51
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. Equine herpesvirus-1 suppresses type-I interferon induction in equine endothelial cells. Vet Immunol Immunopathol 2015; 167:122-9. [PMID: 26275803 DOI: 10.1016/j.vetimm.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most common and important respiratory viral pathogens of horses. EHV-1 in horses replicates initially in the respiratory epithelium and then spreads systematically to endothelial cells lining the small blood vessels in the uterus and spinal cord, and highly pathogenic virus strains can produce aborted fetuses or myeloencephalopathy. Like other herpes viruses, EHV-1 employs a variety of mechanisms for immune evasion. Some herpes viruses down-regulate the type-I interferon (IFN) response to infection, but such activity has not been described for EHV-1. Here, in an in vitro system utilizing an established equine endothelial cell line, we studied the temporal effect on IFN-β responses following infection with the neuropathogenic T953 strain of EHV-1. Results show that after an early induction of IFN-β, the virus actively shut down further production of IFN-β and this was correlated with expression of the viral late genes. Expression of the IFN response factor viperin, a marker of host cell type-I IFN responses, was also suppressed by T953 virus infection. EHV-1-mediated suppression of host type-I IFN responses may play an important role in EHV-1 pathogenesis and the mechanism of this, presumably involving a viral late gene product, warrants investigation.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
52
|
Yang H, Fung SY, Xu S, Sutherland DP, Kollmann TR, Liu M, Turvey SE. Amino Acid-Dependent Attenuation of Toll-like Receptor Signaling by Peptide-Gold Nanoparticle Hybrids. ACS NANO 2015; 9:6774-84. [PMID: 26083966 DOI: 10.1021/nn505634h] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Manipulation of immune responsiveness using nanodevices provides a potential approach to treat human diseases. Toll-like receptor (TLR) signaling plays a central role in the pathophysiology of many acute and chronic human inflammatory diseases, and pharmacological regulation of TLR responses is anticipated to be beneficial in many of these inflammatory conditions. Here we describe the discovery of a unique class of peptide-gold nanoparticle hybrids that exhibit a broad inhibitory activity on TLR signaling, inhibiting signaling through TLRs 2, 3, 4, and 5. As exemplified using TLR4, the nanoparticles were found to inhibit both arms of TLR4 signaling cascade triggered by the prototypical ligand, lipopolysaccharide (LPS). Through structure-activity relationship studies, we identified the key chemical components of the hybrids that contribute to their immunomodulatory activity. Specifically, the hydrophobicity and aromatic ring structure of the amino acids on the peptides were essential for modulating TLR4 responses. This work enhances our fundamental understanding of the role of nanoparticle surface chemistry in regulating innate immune signaling, and identifies specific nanoparticle hybrids that may represent a unique class of anti-inflammatory therapeutics for human inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Shuyun Xu
- ‡Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | - Mingyao Liu
- ‡Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | |
Collapse
|
53
|
Liu X, Guo C, Huang Y, Zhang X, Chen Y. Inhibition of porcine reproductive and respiratory syndrome virus by Cecropin D in vitro. INFECTION GENETICS AND EVOLUTION 2015; 34:7-16. [PMID: 26102162 DOI: 10.1016/j.meegid.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Although vaccines are commercially available for the control of PRRSV infection, no vaccination regimen has been proved sustained success in terms of generating a protective immune response. Therefore, the development of novel antivirals is urgently needed. Antimicrobial peptides display broad-spectrum antimicrobial activities against bacteria, fungi, and viruses and play an important role in host innate immune response. Here, we tested whether Cecropin D (CD) could inhibit PRRSV infection and replication in vitro. The inhibitory effect of CD occurred during viral attachment and the early period of viral entry into Marc-145 cells. CD also attenuated virus-induced apoptosis during the late phase of PRRSV infection and suppressed virus release in Marc-145 cells, which might contribute to the inhibition of PRRSV infection. Similar inhibitory effects on PRRSV infection were also found with CD treatment in porcine alveolar macrophages, the major target cell type of PRRSV infection in pigs in vivo. These findings suggest that CD has the potential to develop a new therapeutic agent against PRRSV infection.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| | - Yumao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Xiaoyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
54
|
van Kasteren PB, Knaap RCM, van den Elzen P, Snijder EJ, Balasuriya UBR, van den Born E, Kikkert M. In vivo assessment of equine arteritis virus vaccine improvement by disabling the deubiquitinase activity of papain-like protease 2. Vet Microbiol 2015; 178:132-7. [PMID: 25975520 PMCID: PMC7117436 DOI: 10.1016/j.vetmic.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/03/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022]
Abstract
Equine arteritis virus lacking PLP2 DUB activity is replication competent in vivo. EAV lacking PLP2 DUB activity protects against challenge with KY84 virus. An enhanced immune response was not detected using this experimental set-up.
Arteriviruses are a family of positive-stranded RNA viruses that includes the prototypic equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV). Although several vaccines against these viruses are commercially available there is room for improvement, especially in the case of PRRSV. The ability of arteriviruses to counteract the immune response is thought to decrease the efficacy of the current modified live virus vaccines. We have recently shown that the deubiquitinase (DUB) activity of EAV papain-like protease 2 (PLP2) is important for the inhibition of innate immune activation during infection. A vaccine virus lacking PLP2 DUB activity may therefore be more immunogenic and provide improved protection against subsequent challenge than its DUB-competent counterpart. To test this hypothesis, twenty Shetland mares were randomly assigned to one of three groups. Two groups were vaccinated, either with DUB-positive (n = 9) or DUB-negative (n = 9) recombinant EAV. The third group (n = 2) was not vaccinated. All horses were subsequently challenged with the virulent KY84 strain of EAV. Both vaccine viruses proved to be replication competent in vivo. In addition, the DUB-negative virus provided a similar degree of protection against clinical disease as its DUB-positive parental counterpart. Owing to the already high level of protection provided by the parental virus, a possible improvement due to inactivation of PLP2 DUB activity could not be detected under these experimental conditions. Taken together, the data obtained in this study warrant further in vivo investigations into the potential of using DUB-mutant viruses for the improvement of arterivirus vaccines.
Collapse
Affiliation(s)
- Puck B van Kasteren
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Robert C M Knaap
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Paul van den Elzen
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Udeni B R Balasuriya
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, 40546-0099 Lexington, KY, USA
| | - Erwin van den Born
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
55
|
Rascón-Castelo E, Burgara-Estrella A, Mateu E, Hernández J. Immunological features of the non-structural proteins of porcine reproductive and respiratory syndrome virus. Viruses 2015; 7:873-86. [PMID: 25719944 PMCID: PMC4379552 DOI: 10.3390/v7030873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/08/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps) in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses.
