51
|
Pecman A, Kutnjak D, Gutiérrez-Aguirre I, Adams I, Fox A, Boonham N, Ravnikar M. Next Generation Sequencing for Detection and Discovery of Plant Viruses and Viroids: Comparison of Two Approaches. Front Microbiol 2017; 8:1998. [PMID: 29081770 PMCID: PMC5645528 DOI: 10.3389/fmicb.2017.01998] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023] Open
Abstract
Next generation sequencing (NGS) technologies are becoming routinely employed in different fields of virus research. Different sequencing platforms and sample preparation approaches, in the laboratories worldwide, contributed to a revolution in detection and discovery of plant viruses and viroids. In this work, we are presenting the comparison of two RNA sequence inputs (small RNAs vs. ribosomal RNA depleted total RNA) for the detection of plant viruses by Illumina sequencing. This comparison includes several viruses, which differ in genome organization and viroids from both known families. The results demonstrate the ability for detection and identification of a wide array of known plant viruses/viroids in the tested samples by both approaches. In general, yield of viral sequences was dependent on viral genome organization and the amount of viral reads in the data. A putative novel Cytorhabdovirus, discovered in this study, was only detected by analysing the data generated from ribosomal RNA depleted total RNA and not from the small RNA dataset, due to the low number of short reads in the latter. On the other hand, for the viruses/viroids under study, the results showed higher yields of viral sequences in small RNA pool for viroids and viruses with no RNA replicative intermediates (single stranded DNA viruses).
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ian Adams
- Fera Science Ltd., York, United Kingdom
| | | | - Neil Boonham
- Fera Science Ltd., York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
52
|
Xu C, Sun X, Taylor A, Jiao C, Xu Y, Cai X, Wang X, Ge C, Pan G, Wang Q, Fei Z, Wang Q. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. J Virol 2017; 91:e00173-17. [PMID: 28331089 PMCID: PMC5432854 DOI: 10.1128/jvi.00173-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases.IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases.
Collapse
Affiliation(s)
- Chenxi Xu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Angela Taylor
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Chenhui Ge
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Guanghui Pan
- Chongqing Academy of Agricultural Science, Chongqing, China
| | - Quanxi Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Zhangjun Fei
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Quanhua Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
53
|
Abstract
Viruses are the most abundant biological entities on earth and show remarkable diversity of genome sequences, replication and expression strategies, and virion structures. Evolutionary genomics of viruses revealed many unexpected connections but the general scenario(s) for the evolution of the virosphere remains a matter of intense debate among proponents of the cellular regression, escaped genes, and primordial virus world hypotheses. A comprehensive sequence and structure analysis of major virion proteins indicates that they evolved on about 20 independent occasions, and in some of these cases likely ancestors are identifiable among the proteins of cellular organisms. Virus genomes typically consist of distinct structural and replication modules that recombine frequently and can have different evolutionary trajectories. The present analysis suggests that, although the replication modules of at least some classes of viruses might descend from primordial selfish genetic elements, bona fide viruses evolved on multiple, independent occasions throughout the course of evolution by the recruitment of diverse host proteins that became major virion components.
Collapse
|
54
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
55
|
Alcalá-Briseño RI, Coşkan S, Londoño MA, Polston JE. Genome Sequence of Southern tomato virus in Asymptomatic Tomato 'Sweet Hearts'. GENOME ANNOUNCEMENTS 2017; 5:e01374-16. [PMID: 28209810 PMCID: PMC5313602 DOI: 10.1128/genomea.01374-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/30/2016] [Indexed: 11/20/2022]
Abstract
The genome sequence of Southern tomato virus in asymptomatic Solanum lycopersicum 'Sweet Hearts' (STV-Florida) in Florida was assembled from small RNAs sequenced by Illumina RNA-seq. The STV-Florida genome shared 99.0 to 99.9% similarity with full genome sequences from Bangladesh, China, Mexico, and the United States (Mississippi and North Carolina).
