of reverse transcription, 3'-azido-3'-deoxythymidine. The human origin of the infected cells was confirmed by determining a number of integration sites hosting the provirus, which were unequivocally identified as human sequences. CONCLUSION Taken together, our results show that human cells can support replication of mouse mammary tumor virus.
Collapse
Affiliation(s)
- Stanislav Indik
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine Vienna, Vienna, A-1210, Austria.
| | | | | | | | | |
Collapse
|
76
|
Felber BK, Zolotukhin AS, Pavlakis GN. Posttranscriptional Control of HIV‐1 and Other Retroviruses and Its Practical Applications. ADVANCES IN PHARMACOLOGY 2007; 55:161-97. [PMID: 17586315 DOI: 10.1016/s1054-3589(07)55005-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
77
|
Baum C, Schambach A, Bohne J, Galla M. Retrovirus Vectors: Toward the Plentivirus? Mol Ther 2006; 13:1050-63. [PMID: 16632409 DOI: 10.1016/j.ymthe.2006.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 01/19/2023] Open
Abstract
Recombinant retroviral vectors based upon simple gammaretroviruses, complex lentiviruses, or potentially nonpathogenic spumaviruses represent relatively well characterized tools that are widely used for stable gene transfer. Different members of the Retroviridae family have developed distinct and potentially useful features related to their life cycle. These natural differences can be exploited for specialized applications in gene therapy and could conceivably be combined to create future retroviral hybrid vectors, ideally incorporating the following features: an efficient, noncytopathic packaging system with low likelihood of recombination; serum resistance; an ability to pseudotype with cell-specific envelopes; high-fidelity reverse transcription before cell entry; unrestricted cytoplasmic transport and nuclear import; an insulated expression cassette; specific chromosomal targeting; and physiologic or regulated levels of transgene expression. We envisage that, compared to contemporary vectors, a hybrid vector combining these properties would have increased therapeutic efficacy and an enhanced biosafety profile. Many of the above goals will require the inclusion of nonretroviral components into vector particles or transgenes.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
78
|
Mertz JA, Simper MS, Lozano MM, Payne SM, Dudley JP. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J Virol 2006; 79:14737-47. [PMID: 16282474 PMCID: PMC1287593 DOI: 10.1128/jvi.79.23.14737-14747.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) has been classified as a simple retrovirus with two accessory genes, dut and sag. Cloned MMTV proviruses carrying a trimethoprim (trim) cassette in the envelope gene were defective for Gag protein production and the nuclear export of unspliced gag-pol RNA. Complementation experiments indicated that a trans-acting product was responsible for the Gag defect of such mutants. Analysis of MMTV-infected cells revealed the presence of a novel, doubly spliced RNA that encodes a putative product of 301 amino acids. Overexpression of cDNA from this RNA increased Gag levels from env mutant proviruses or reporter gene expression from unspliced mRNAs and allowed detection of a 33-kDa protein product, which has been named regulator of export of MMTV mRNA, or Rem. The Rem N terminus has motifs similar to the Rev-like export proteins of complex retroviruses, and mutation of the nuclear localization signal (NLS) abolished RNA export and detection within the nucleus. The Rem C terminus has few identifiable features, but removal of this domain increased Rem-mediated export, suggesting an autoregulatory function. A reporter vector developed from the 3' end of the MMTV provirus was Rem responsive and required both the presence of the MMTV env-U3 junction and a functional Crm1 pathway. The identification of a third accessory protein from a doubly spliced transcript suggests that MMTV is the first murine complex retrovirus to be documented. Manipulation of the MMTV genome may provide mouse models for human retroviral diseases, such as AIDS.
Collapse
Affiliation(s)
- Jennifer A Mertz
- The University of Texas at Austin, Section of Molecular Genetics and Microbiology, One University Station, A5000, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
79
|
Rungaldier S, Nejad Asl SB, Günzburg WH, Salmons B, Rouault F. Abundant authentic MMTV-Env production from a recombinant provirus lacking the major LTR promoter. Virology 2005; 342:201-14. [PMID: 16140354 DOI: 10.1016/j.virol.2005.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 06/22/2005] [Accepted: 07/25/2005] [Indexed: 11/26/2022]
Abstract
As for all retroviruses, the env mRNA is thought to be a singly spliced product of the full-length transcript from the P1 promoter in the MMTV provirus. However, we show that envelope proteins can be produced in an inducible manner in the absence of the P1 promoter from an otherwise complete provirus. Furthermore, we demonstrate in both reporter assays and the proviral context that the R region is necessary for protein production in transiently transfected cells and in a number of independent, stably transfected cell clones. Using 5' RACE, we show that a sequence within the R region functions as a TATA less initiator. The most distal part of the 5' LTR (first 804 bases of the U3 region) is required for the activity of the R-initiator element only when the provirus is integrated. Transfection with a full-length proviral DNA carrying a deletion of P1 in the 5' LTR resulted in the establishment of stable cell clones able to produce Env in a dexamethasone-dependent manner but not infectious virions. We therefore conclude that in the absence of P1, R can drive transcription of the spliced env mRNA but not genomic viral RNA.
Collapse
Affiliation(s)
- Stefanie Rungaldier
- Research Institute of Virology and Biomedicine, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | | | | | | |
Collapse
|