Collapse
Affiliation(s)
- Edgar Rascón-Castelo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD) Carretera a la Victoria Km 0.6, C.P. 83304 Hermosillo, Sonora, Mexico.
| | - Alexel Burgara-Estrella
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD) Carretera a la Victoria Km 0.6, C.P. 83304 Hermosillo, Sonora, Mexico.
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD) Carretera a la Victoria Km 0.6, C.P. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
56
|
Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus. Virus Res 2014; 202:101-11. [PMID: 25529442 PMCID: PMC7132515 DOI: 10.1016/j.virusres.2014.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Five PRRSV viral proteins are shown to inhibit type I IFN induction and signaling by targeting different intracellular signaling intermediates. PRRSV regulates the expression of IL-10 and TNFα. PRRSV modulates apoptosis during infection. MicroRNAs might play significant roles in subverting immunity for PRRSV. PRRSV escapes from adaptive immunity by impairing antigen presentation, activating Tregs, and ADE.
Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV–host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines.
Collapse
|
57
|
Gao J, Ji P, Zhang M, Wang X, Li N, Wang C, Xiao S, Mu Y, Zhao Q, Du T, Sun Y, Hiscox JA, Zhang G, Zhou EM. GP5 expression in Marc-145 cells inhibits porcine reproductive and respiratory syndrome virus infection by inducing beta interferon activity. Vet Microbiol 2014; 174:409-418. [DOI: 10.1016/j.vetmic.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
|
58
|
Brinton MA, Di H, Vatter HA. Simian hemorrhagic fever virus: Recent advances. Virus Res 2014; 202:112-9. [PMID: 25455336 PMCID: PMC4449332 DOI: 10.1016/j.virusres.2014.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
SHFV induces hemorrhagic fever in macaques but not in African nonhuman primates. SHFV infection of macaque but not baboon cells induces proinflammatory cytokines. Unique N- and C-terminal genes encoded by SHFV were functionally analyzed. PLP1γ can cleave at upstream sites as well as at the expected downstream site. Eight minor structural proteins are required for infectious virus production.
The simian hemorrhagic fever virus (SHFV) genome differs from those of other members of the family Arteriviridae in encoding three papain-like one proteases (PLP1α, PLP1β and PLP1γ) at the 5′ end and two adjacent sets of four minor structural proteins at the 3′ end. The catalytic Cys and His residues and cleavage sites for each of the SHFV PLP1s were predicted and their functionality was tested in in vitro transcription/translation reactions done with wildtype or mutant polyprotein constructs. Mass spectrometry analyses of selected autoproteolytic products confirmed cleavage site locations. The catalytic Cys of PLP1α is unusual in being adjacent to an Ala instead of a Typ. PLP1γ cleaves at both downstream and upstream sites. Intermediate precursor and alternative cleavage products were detected in the in vitro transcription/translation reactions but only the three mature nsp1 proteins were detected in SHFV-infected MA104 cell lysates with SHFV nsp1 protein-specific antibodies. The duplicated sets of SHFV minor structural proteins were predicted to be functionally redundant. A stable, full-length, infectious SHFV-LVR cDNA clone was constructed and a set of mutant infectious clones was generated each with the start codon of one of the minor structural proteins mutated. All eight of the minor structural proteins were found to be required for production of infectious extracellular virus. SHFV causes a fatal hemorrhagic fever in macaques but asymptomatic, persistent infections in natural hosts such as baboons. SHFV infections were compared in macrophages and myeloid dendritic cells from baboons and macaques. Virus yields were higher from macaque cells than from baboon cells. Macrophage cultures from the two types of animals differed dramatically in the percentage of cells infected. In contrast, similar percentages of myeloid dendritic cells were infected but virus replication was efficient in the macaque cells but inefficient in the baboon cells. SHFV infection induced the production of pro-inflammatory cytokines, including IL-1β, IL-6, IL-12/23(p40), TNF-α and MIP-1α, in macaque cells but not baboon cells.
Collapse
Affiliation(s)
| | - Han Di
- Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
59
|
Han M, Yoo D. Engineering the PRRS virus genome: updates and perspectives. Vet Microbiol 2014; 174:279-295. [PMID: 25458419 PMCID: PMC7172560 DOI: 10.1016/j.vetmic.2014.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/03/2022]
Abstract
We review PRRSV infectious clones and their applications. 14 infectious clones are available so far for genotypes I and II. Genomic mutations, insertions, deletions, and replacements are successful. We discuss advances and utilization of PRRSV reverse genetics and future potential.
Porcine reproductive and respiratory syndrome virus (PRRSV) is endemic in most pig producing countries worldwide and causes enormous economic losses to the pork industry. Infectious clones for PRRSV have been constructed, and so far at least 14 different infectious clones are available representing both genotypes I and II. Two strategies have been taken for progeny reconstitution: RNA transfection and DNA transfection. Mutations, insertions, deletions, and replacements of the viral genome have been employed to study the structure function relationship, foreign gene expression, functional complementation, and virulence determinants. Essential regions and non-essential regions for viral replication have been identified in both the coding regions and non-encoding regions. Foreign sequences have successfully been inserted into the nsp2 and N regions and in the space between ORF1b and ORF2a. Chimeras between member viruses in the family Arteriviridae have also been constructed and utilized to study cell tropism and functional complementation. This review discusses the advances and utilization of PRRSV reverse genetics and its potential for future research.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
60
|
Han M, Yoo D. Modulation of innate immune signaling by nonstructural protein 1 (nsp1) in the family Arteriviridae. Virus Res 2014; 194:100-9. [PMID: 25262851 PMCID: PMC7114407 DOI: 10.1016/j.virusres.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Arteriviruses infect immune cells and may cause persistence in infected hosts. Inefficient induction of pro-inflammatory cytokines and type I IFNs are observed during infection of this group of viruses, suggesting that they may have evolved to escape the host immune surveillance for efficient survival. Recent studies have identified viral proteins regulating the innate immune signaling, and among these, nsp1 (nonstructural protein 1) is the most potent IFN antagonist. For porcine reproductive and respiratory syndrome virus (PRRSV), individual subunits (nsp1α and nsp1β) of nsp1 suppress type I IFN production. In particular, PRRSV-nsp1α degrades CREB (cyclic AMP responsive element binding)-binding protein (CBP), a key component of the IFN enhanceosome, whereas PRRSV-nsp1β degrades karyopherin-α1 which is known to mediate the nuclear import of ISGF3 (interferon-stimulated gene factor 3). All individual subunits of nsp1 of PRRSV, equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) appear to contain IFN suppressive activities. As with PRRSV-nsp1α, CBP degradation is evident by LDV-nsp1α and partly by SHFV-nsp1γ. This review summarizes the biogenesis and the role of individual subunits of nsp1 of arteriviruses for innate immune modulation.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| |