Collapse
Affiliation(s)
| | - Sevgi Coşkan
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Maria A Londoño
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
56
|
Fast detection of Southern tomato virus by one-step transcription loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2016; 241:11-14. [PMID: 27965036 DOI: 10.1016/j.jviromet.2016.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
Southern tomato virus (STV) is a double stranded RNA (dsRNA) virus belonging to genus Amalgavirus (family Amalgamaviridae) which has been detected in tomato plants showing stunting, fruit discoloration and size reduction. A one-step reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of STV in total RNA or sap extracts (obtained just by grinding in buffer) from STV-infected tomato plants by using a set of three primers pairs which were designed to the sequence of the STV putative coat protein. Amplification products were visualized by gel electrophoresis or direct staining of DNA. The sensitivity of RT-LAMP was identical to that of the conventional RT-PCR and less affected by the presence of polymerase inhibitors. STV was detected by RT-LAMP in different tomato tissues, i.e. leaves, roots, fruits and seeds. Also the virus was successfully detected by RT-LAMP from sap extracts obtained from field tomato plants whereas conventional RT-PCR did not. Results of this work show that RT-LAMP is a specific, rapid and cheap procedure to detect STV and it could be implemented on field surveys and sanitation programs.
Collapse
|
57
|
Nibert ML, Pyle JD, Firth AE. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 2016; 498:201-208. [PMID: 27596539 PMCID: PMC5052127 DOI: 10.1016/j.virol.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. A number of new plant amalgavirus sequences have been found in the TSA database. They provide support for a prevalent +1 frameshifting motif in amalgaviruses. A variant motif is identified in a subset of these viruses from related plants. The ORF1 product of amalgaviruses has propensity to form α-helical coiled coil. The TSA database is a useful source of new viral sequences for comparative analyses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Jesse D Pyle
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
58
|
Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog 2016; 12:e1005640. [PMID: 27253323 PMCID: PMC4890784 DOI: 10.1371/journal.ppat.1005640] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism. Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000 plant species worldwide. Understanding the underlying mechanisms that govern fungal development and pathogenicity may enable more effective and sustainable approaches to crop disease management and control. In most organisms, RNA silencing is an important mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small regulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise their function though effector proteins named Argonaute (AGO). Here, we investigated the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by generating deletions in genes encoding RNA silencing components. Severe defects were observed in both conidiation and conidia morphology in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the Δdcl1, Δdcl1Δdcl2 and Δago1 strains, and (2) to cause the conidiation and spore mutant phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antiviral mechanism to suppress viruses and their debilitating effects.
Collapse
|
59
|
Depierreux D, Vong M, Nibert ML. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Res 2016; 217:115-24. [PMID: 26951859 DOI: 10.1016/j.virusres.2016.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022]
Abstract
Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.
Collapse
Affiliation(s)
- Delphine Depierreux
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Program in Biochemistry and Molecular and Cellular Biology, University of Namur, Namur BE 5000, Belgium
| | - Minh Vong
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Molecules, Cells and Organisms, Harvard University, Cambridge, MA 02138, USA
| | - Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
60
|
Martinez J, Lepetit D, Ravallec M, Fleury F, Varaldi J. Additional heritable virus in the parasitic wasp Leptopilina boulardi: prevalence, transmission and phenotypic effects. J Gen Virol 2016; 97:523-535. [DOI: 10.1099/jgv.0.000360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Julien Martinez
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - David Lepetit
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Marc Ravallec
- Unité BiVi (Biologie Intégrative et Virologie des Insectes), Université Montpellier II-INRA 1231, France
| | - Frédéric Fleury
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Julien Varaldi
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| |
Collapse
|
61
|
Zhang R, Hisano S, Tani A, Kondo H, Kanematsu S, Suzuki N. A capsidless ssRNA virus hosted by an unrelated dsRNA virus. Nat Microbiol 2016; 1:15001. [DOI: 10.1038/nmicrobiol.2015.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
|
62
|
Padmanabhan C, Zheng Y, Li R, Fei Z, Ling KS. Complete Genome Sequence of Southern tomato virus Naturally Infecting Tomatoes in Bangladesh. GENOME ANNOUNCEMENTS 2015; 3:e01522-15. [PMID: 26722014 PMCID: PMC4698391 DOI: 10.1128/genomea.01522-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next-generation sequencing. The identified isolate, STV_BD-13, shares a high degree of sequence identity (99%) with several known STV isolates worldwide.
