Kan J, Chellamuthu P, Obraztsova A, Moore JE, Nealson KH. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV).
J Appl Microbiol 2011;
111:329-37. [PMID:
21599813 DOI:
10.1111/j.1365-2672.2011.05055.x]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS
This study applied culture-dependent and molecular approaches to examine the bacterial communities at corrosion sites at Granite Mountain Record Vault (GMRV) in Utah, USA, with the goal of understanding the role of microbes in these unexpected corrosion events.
METHODS AND RESULTS
Samples from corroded steel chunks, rock particles and waters around the corrosion pits were collected for bacterial isolation and molecular analyses. Bacteria cultivated from these sites were identified as members of Alphaproteobacteria, Gammaproteobacteria, Firmicutes and Actinobacteria. In addition, molecular genetic characterization of the communities via nested-polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) indicated the presence of a broad spectrum of bacterial groups, including Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. However, neither cultivation nor molecular approaches identified sulfate-reducing bacteria (SRB), the bacteria commonly implicated as causative organisms were found associated with corrosive lesions in a process referred to as microbially influenced corrosion (MIC). The high diversity of bacterial groups at the corrosion sites in comparison with that seen in the source waters suggested to us a role for the microbes in corrosion, perhaps being an expression of a redox-active group of microbes transferring electrons, harvesting energy and producing biomass.
CONCLUSIONS
The corrosion sites contained highly diverse microbial communities, consistent with the involvement of microbial activities along the redox gradient at corrosion interface. We hypothesize an electron transport model for MIC, involving diverse bacterial groups such as acid-producing bacteria (APB), SRB, sulfur-oxidizing bacteria (SOB), metal-reducing bacteria (MRB) and metal-oxidizing bacteria (MOB).
SIGNIFICANCE AND IMPACT OF THE STUDY
The characterization of micro-organisms that influence metal-concrete corrosion at GMRV has significant implications for corrosion control in high-altitude freshwater environments. MIC provides a potential opportunity to further our understandings of extracellular electron transfer and interspecies communications.
Collapse