Collapse
|
61
|
Chen Z, Li M, He Q, Du J, Zhou L, Ge X, Guo X, Yang H. The amino acid at residue 155 in nonstructural protein 4 of porcine reproductive and respiratory syndrome virus contributes to its inhibitory effect for interferon-β transcription in vitro. Virus Res 2014; 189:226-34. [DOI: 10.1016/j.virusres.2014.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 12/24/2022]
|
62
|
Vatter HA, Di H, Donaldson EF, Radu GU, Maines TR, Brinton MA. Functional analyses of the three simian hemorrhagic fever virus nonstructural protein 1 papain-like proteases. J Virol 2014; 88:9129-40. [PMID: 24899184 PMCID: PMC4136243 DOI: 10.1128/jvi.01020-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/27/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The N-terminal region of simian hemorrhagic fever virus (SHFV) nonstructural polyprotein 1a is predicted to encode three papain-like proteases (PLP1α, PLP1β, and PLP1γ). Catalytic residues and cleavage sites for each of the SHFV PLP1s were predicted by alignment of the SHFV PLP1 region sequences with each other as well as with those of other arteriviruses, and the predicted catalytic residues were shown to be proximal by homology modeling of the SHFV nsp1s on porcine respiratory and reproductive syndrome virus (PRRSV) nsp1 crystal structures. The functionality of the predicted catalytic Cys residues and cleavage sites was tested by analysis of the autoproteolytic products generated in in vitro transcription/translation reactions done with wild-type or mutant SHFV nsp1 constructs. Cleavage sites were also analyzed by mass spectroscopy analysis of selected immunoprecipitated cleavage products. The data showed that each of the three SHFV PLP1s is an active protease. Cys63 was identified as the catalytic Cys of SHFV PLP1α and is adjacent to an Ala instead of the canonical Tyr observed in other arterivirus PLP1s. SHFV PLP1γ is able to cleave at both downstream and upstream nsp1 junction sites. Although intermediate precursor polyproteins as well as alternative products generated by each of the SHFV PLP1s cleaving at sites within the N-terminal region of nsp1β were produced in the in vitro reactions, Western blotting of SHFV-infected, MA104 cell lysates with SHFV nsp1 protein-specific antibodies detected only the three mature nsp1 proteins. IMPORTANCE SHFV is unique among arteriviruses in having three N-terminal papain-like protease 1 (PLP1) domains. Other arteriviruses encode one or two active PLP1s. This is the first functional study of the SHFV PLP1s. Analysis of the products of in vitro autoprocessing of an N-terminal SHFV nonstructural 1a polypeptide fragment showed that each of the three SHFV PLP1s is active, and the predicted catalytic Cys residues and cleavage sites for each PLP1 were confirmed by testing mutant constructs. Several unique features of the SHFV PLP1s were discovered. The SHFV PLP1α catalytic Cys63 is unique among arterivirus PLP1s in being adjacent to an Ala instead of a Trp. Other arterivirus PLP1s cleave only in cis at a single downstream site, but SHFV PLP1γ can cleave at both the downstream nsp1γ-nsp2 and upstream nsp1β-nsp1γ junctions. The three mature nsp1 proteins were produced both in the in vitro reactions and in infected cells.
Collapse
Affiliation(s)
- Heather A Vatter
- Department of Biology, Georgia State University, Atlanta Georgia, USA
| | - Han Di
- Department of Biology, Georgia State University, Atlanta Georgia, USA
| | - Eric F Donaldson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gertrud U Radu
- Department of Biology, Georgia State University, Atlanta Georgia, USA
| | - Taronna R Maines
- Department of Biology, Georgia State University, Atlanta Georgia, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta Georgia, USA
| |
Collapse
|
63
|
Porcine reproductive and respiratory syndrome virus nonstructural protein 4 antagonizes beta interferon expression by targeting the NF-κB essential modulator. J Virol 2014; 88:10934-45. [PMID: 25008936 DOI: 10.1128/jvi.01396-14] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo). Subsequently, we showed that the inhibition of poly(I·C)-induced IFN-β production by PRRSV was dependent on the blocking of NF-κB signaling pathways. By screening PRRSV nonstructural and structural proteins, we demonstrated that nonstructural protein 4 (nsp4), a viral 3C-like serine protease, significantly suppressed IFN-β expression. Moreover, we verified that nsp4 inhibited NF-κB activation induced by signaling molecules, including RIG-I, VISA, TRIF, and IKKβ. nsp4 was shown to target the NF-κB essential modulator (NEMO) at the E349-S350 site to mediate its cleavage. Importantly, nsp4 mutants with defective protease activity abolished its ability to cleave NEMO and inhibit IFN-β production. These findings might have implications for our understanding of PRRSV pathogenesis and its mechanisms for evading the host immune response. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a major agent of respiratory diseases in pigs. Like many other viruses, PRRSV has evolved a variety of strategies to evade host antiviral innate immunity for survival and propagation. In this study, we show that PRRSV nsp4 is a novel antagonist of the NF-κB signaling pathway, which is responsible for regulating the expression of type I interferons and other crucial cytokines. We then investigated the underlying mechanism used by nsp4 to suppress NF-κB-mediated IFN-β production. We found that nsp4 interfered with the NF-κB signaling pathway through the cleavage of NEMO (a key regulator of NF-κB signaling) at the E349-S350 site, leading to the downregulation of IFN-β production induced by poly(I·C). The data presented here may help us to better understand PRRSV pathogenesis.
Collapse
|
64
|
Antagonizing interferon-mediated immune response by porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:315470. [PMID: 25101271 PMCID: PMC4101967 DOI: 10.1155/2014/315470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 11/25/2022]
Abstract
Interferons (IFNs) are important components in innate immunity involved in the first line of defense to protect host against viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV) leads to severe economic losses for swine industry since being first identified in early 1990s. PRRSV interplays with host IFN production and IFN-activated signaling, which may contribute to the delayed onset and low level of neutralizing antibodies, as well as weak cell-mediated immune response in infected pigs. PRRSV encodes several proteins that act as antagonists for the IFN signaling. In this review, we summarized the various strategies used by PRRSV to antagonize IFN production and thwart IFN-activated antiviral signaling, as well as the variable interference with IFN-mediated immune response by different PRRSV strains. Thorough understanding of the interaction between PRRSV and host innate immune response will facilitate elucidation of PRRSV pathogenesis and development of a better strategy to control PRRS.