Collapse
Affiliation(s)
- Chellappan Padmanabhan
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Rugang Li
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Kai-Shu Ling
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| |
Collapse
|
63
|
Zhou Q, Zhong J, Hu Y, Da Gao B. A novel nonsegmented double-stranded RNA mycovirus identified in the phytopathogenic fungus Nigrospora oryzae shows similarity to partitivirus-like viruses. Arch Virol 2015; 161:229-32. [DOI: 10.1007/s00705-015-2644-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
|
64
|
Padmanabhan C, Zheng Y, Li R, Sun SE, Zhang D, Liu Y, Fei Z, Ling KS. Complete Genome Sequence of Southern tomato virus Identified in China Using Next-Generation Sequencing. GENOME ANNOUNCEMENTS 2015; 3:e01226-15. [PMID: 26494671 PMCID: PMC4616180 DOI: 10.1128/genomea.01226-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/01/2022]
Abstract
The complete genome sequence of Southern tomato virus (STV), a double-stranded RNA virus that affects tomato in China, was determined using small RNA deep sequencing. This Chinese isolate shares 99% sequence identity to other isolates from Mexico, France, Spain, and the United States. This is the first report of STV infecting tomatoes in Asia.
Collapse
Affiliation(s)
- Chellappan Padmanabhan
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Rugang Li
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Shu-E Sun
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Kai-Shu Ling
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| |
Collapse
|
65
|
Islam MS, Patwary NIA, Muzahid NH, Shahik SM, Sohel M, Hasan MA. A Systematic Study on Structure and Function of ATPase of Wuchereria bancrofti. Toxicol Int 2015; 21:269-74. [PMID: 25948965 PMCID: PMC4413409 DOI: 10.4103/0971-6580.155357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Analyzing the structures and functions of different proteins of Wuchereria bancrofti is very important because till date no effective drug or vaccine has been discovered to treat lymphatic filariasis (LF). ATPase is one of the most important proteins of Wuchereria bancrofti. Adenosine triphosphate (ATP) converts into adenosine diphosphate (ADP) and a free phosphate ion by the action of these ATPase enzymes. Energy releases from these dephosphorylation reactions drive the other chemical reactions in the cell. MATERIALS AND METHODS In this study we worked on the protein ATPase of Wuchereria bancrofti which has been annotated from National Center for Biotechnology Information (NCBI). Various computational tools and databases have been used to determine the various characteristics of that enzyme such as physiochemical properties, secondary structure, three-dimensional (3D) structure, conserved domain, epitope, and their molecular evolutionary relationship. RESULT Subcellular localization of ATPase was identified and we have found that 55.5% are localized in the cytoplasm. Secondary and 3D structure of this protein was also predicted. Both structure and function analysis of ATPase of Wuchereria bancrofti showed unique nonhomologous epitope sites and nonhomologous antigenicity sites. Moreover, it resulted in 15 ligand drug-binding sites in its tertiary structure. CONCLUSION Structure prediction of these proteins and detection of binding sites and antigenicity sites from this study would indicate a potential target aiding docking studies for therapeutic designing against filariasis.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong - 4331, Bangladesh
| | - Noman Ibna Amin Patwary
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong - 4331, Bangladesh
| | - Nazmul Hasan Muzahid
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong - 4331, Bangladesh
| | - Shah Md Shahik
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong - 4331, Bangladesh
| | - Md Sohel
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong - 4331, Bangladesh
| | - Md Anayet Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong - 4331, Bangladesh
| |
Collapse
|
66
|
Koloniuk I, Hrabáková L, Petrzik K. Molecular characterization of a novel amalgavirus from the entomopathogenic fungus Beauveria bassiana. Arch Virol 2015; 160:1585-8. [DOI: 10.1007/s00705-015-2416-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
|
67
|