Collapse
|
65
|
Equine arteritis virus does not induce interferon production in equine endothelial cells: identification of nonstructural protein 1 as a main interferon antagonist. BIOMED RESEARCH INTERNATIONAL 2014; 2014:420658. [PMID: 24967365 PMCID: PMC4055586 DOI: 10.1155/2014/420658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022]
Abstract
The objective of this study was to investigate the effect of equine arteritis virus (EAV) on type I interferon (IFN) production. Equine endothelial cells (EECs) were infected with the virulent Bucyrus strain (VBS) of EAV and expression of IFN-β was measured at mRNA and protein levels by quantitative real-time RT-PCR and IFN bioassay using vesicular stomatitis virus expressing the green fluorescence protein (VSV-GFP), respectively. Quantitative RT-PCR results showed that IFN-β mRNA levels in EECs infected with EAV VBS were not increased compared to those in mock-infected cells. Consistent with quantitative RT-PCR, Sendai virus- (SeV-) induced type I IFN production was inhibited by EAV infection. Using an IFN-β promoter-luciferase reporter assay, we subsequently demonstrated that EAV nsps 1, 2, and 11 had the capability to inhibit type I IFN activation. Of these three nsps, nsp1 exhibited the strongest inhibitory effect. Taken together, these data demonstrate that EAV has the ability to suppress the type I IFN production in EECs and nsp1 may play a critical role to subvert the equine innate immune response.
Collapse
|
66
|
Jing H, Fang L, Wang D, Ding Z, Luo R, Chen H, Xiao S. Porcine reproductive and respiratory syndrome virus infection activates NOD2-RIP2 signal pathway in MARC-145 cells. Virology 2014; 458-459:162-71. [PMID: 24928048 DOI: 10.1016/j.virol.2014.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding oligomerization domains (NOD)-like receptors (NLRs) evolve as a group of germline-encoded receptors that detect cytosolic pathogen-associated molecular patterns. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the swine industry worldwide. By examining the expression kinetics of ten selected NLRs, NOD2 and NLRP3 were found to be continuously up-regulated in PRRSV-infected MARC-145 cells during 48 h of post-infection. Further study revealed that PRRSV infection enhanced the expression and phosphorylation of RIP2. Knockdown of NOD2 and RIP2 by siRNA significantly decreased PRRSV-induced phosphorylation of NF-κB subunit p65, JNK, Erk and p38 MAPK, as well as the expression of IL-6, IL-8, TNF-α, and RANTES in MARC-145 cells. Moreover, increased expression of NOD2 and RIP2 mRNA were observed in alveolar macrophages isolated from PRRSV-challenged piglets at 3, 7 and 10 day post-challenge. Collectively, our results revealed that PRRSV infection activates NOD2-RIP2 signaling pathway to induce pro-inflammatory response.
Collapse
Affiliation(s)
- Huiyuan Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
67
|
Han M, Kim CY, Rowland RRR, Fang Y, Kim D, Yoo D. Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses. Virology 2014; 458-459:136-50. [PMID: 24928046 DOI: 10.1016/j.virol.2014.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/03/2014] [Accepted: 04/22/2014] [Indexed: 11/27/2022]
Abstract
Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV-nsp1 and LDV-nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV-nsp1 remained uncleaved. SHFV-nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV-nsp1αβ and SHFV-nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV-nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV-nsp1β, LDV-nsp1β, EAV-nsp1, and SHFV-nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV-nsp1α, CBP degradation was evident in cells expressing LDV-nsp1α and SHFV-nsp1γ, but no such degradation was observed for EAV-nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ from each other.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Chi Yong Kim
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Daewoo Kim
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.
| |
Collapse
|
68
|
Du Y, Bi J, Liu J, Liu X, Wu X, Jiang P, Yoo D, Zhang Y, Wu J, Wan R, Zhao X, Guo L, Sun W, Cong X, Chen L, Wang J. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 2014; 88:4908-20. [PMID: 24554650 PMCID: PMC3993825 DOI: 10.1128/jvi.03668-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/07/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease virus (FMDV) causes a highly contagious, debilitating disease in cloven-hoofed animals with devastating economic consequences. To survive in the host, FMDV has evolved to antagonize the host type I interferon (IFN) response. Previous studies have reported that the leader proteinase (L(pro)) and 3C(pro) of FMDV are involved in the inhibition of type I IFN production. However, whether the proteins of FMDV can inhibit type I IFN signaling is less well understood. In this study, we first found that 3C(pro) of FMDV functioned to interfere with the JAK-STAT signaling pathway. Expression of 3C(pro) significantly reduced the transcript levels of IFN-stimulated genes (ISGs) and IFN-stimulated response element (ISRE) promoter activity. The protein level, tyrosine phosphorylation of STAT1 and STAT2, and their heterodimerization were not affected. However, the nuclear translocation of STAT1/STAT2 was blocked by the 3C(pro) protein. Further mechanistic studies demonstrated that 3C(pro) induced proteasome- and caspase-independent protein degradation of karyopherin α1 (KPNA1), the nuclear localization signal receptor for tyrosine-phosphorylated STAT1, but not karyopherin α2, α3, or α4. Finally, we showed that the protease activity of 3C(pro) contributed to the degradation of KPNA1 and thus blocked STAT1/STAT2 nuclear translocation. Taken together, results of our experiments describe for the first time a novel mechanism by which FMDV evolves to inhibit IFN signaling and counteract host innate antiviral responses. IMPORTANCE We show that 3C(pro) of FMDV antagonizes the JAK-STAT signaling pathway by blocking STAT1/STAT2 nuclear translocation. Furthermore, 3C(pro) induces KPNA1 degradation, which is independent of proteasome and caspase pathways. The protease activity of 3C(pro) contributes to the degradation of KPNA1 and governs the ability of 3C(pro) to inhibit the JAK-STAT signaling pathway. This study uncovers a novel mechanism evolved by FMDV to antagonize host innate immune responses.
Collapse
Affiliation(s)
- Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingshan Bi
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Jiyu Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology/National Foot and Mouth Disease Reference Laboratory/Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Renzhong Wan
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaomin Zhao
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
69
|
The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference. Virology 2014; 454-455:247-53. [PMID: 24725951 DOI: 10.1016/j.virol.2014.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 11/24/2022]
Abstract
Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease, recently exacerbated by the emergence of highly pathogenic strains (HP-PRRSV). Within the nonstructural protein 2 of PRRSV is a deubiquitinating enzyme domain belonging to the viral ovarian tumor (vOTU) protease superfamily. vOTUs, which can greatly vary in their preference for their host ubiquitin (Ub) and Ub-like substrates such as interferon stimulated gene 15 (ISG15), have been implicated as a potential virulence factor. Since various strains of PRRSV have large variations in virulence, the specificity of vOTUs from two PRRSV strains of varying virulence were determined. While both vOTUs showed de-ubiquitinating activity and markedly low deISGylating activity, HP-PRRSV demonstrated a strong preference for lysine 63-linked poly-Ubiquitin, tied to innate immune response regulation. This represents the first report of biochemical activity unique to HP-PRRSV that has implications for a potential increase in immunosuppression and virulence.
Collapse
|
70
|
Liu S, Dong Y, Wang T, Zhao S, Yang K, Chen X, Zheng C. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA.hy926 cells. Diabetes Res Clin Pract 2014; 103:482-8. [PMID: 24418398 DOI: 10.1016/j.diabres.2013.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/17/2013] [Accepted: 12/18/2013] [Indexed: 12/19/2022]
Abstract
AIMS In this study, we investigated the effects of visceral adipose tissue-derived serpin (vaspin), a newly discovered adipocytokine, on nuclear factor-kappa B (NF-κB) and its downstream molecules in proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-1 (IL-1), stimulated human endothelial EA.hy926 cells to elucidate the role of vaspin in the inflammatory states of endothelium. METHODS A NF-κB luciferase reporter system was constructed and stably transfected into human endothelial cell line EA.hy926. Following transfection, EA.hy926 cells were pretreated with various concentrations of vaspin (0-320 ng/ml) before TNF-α and IL-1 stimulation. The transcription activity of NF-κB was determined using luciferase reporter assay. Expression levels of NF-κB downstream inflammatory cytokines, TNF-α, IL-1 and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). Expressions of adhesion molecules and chemokines, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) were determined by quantitative real-time PCR (RT-PCR) and western blot in mRNA and protein levels, respectively. RESULTS Results showed that vaspin inhibited TNF-α and IL-1 mediated activation of NF-κB and its downstream molecules in a concentration-dependent manner (P<0.05). CONCLUSIONS We conclude that vaspin protected endothelial cells from proinflammatory cytokines induced inflammation by inhibition of NF-κB and its downstream molecules.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030032, China.
| | - Yanting Dong
- Department of Biochemistry, Shanxi Medical University, Taiyuan 030001, China
| | - Tong Wang
- Department of Medical Statistics, School of Public Health of Shanxi Medical University, Taiyuan 030001, China
| | - Shujun Zhao
- Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030032, China
| | - Kun Yang
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030032, China
| | - Xiaoqin Chen
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030032, China
| | - Caihong Zheng
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
71
|
Wang X, Zhang H, Abel AM, Young AJ, Xie L, Xie Z. Role of phosphatidylinositol 3-kinase (PI3K) and Akt1 kinase in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Arch Virol 2014; 159:2091-6. [DOI: 10.1007/s00705-014-2016-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/02/2014] [Indexed: 11/30/2022]
|
72
|
A novel isolate with deletion in GP3 gene of porcine reproductive and respiratory syndrome virus from mid-eastern China. BIOMED RESEARCH INTERNATIONAL 2014; 2014:306130. [PMID: 24693538 PMCID: PMC3944904 DOI: 10.1155/2014/306130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
PRRSV strain SH1211 was isolated from the lung tissue of a piglet on a large-scale pig farm with approximately 30% morbidity and 50% mortality in mid-eastern China in 2012. The full-length genome of SH1211 was 15 313 nt in size, excluding the polyadenylated sequences, and shared 94.9% nucleotide sequence identity with the HP-PRRSV strain, JXA1. The GP2 and GP5 proteins of SH1211 shared only 91.5% and 85.1% amino acid sequence identities with those of the JXA1, respectively. A deletion at amino acid positions 68 and 69 was identified in the GP3 protein of SH1211, compared with the GP3 of Type-2 PRRSV isolates. A phylogenetic tree based on the nucleotide sequence of the complete genome showed that SH1211 is the most closely related to other HP-PRRSV strains isolated in China. However, phylogenetic analysis based on the GP2 and GP5 proteins showed that SH1211 is the most closely related to the QYYZ strain. A recombination analysis indicated that SH1211 might have been generated through recombination events between the JXA1 and QYYZ in which the GP2 and GP5 coding sequences were exchanged. Thus, SH1211 is a novel PRRSV strain with significant variation. Our analysis of SH1211 provides insight into the role of genetic variation in the antigenicity of PRRSVs in China.
Collapse
|
73
|
Differential responses of disease-resistant and disease-susceptible primate macrophages and myeloid dendritic cells to simian hemorrhagic fever virus infection. J Virol 2013; 88:2095-106. [PMID: 24335289 DOI: 10.1128/jvi.02633-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian hemorrhagic fever virus (SHFV) causes a fatal hemorrhagic fever in macaques but an asymptomatic, persistent infection in baboons. To investigate factors contributing to this differential infection outcome, the targets of SHFV infection, macrophages (MΦs) and myeloid dendritic cells (mDCs), were differentiated from macaque and baboon peripheral blood monocytes and used to compare viral replication and cell responses. SHFV replicated in >90% of macaque MΦs but in only ∼10% of baboon MΦs. Although SHFV infected ∼50% of macaque and baboon mDCs, virus replication was efficient in macaque but not in baboon mDCs. Both types of macaque cultures produced higher virus yields than baboon cultures. A more efficient type I interferon response and the production of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, IL-12/23(p40), tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein 1α (MIP-1α), in response to SHFV infection were observed in macaque but not baboon cultures, suggesting less efficient counteraction of these responses by viral proteins in macaque cells. Baboon cultures produced higher levels of IL-10 than macaque cultures both prior to and after SHFV infection. In baboon but not macaque cell cultures, SHFV infection upregulated IL-10R1, a subunit of the IL-10 receptor (IL-10R), and also SOCS3, a negative regulator of proinflammatory cytokine production. Incubation of macaque cultures with human IL-10 before and/or after SHFV infection decreased production of IL-6, IL-1β, and MIP-1α but not TNF-α, suggesting a role for IL-10 in suppressing SHFV-induced proinflammatory cytokine production in macaques.