Krupovic M, Dolja VV, Koonin EV. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol Direct 2015; 10:12. [PMID: 25886840 PMCID: PMC4377212 DOI: 10.1186/s13062-015-0047-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Plant viruses of the recently recognized family Amalgaviridae have monopartite double-stranded (ds) RNA genomes and encode two proteins: an RNA-dependent RNA polymerase (RdRp) and a putative capsid protein (CP). Whereas the RdRp of amalgaviruses has been found to be most closely related to the RdRps of dsRNA viruses of the family Partitiviridae, the provenance of their CP remained obscure. Here we show that the CP of amalgaviruses is homologous to the nucleocapsid proteins of negative-strand RNA viruses of the genera Phlebovirus (Bunyaviridae) and Tenuivirus. The chimeric genomes of amalgaviruses are a testament to the effectively limitless gene exchange between viruses that shaped the evolution of the virosphere.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, 75015, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
68
|
Botella L, Tuomivirta TT, Hantula J, Diez JJ, Jankovsky L. The European race of Gremmeniella abietina hosts a single species of Gammapartitivirus showing a global distribution and possible recombinant events in its history. Fungal Biol 2014; 119:125-35. [PMID: 25749364 PMCID: PMC7102696 DOI: 10.1016/j.funbio.2014.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022]
Abstract
The population genetics of the family Partitiviridae was studied within the European race of the conifer pathogen Gremmeniella abietina. One hundred sixty-two isolates were collected from different countries, including Canada, the Czech Republic, Finland, Italy, Montenegro, Serbia, Spain, Switzerland, Turkey and the United States. A unique species of G. abietina RNA virus-MS1 (GaRV-MS1) appears to occur indistinctly in G. abietina biotypes A and B, without a particular geographical distribution pattern. Forty-six isolates were shown to host GaRV-MS1 according to direct specific RT-PCR screening, and the virus was more common in biotype A than B. Phylogenetic analysis based on 46 partial coat protein (CP) cDNA sequences divided the GaRV-MS1 population into two closely related clades, while RNA-dependent RNA polymerase (RdRp) sequences revealed only one clade. The evolution of the virus appears to mainly occur through purifying selection but also through recombination. Recombination events were detected within alignments of the three complete CP and RdRp sequences of GaRV-MS1. This is the first time that recombination events have been directly identified in fungal partitiviruses and in G. abietina in particular. The results suggest that the population dynamics of GaRV-MS1 do not have a direct impact on the genetic structure of its host, G. abietina, though they might have had an innocuous ancestral relationship.
Collapse
Affiliation(s)
- Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic.
| | - Tero T Tuomivirta
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, 01301 Vantaa, Finland
| | - Jarkko Hantula
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, 01301 Vantaa, Finland
| | - Julio J Diez
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Avenida de Madrid 44, 34071 Palencia, Spain
| | - Libor Jankovsky
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| |
Collapse
|
69
|
Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 2014; 188:128-41. [DOI: 10.1016/j.virusres.2014.04.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
70
|
In planta protein interactions of three alphacryptoviruses and three betacryptoviruses from White Clover, Red Clover and Dill by bimolecular fluorescence complementation analysis. Viruses 2013; 5:2512-30. [PMID: 24113719 PMCID: PMC3814600 DOI: 10.3390/v5102512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/17/2022] Open
Abstract
Plant-infecting viruses of the genera Alpha- and Betacryptovirus within the family Partitiviridae cause no visible effects on their hosts and are only transmitted by cell division and through gametes. The bipartite dsRNA genome is encoding a RNA-dependent RNA polymerase (RdRp) and a coat protein (CP). Aside from sequence and structural analysis, the investigation of protein interactions is another step towards virus characterization. Therefore, ORFs of two type members White Clover Cryptic Virus 1 and 2 (WCCV-1 and WCCV-2), as well as the related viruses from Red Clover and Dill were introduced into a bimolecular fluorescence complementation assay. We showed CP-CP dimerization for all tested viruses with localization for alphacryptoviruses at the nuclear membrane and for betacryptoviruses close to cell walls within the cytoplasm. For CPs of WCCV-1 and WCCV-2, deletion mutants were created to determine internal interaction sites. Moreover, RdRp self-interaction was found for all viruses, whereas CP-RdRp interactions were only detectable for the alphacryptoviruses. An intra-genus test of CPs was successful in various virus combinations, whereas an inter-genus interaction of WCCV-1CP and WCCV-2CP was absent. This is the first report of in vivo protein interactions of members in the family Partitiviridae, indicating distinct features of the alpha- and betacryptoviruses.