Collapse
|
74
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
75
|
Li Y, Zhu L, Lawson SR, Fang Y. Targeted mutations in a highly conserved motif of the nsp1β protein impair the interferon antagonizing activity of porcine reproductive and respiratory syndrome virus. J Gen Virol 2013; 94:1972-1983. [PMID: 23761406 DOI: 10.1099/vir.0.051748-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Non-structural protein 1β (nsp1β) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a papain-like cysteine protease (PLPβ) domain and has been identified as the main viral protein antagonizing the host innate immune response. In this study, nsp1β was determined to suppress the expression of reporter genes as well as to suppress 'self-expression' in transfected cells, and this activity appeared to be associated with its interferon (IFN) antagonist function. To knock down the effect of nsp1β on IFN activity, a panel of site-specific mutations in nsp1β was analysed. Double mutations K130A/R134A (type 1 PRRSV) or K124A/R128A (type 2 PRRSV) targeting a highly conserved motif of nsp1β, GKYLQRRLQ (in bold), impaired the ability of nsp1β to suppress IFN-β and reporter gene expression, as well as to suppress 'self-expression' in vitro. Subsequently, viable recombinant viruses vSD01-08-K130A/R134A and vSD95-21-K124A/R128A, containing double mutations in the GKYLQRRLQ motif were generated using reverse genetics. In comparison with WT viruses, these nsp1β mutants showed impaired growth ability in infected cells, but the PLPβ cleavage function was not directly affected. The expression of selected innate immune genes was determined in vSD95-21-K124A/R128A mutant-infected cells. The results consistently showed that gene expression levels of IFN-α, IFN-β and IFN-stimulated gene 15 were upregulated in cells that were infected with the vSD95-21-K124A/R128A compared with that of WT virus. These data suggest that PRRSV nsp1β may selectively suppress cellular gene expression, including expression of genes involved in the host innate immune function. Modifying the key residues in the highly conserved GKYLQRRLQ motif could attenuate virus growth and improve the cellular innate immune responses.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Longchao Zhu
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Steven R Lawson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Ying Fang
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
76
|
Degradation of CREB-binding protein and modulation of type I interferon induction by the zinc finger motif of the porcine reproductive and respiratory syndrome virus nsp1α subunit. Virus Res 2013; 172:54-65. [DOI: 10.1016/j.virusres.2012.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022]
|
77
|
Charerntantanakul W, Yamkanchoo S, Kasinrerk W. Plasmids expressing porcine interferon gamma up-regulate pro-inflammatory cytokine and co-stimulatory molecule expression which are suppressed by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2013; 153:107-17. [PMID: 23507439 DOI: 10.1016/j.vetimm.2013.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 01/15/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the pro-inflammatory immune response following infection of myeloid antigen-presenting cells. A reduced pro-inflammatory immune response modulates PRRSV replication, clinical disease, and persistent infection of the virus. Numerous efforts have been made to enhance the pro-inflammatory immune response to PRRSV, but only a few attempts have so far elicited satisfactory results. The present study aims to evaluate in vitro the potential of plasmids expressing porcine interferon gamma (pcDNA-IFNγ) to enhance the expression of pro-inflammatory immune parameters in PRRSV-inoculated monocytes. Naïve blood monocytes from eight PRRSV-seronegative pigs were inoculated with PRRSV and subsequently transfected with pcDNA-IFNγ or pcDNA (empty plasmid vector) and stimulated with lipopolysaccharide (LPS). The mRNA expression levels of IFNγ, interleukin-1 beta (IL-1β), IL-10, IL-12p40, tumor necrosis factor alpha (TNFα), transforming growth factor beta (TGFβ), CD80, and CD86 were evaluated by real-time PCR. The IFNγ, IL-10, and TNFα protein production was determined by ELISA. Compared with PRRSV-inoculated monocyte control, transfection with pcDNA-IFNγ, but not pcDNA, significantly enhanced IFNγ, TNFα, CD80, and CD86 mRNA expression, and IFNγ and TNFα protein production. A slight increase in IL-1β and IL-12p40 mRNA expression was also observed. Neither pcDNA-IFNγ nor pcDNA transfection affected IL-10 and TGFβ expression. Our results thus suggest that pcDNA-IFNγ may be an effective immunostimulator for potentiating the pro-inflammatory immune response to PRRSV.
Collapse
|
78
|
Shi X, Zhang X, Wang F, Wang L, Qiao S, Guo J, Luo C, Wan B, Deng R, Zhang G. The zinc-finger domain was essential for porcine reproductive and respiratory syndrome virus nonstructural protein-1α to inhibit the production of interferon-β. J Interferon Cytokine Res 2013; 33:328-34. [PMID: 23428052 DOI: 10.1089/jir.2012.0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused one of the most economically devastating and pandemic diseases of swine. Previous studies have documented that PRRSV nonstructural protein-1α (nsp1α) was an interferon antagonist, but the mechanism by which nsp1α inhibited the interferon (IFN)-β production was unclear. Here, by site-directed mutagenesis of the predicted zinc-coordinating residues of the zinc-finger (ZF) domain of nsp1α or by deletion of the ZF domain of nsp1α, we explored whether the ZF domain was required for nsp1α to disrupt the IFN-β production. The results showed that both mutagenesis of the predicted zinc-coordinating residues of the ZF domain and deletion of the ZF domain made nsp1α lose its interferon antagonism activity. In conclusion, our present work indicated that the ZF domain of nsp1α was necessary for nsp1α to inhibit the IFN-β induction.
Collapse
Affiliation(s)
- Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
MiR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-κB pathway. PLoS One 2013; 8:e55838. [PMID: 23409058 PMCID: PMC3566999 DOI: 10.1371/journal.pone.0055838] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/02/2013] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the swine industry worldwide since the late 1980s. To investigate the impact of cellular microRNAs (miRNAs) on the replication of PRRSV, we screened 10 highly conserved miRNAs implicated in innate immunity or antiviral function and identified miR-125b as an inhibitor of PRRSV replication. Virus titer and western blot assays demonstrated that miR-125b reduced PRRSV replication and viral gene expression in a dose-dependent manner in both MARC-145 cell line and primary porcine alveolar macrophages. Mechanistically, miR-125b did not target the PRRSV genome. Rather, it inhibited activation of NF-κB, which we found to be required for PRRSV replication. PRRSV, in turn, down-regulated miR-125b expression post-infection to promote viral replication. Collectively, miR-125b is an antiviral host factor against PRRSV, but it is subject to manipulation by PRRSV. Our study reveals an example of manipulation of a cellular miRNA by an arterivirus to re-orchestrate host gene expression for viral propagation and sheds new light on targeting host factors to develop effective control measures for PRRS.