Collapse
|
71
|
Li L, Liu J, Xu A, Wang T, Chen J, Zhu X. Molecular characterization of a trisegmented chrysovirus isolated from the radish Raphanus sativus. Virus Res 2013; 176:169-78. [PMID: 23850842 DOI: 10.1016/j.virusres.2013.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 12/24/2022]
Abstract
Radish (Raphanus sativus L.) is cultivated worldwide and is of agronomic importance. dsRNAs associated with partitiviruses were previously found in many R. sativus varieties. In this study, three large dsRNAs from radish were cloned using a modified single primer amplification technique. These three dsRNAs-of lengths 3638, 3517 and 3299 bp-shared conserved untranslated terminal regions, and each contained a major open reading frame putatively encoding the chrysoviral replicase, capsid protein and protease respectively. Isometric virus-like particles (VLP), approximately 45nm in diameter, were isolated from the infected radish plants. Northern blotting indicated that these dsRNAs were encapsidated in the VLP. The virus containing these dsRNA genome segments was named Raphanus sativus chrysovirus 1 (RasCV1). Phylogenetic analysis revealed that RasCV1 is a new species of the Chrysoviridae family and forms a plant taxon with another putative plant chrysovirus, Anthurium mosaic-associated virus (AmaCV). Furthermore, no fungal mycelia were observed in radish leaf tissues stained with trypan blue. These results indicated that RasCV1 is most likely a plant chrysovirus rather than a chrysovirus in symbiotic fungi. An exhaustive BLAST analysis of RasCV1 and AmaCV revealed that chrysovirus-like viruses might widely exist in eudicot and monocot plants and that endogenization of chrysovirus segments into plant genome might have ever happened.
Collapse
Affiliation(s)
- Liqiang Li
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
72
|
Yu C, Hernandez T, Zheng H, Yau SC, Huang HH, He RL, Yang J, Yau SST. Real time classification of viruses in 12 dimensions. PLoS One 2013; 8:e64328. [PMID: 23717598 PMCID: PMC3661469 DOI: 10.1371/journal.pone.0064328] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The International Committee on Taxonomy of Viruses authorizes and organizes the taxonomic classification of viruses. Thus far, the detailed classifications for all viruses are neither complete nor free from dispute. For example, the current missing label rates in GenBank are 12.1% for family label and 30.0% for genus label. Using the proposed Natural Vector representation, all 2,044 single-segment referenced viral genomes in GenBank can be embedded in [Formula: see text]. Unlike other approaches, this allows us to determine phylogenetic relations for all viruses at any level (e.g., Baltimore class, family, subfamily, genus, and species) in real time. Additionally, the proposed graphical representation for virus phylogeny provides a visualization of the distribution of viruses in [Formula: see text]. Unlike the commonly used tree visualization methods which suffer from uniqueness and existence problems, our representation always exists and is unique. This approach is successfully used to predict and correct viral classification information, as well as to identify viral origins; e.g. a recent public health threat, the West Nile virus, is closer to the Japanese encephalitis antigenic complex based on our visualization. Based on cross-validation results, the accuracy rates of our predictions are as high as 98.2% for Baltimore class labels, 96.6% for family labels, 99.7% for subfamily labels and 97.2% for genus labels.
Collapse
Affiliation(s)
- Chenglong Yu
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Troy Hernandez
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hui Zheng
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shek-Chung Yau
- Information Technology Services Center, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hsin-Hsiung Huang
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America
| | - Jie Yang
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
73
|
Martin RR, Polashock JJ, Tzanetakis IE. New and emerging viruses of blueberry and cranberry. Viruses 2012; 4:2831-52. [PMID: 23202507 PMCID: PMC3509675 DOI: 10.3390/v4112831] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/22/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022] Open
Abstract
Blueberry and cranberry are fruit crops native to North America and they are well known for containing bioactive compounds that can benefit human health. Cultivation is expanding within North America and other parts of the world raising concern regarding distribution of existing viruses as well as the appearance of new viruses. Many of the known viruses of these crops are latent or asymptomatic in at least some cultivars. Diagnosis and detection procedures are often non-existent or unreliable. Whereas new viruses can move into cultivated fields from the wild, there is also the threat that devastating viruses can move into native stands of Vaccinium spp. or other native plants from cultivated fields. The aim of this paper is to highlight the importance of blueberry and cranberry viruses, focusing not only on those that are new but also those that are emerging as serious threats for production in North America and around the world.