Collapse
|
80
|
Nedialkova DD, Gorbalenya AE, Snijder EJ. Arterivirus Papain-like Proteinase 1β. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7150162 DOI: 10.1016/b978-0-12-382219-2.00499-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Nedialkova DD, Gorbalenya AE, Snijder EJ. Arterivirus Papain-like Proteinase 1α. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7149378 DOI: 10.1016/b978-0-12-382219-2.00498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
82
|
Provost C, Jia JJ, Music N, Lévesque C, Lebel MÈ, del Castillo JRE, Jacques M, Gagnon CA. Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line. Virol J 2012; 9:267. [PMID: 23148668 PMCID: PMC3546013 DOI: 10.1186/1743-422x-9-267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.
Collapse
Affiliation(s)
- Chantale Provost
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine (CRIP), Faculté de médecine vétérinaire Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, J2S 7C6, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Shi X, Chen J, Xing G, Zhang X, Hu X, Zhi Y, Guo J, Wang L, Qiao S, Lu Q, Zhang G. Amino acid at position 176 was essential for porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein 1α (nsp1α) as an inhibitor to the induction of IFN-β. Cell Immunol 2012; 280:125-31. [PMID: 23399837 DOI: 10.1016/j.cellimm.2012.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/18/2012] [Indexed: 01/26/2023]
Abstract
Previous studies have shown that porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1α (nsp1α) was the interferon (IFN) antagonist. However, the mechanism was unclear. In the present study, deletion of the carboxyl-terminal extension (CTE) (167-180 amino acid (aa)) made nsp1α lose its inhibitory ability to the induction of IFN-β. And a series of C-terminal truncated mutants for nsp1α showed that 1-176 aa of nsp1α was able to inhibit the induction of IFN-β and deleting or mutating the amino acid F176 made nsp1α not inhibit the induction of IFN-β. In conclusion, the CTE and the amino acid F176 were critical for nsp1α as the IFN antagonist and the region representing 167-176 was the minimal subunit of the CTE for nsp1α to retain its suppressive activity to the induction of IFN-β.
Collapse
Affiliation(s)
- Xibao Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Beura LK, Subramaniam S, Vu HLX, Kwon B, Pattnaik AK, Osorio FA. Identification of amino acid residues important for anti-IFN activity of porcine reproductive and respiratory syndrome virus non-structural protein 1. Virology 2012; 433:431-9. [PMID: 22995188 PMCID: PMC7111991 DOI: 10.1016/j.virol.2012.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 02/03/2023]
Abstract
The non-structural protein 1 (nsp1) of porcine reproductive and respiratory syndrome virus is partly responsible for inhibition of type I interferon (IFN) response by the infected host. By performing alanine-scanning mutagenesis, we have identified amino acid residues in nsp1α and nsp1β (the proteolytic products of nsp1) that when substituted with alanine(s) exhibited significant relief of IFN-suppression. A mutant virus (16-5A, in which residues 16–20 of nsp1β were substituted with alanines) encoding mutant nsp1β recovered from infectious cDNA clone was shown to be attenuated for growth in vitro and induced significantly higher amount of type I IFN transcripts in infected macrophages. In infected pigs, the 16-5A virus exhibited reduced growth at early times after infection but quickly regained wild type growth properties as a result of substitutions within the mutated sequences. The results indicate a strong selection pressure towards maintaining the IFN-inhibitory property of the virus for successful propagation in pigs.
Collapse
Affiliation(s)
- Lalit K Beura
- School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | | | | | | | | | | |
Collapse
|
85
|
Wang D, Fang L, Li K, Zhong H, Fan J, Ouyang C, Zhang H, Duan E, Luo R, Zhang Z, Liu X, Chen H, Xiao S. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J Virol 2012; 86:9311-22. [PMID: 22718831 PMCID: PMC3416110 DOI: 10.1128/jvi.00722-12] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/12/2012] [Indexed: 12/18/2022] Open
Abstract
Foot-and-mouth disease is a highly contagious viral illness of wild and domestic cloven-hoofed animals. The causative agent, foot-and-mouth disease virus (FMDV), replicates rapidly, efficiently disseminating within the infected host and being passed on to susceptible animals via direct contact or the aerosol route. To survive in the host, FMDV has evolved to block the host interferon (IFN) response. Previously, we and others demonstrated that the leader proteinase (L(pro)) of FMDV is an IFN antagonist. Here, we report that another FMDV-encoded proteinase, 3C(pro), also inhibits IFN-α/β response and the expression of IFN-stimulated genes. Acting in a proteasome- and caspase-independent manner, the 3C(pro) of FMDV proteolytically cleaved nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), a bridging adaptor protein essential for activating both NF-κB and interferon-regulatory factor signaling pathways. 3C(pro) specifically targeted NEMO at the Gln 383 residue, cleaving off the C-terminal zinc finger domain from the protein. This cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of 3C(pro) abrogated NEMO cleavage and the inhibition of IFN induction. Collectively, our data identify NEMO as a substrate for FMDV 3C(pro) and reveal a novel mechanism evolved by a picornavirus to counteract innate immune signaling.
Collapse
Affiliation(s)
- Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Huijuan Zhong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxiu Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Ouyang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Erzhen Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiologic Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
86
|
Chand RJ, Trible BR, Rowland RRR. Pathogenesis of porcine reproductive and respiratory syndrome virus. Curr Opin Virol 2012; 2:256-63. [DOI: 10.1016/j.coviro.2012.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
87
|
Post-transcriptional control of type I interferon induction by porcine reproductive and respiratory syndrome virus in its natural host cells. Viruses 2012; 4:725-33. [PMID: 22754646 PMCID: PMC3386621 DOI: 10.3390/v4050725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 12/28/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is not only a poor inducer of type I interferon but also inhibits the efficient induction of type I interferon by porcine transmissible gastroenteritis virus (TGEV) and synthetic dsRNA molecules, Poly I:C. However, the mechanistic basis by which PRRSV interferes with the induction of type I interferon in its natural host cells remains less well defined. The purposes of this review are to summarize the key findings in supporting the post-transcriptional control of type I interferon in its natural host cells and to propose the possible role of translational control in the regulation of type I interferon induction by PRRSV.
Collapse
|
88
|
Zhang H, Guo X, Nelson E, Christopher-Hennings J, Wang X. Porcine reproductive and respiratory syndrome virus activates the transcription of interferon alpha/beta (IFN-α/β) in monocyte-derived dendritic cells (Mo-DC). Vet Microbiol 2012; 159:494-8. [PMID: 22592217 PMCID: PMC7127654 DOI: 10.1016/j.vetmic.2012.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to be a poor inducer of interferon alpha/beta (IFN-α/β), which may contribute to the delayed development of adaptive immunity and the resultant viral persistence. However, the exact mechanism by which PRRSV inhibits the induction of IFN-α/β during infection of its natural host cells remains less well defined. Here, we show that PRRSV efficiently activates the transcription of IFN-α/β in porcine monocyte-derived dendritic cells (Mo-DC) in a time-dependent and transient manner; and this effect is dependent on the activation of phosphatidylinositol 3-kinase (PI3K). Despite the abundant IFN-α transcripts detected in PRRSV-infected Mo-DC, little or no detectable IFN-α is found in the supernatants and cell lysates of PRRSV-infected Mo-DC, suggesting that PRRSV either blocks the translation of IFN-α or inhibits the RNA processing and transport. Furthermore, we observed that PRRSV infection significantly reduced the induction of IFN-α by Poly I:C treatment; and virus replication is essential to the effect since heat-inactivated PRRSV has no effect on IFN-α induction by Poly I:C. Overall, our data provide evidence for the possible role of PI3K in the activation of the transcription of IFN-α/β by PRRSV. We conclude that PRRSV inhibits the induction of IFN-α in Mo-DC by as yet undefined post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hanmo Zhang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | |
Collapse
|
89
|
Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012; 4:424-46. [PMID: 22590680 PMCID: PMC3347317 DOI: 10.3390/v4040424] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β) are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS) is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non-structural proteins (Nsp1, Nsp2, and Nsp11) and a structural protein (N nucleocapsid protein) have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp's are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.
Collapse
|
90
|
Interaction between innate immunity and porcine reproductive and respiratory syndrome virus. Anim Health Res Rev 2012; 12:149-67. [PMID: 22152291 DOI: 10.1017/s1466252311000144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity provides frontline antiviral protection and bridges adaptive immunity against virus infections. However, viruses can evade innate immune surveillance potentially causing chronic infections that may lead to pandemic diseases. Porcine reproductive and respiratory syndrome virus (PRRSV) is an example of an animal virus that has developed diverse mechanisms to evade porcine antiviral immune responses. Two decades after its discovery, PRRSV is still one of the most globally devastating viruses threatening the swine industry. In this review, we discuss the molecular and cellular composition of the mammalian innate antiviral immune system with emphasis on the porcine system. In particular, we focus on the interaction between PRRSV and porcine innate immunity at cellular and molecular levels. Strategies for targeting innate immune components and other host metabolic factors to induce ideal anti-PRRSV protection are also discussed.
Collapse
|
91
|
Wongyanin P, Buranapraditkul S, Yoo D, Thanawongnuwech R, Roth JA, Suradhat S. Role of porcine reproductive and respiratory syndrome virus nucleocapsid protein in induction of interleukin-10 and regulatory T-lymphocytes (Treg). J Gen Virol 2012; 93:1236-1246. [PMID: 22422061 DOI: 10.1099/vir.0.040287-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection induces interleukin (IL)-10 production and increased numbers of PRRSV-specific regulatory T-lymphocytes in infected pigs. In the present study, the roles of the nucleocapsid (N) protein in induction of IL-10 and CD4(+)CD25(+)Foxp3(+) lymphocytes (T(reg)) were investigated. Transfection of porcine monocyte-derived dendritic cells (MoDCs) and pulmonary alveolar macrophages (PAMs) with a plasmid encoding N protein resulted in significant upregulation of IL-10 gene expression in the gene-transfected cells. Structural conformation, but not nuclear localization, of the expressed N protein was indicated to be essential for the ability to induce IL-10. Furthermore, the presence of recombinant N proteins in cultured PBMCs increased the number of IL-10-producing lymphocytes. Strong induction of IL-10-producing cells and T(reg) was observed when using N protein-pulsed MoDCs, suggesting an important role of MoDCs in induction of IL-10 and T(reg) by the N protein. Neutralization of IL-10 by addition of an anti-IL-10 antibody in the culture system resulted in marked reduction of PRRSV-induced T(reg) in the cultured PBMCs. Together, the data demonstrate the immunomodulatory properties of the PRRSV N protein and the linkage between IL-10 production and development of PRRSV-induced T(reg). Our results reveal an immunomodulatory function of the PRRSV N protein that may contribute to the unique immunological outcome observed following PRRSV infection.
Collapse
Affiliation(s)
- Piya Wongyanin
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supranee Buranapraditkul
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | - James A Roth
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sanipa Suradhat
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
92
|
Charerntantanakul W. Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. World J Virol 2012; 1:23-30. [PMID: 24175208 PMCID: PMC3782261 DOI: 10.5501/wjv.v1.i1.23] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 02/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the leading cause of economic casualty in swine industry worldwide. The virus can cause reproductive failure, respiratory disease, and growth retardation in the pigs. This review deals with current status of commercial PRRS vaccines presently used to control PRRS. The review focuses on the immunogenicity, protective efficacy and safety aspects of the vaccines. Commercial PRRS modified-live virus (MLV) vaccine elicits delayed humoral and cell-mediated immune responses following vaccination. The vaccine confers late but effective protection against genetically homologous PRRSV, and partial protection against genetically heterologous virus. The MLV vaccine is of concern for its safety as the vaccine virus can revert to virulence and cause diseases. PRRS killed virus (KV) vaccine, on the other hand, is safe but confers limited protection against either homologous or heterologous virus. The KV vaccine yet helps reduce disease severity when administered to the PRRSV-infected pigs. Although efforts have been made to improve the immunogenicity, efficacy and safety of PRRS vaccines, a better vaccine is still needed in order to protect against PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Wasin Charerntantanakul, Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
93
|
The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:508-14. [PMID: 22301694 DOI: 10.1128/cvi.05490-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5-pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5-pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5-pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5-pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV.
Collapse
|
94
|
Zhou A, Zhang S. Regulation of cell signaling and porcine reproductive and respiratory syndrome virus. Cell Signal 2012; 24:973-80. [PMID: 22274732 DOI: 10.1016/j.cellsig.2012.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 01/21/2023]
Abstract
In order to successfully survive in host and persistent infection, porcine reproductive and respiratory syndrome virus (PRRSV) utilized sophisticated mechanisms to suppress or escape from the host' innate and adaptive immune systems, and then changed host gene expression. Signaling pathways play a pivotal role in the regulation of diverse biological processes. Once signaling pathways are activated by a variety of different stimuli, immune responses will be triggered by the activation of chemokines, transcription factors, and inflammatory cytokines to adjust the aggressive replication and dissemination of viruses. PRRSV infection is able to get many signaling pathways activation that facilitates distinct cell functions to modulate immune responses. In addition, the cross-talk of cell signaling pathways also can regulate PRRSV replication and also is present in this review by recent finding.
Collapse
Affiliation(s)
- Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|