Collapse
Affiliation(s)
- Robert R. Martin
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA
| | | | - Ioannis E. Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
74
|
Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D. Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS One 2012; 7:e42147. [PMID: 22848734 PMCID: PMC3407116 DOI: 10.1371/journal.pone.0042147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xianhong Yi
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- * E-mail:
| |
Collapse
|
75
|
Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Peng Y, Yi X, Jiang D. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol Biol 2012; 12:91. [PMID: 22716092 PMCID: PMC3483285 DOI: 10.1186/1471-2148-12-91] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022] Open
Abstract
Background Double-stranded (ds) RNA fungal viruses are typically isometric single-shelled particles that are classified into three families, Totiviridae, Partitiviridae and Chrysoviridae, the members of which possess monopartite, bipartite and quadripartite genomes, respectively. Recent findings revealed that mycovirus-related dsRNA viruses are more diverse than previously recognized. Although an increasing number of viral complete genomic sequences have become available, the evolution of these diverse dsRNA viruses remains to be clarified. This is particularly so since there is little evidence for horizontal gene transfer (HGT) among dsRNA viruses. Results In this study, we report the molecular properties of two novel dsRNA mycoviruses that were isolated from a field strain of Sclerotinia sclerotiorum, Sunf-M: one is a large monopartite virus representing a distinct evolutionary lineage of dsRNA viruses; the other is a new member of the family Partitiviridae. Comprehensive phylogenetic analysis and genome comparison revealed that there are at least ten monopartite, three bipartite, one tripartite and three quadripartite lineages in the known dsRNA mycoviruses and that the multipartite lineages have possibly evolved from different monopartite dsRNA viruses. Moreover, we found that homologs of the S7 Domain, characteristic of members of the genus phytoreovirus in family Reoviridae are widely distributed in diverse dsRNA viral lineages, including chrysoviruses, endornaviruses and some unclassified dsRNA mycoviruses. We further provided evidence that multiple HGT events may have occurred among these dsRNA viruses from different families. Conclusions Our study provides an insight into the phylogeny and evolution of mycovirus-related dsRNA viruses and reveals that the occurrence of HGT between different virus species and the development of multipartite genomes during evolution are important macroevolutionary mechanisms in dsRNA viruses.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Blueberry latent virus: an amalgam of the Partitiviridae and Totiviridae. Virus Res 2010; 155:175-80. [PMID: 20888379 DOI: 10.1016/j.virusres.2010.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
Abstract
A new, symptomless virus was identified in blueberry. The dsRNA genome of the virus, provisionally named Blueberry latent virus (BBLV), codes for two putative proteins, one without any similarities to virus proteins and an RNA-dependent RNA polymerase. More than 35 isolates of the virus from different cultivars and geographic regions were partially or completely sequenced. BBLV, found in more than 50% of the material tested, has high degree of homogeneity as isolates show more than 99% nucleotide identity between them. Phylogenetic analysis clearly shows a close relationship between BBLV and members of the Partitiviridae, although its genome organization is related more closely to members of the Totiviridae. Transmission studies from three separate crosses showed that the virus is transmitted very efficiently by seed. These properties suggest that BBLV belongs to a new family of plant viruses with unique genome organization for a plant virus but signature properties of cryptic viruses including symptomless infection and very efficient vertical transmission.
Collapse
|
77
|
Abstract
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA.
| |
Collapse
|
78
|
A novel monopartite dsRNA virus from rhododendron. Arch Virol 2010; 155:1859-63. [PMID: 20721591 DOI: 10.1007/s00705-010-0770-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
A dsRNA molecule of 3.4 kbp was extracted from two great rhododendron samples from Great Smoky Mountains National Park. Sequencing of this molecule suggests that it represents the genome of an undescribed virus, for which the provisional name rhododendron virus A (RhVA) is proposed. In phylogenetic analyses, this virus clustered together with southern tomato virus and related viruses, forming a coherent and distinct clade among dsRNA viruses. RhVA likely belongs to a yet-to-be-established taxon of viruses with a non-segmented dsRNA genome.
Collapse
|
79
|
Rastgou M, Habibi MK, Izadpanah K, Masenga V, Milne RG, Wolf YI, Koonin EV, Turina M. Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J Gen Virol 2009; 90:2525-2535. [PMID: 19535502 PMCID: PMC4091139 DOI: 10.1099/vir.0.013086-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/15/2009] [Indexed: 01/12/2023] Open
Abstract
Ourmia melon virus (OuMV), Epirus cherry virus (EpCV) and Cassava virus C (CsVC) are three species placed in the genus Ourmiavirus. We cloned and sequenced their RNA genomes. The sizes of the three genomic RNAs of OuMV, the type member of the genus, were 2814, 1064 and 974 nt and each had one open reading frame. RNA1 potentially encoded a 97.5 kDa protein carrying the GDD motif typical of RNA-dependent RNA polymerases (RdRps). The putative RdRps of ourmiaviruses are distantly related to known viral RdRps, with the closest similarity and phylogenetic affinity observed with fungal viruses of the genus Narnaviridae. RNA2 encoded a 31.6 kDa protein which, expressed in bacteria as a His-tag fusion protein and in plants through agroinfiltration, reacted specifically with antibodies made against tubular structures found in the cytoplasm. The ORF2 product is significantly similar to movement proteins of the genus Tombusviridae, and phylogenetic analysis supported this evolutionary relationship. The product of OuMV ORF3 is a 23.8 kDa protein. This protein was also expressed in bacteria and plants, and reacted specifically with antisera against the OuMV coat protein. The sequence of the ORF3 protein showed limited but significant similarity to capsid proteins of several plant and animal viruses, although phylogenetic analysis failed to reveal its most likely origin. Taken together, these results indicate that ourmiaviruses comprise a unique group of plant viruses that might have evolved by reassortment of genomic segments of RNA viruses infecting hosts belonging to different eukaryotic kingdoms, in particular, fungi and plants.
Collapse
Affiliation(s)
- M Rastgou
- Department of Plant Protection, College of Agriculture, Urmia University, Urmia, Iran
- Plant Protection Department, Faculty of Horticultural Science & Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - M K Habibi
- Plant Protection Department, Faculty of Horticultural Science & Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - K Izadpanah
- Plant Virology Research Center, Shiraz University, Shiraz, Iran
| | - V Masenga
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - R G Milne
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Y I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - M Turina
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
80
|
Valverde RA, Sabanadzovic S. A novel plant virus with unique properties infecting Japanese holly fern. J Gen Virol 2009; 90:2542-2549. [PMID: 19570959 DOI: 10.1099/vir.0.012674-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel RNA virus with a bipartite genome has been found associated with an emerging disease affecting Japanese holly fern (Cyrtomium falcatum). Diseased Japanese holly fern plants showed a variety of foliar symptoms and reduction in size. The virus was transmitted by grafting, as well as through spores from an infected plant. Partially purified preparations of the virus from infected ferns contained quasi-spherical particles that ranged from 30 to 40 nm in diameter. Double-stranded RNA (dsRNA) analyses from diseased plants yielded two major molecules of approximately 6.2 and 3.0 kbp in size, together with three other dsRNAs ascertained to be the replicative forms of subgenomic RNAs. The organization of RNA1 of this novel virus resembles that of raspberry bushy dwarf virus (genus Idaeovirus), whereas the genomic RNA2 showed a distinct organization and evolutionary origin. Results of this study indicate that the virus detected in diseased ferns is an undescribed phytovirus, for which the name Japanese holly fern mottle virus (JHFMoV) is proposed. Furthermore, we postulate that JHFMoV has enough distinguishing features to represent the type species of a novel genus of plant viruses. Taking into account the original host of the virus, we propose the name Pteridovirus for this taxon.
Collapse
Affiliation(s)
- Rodrigo A Valverde
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sead Sabanadzovic
- Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
81
|
Liu W, Chen J. A double-stranded RNA as the genome of a potential virus infecting Vicia faba. Virus Genes 2009; 39:126-31. [DOI: 10.1007/s11262-009-0362-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/19/2009] [Indexed: 11/30/2022]
|