51
|
Barbance A, Della-Negra O, Chaussonnerie S, Delmas V, Muselet D, Ugarte E, Saaidi PL, Weissenbach J, Fischer C, Le Paslier D, Fonknechten N. Genetic Analysis of Citrobacter sp.86 Reveals Involvement of Corrinoids in Chlordecone and Lindane Biotransformations. Front Microbiol 2020; 11:590061. [PMID: 33240246 PMCID: PMC7680753 DOI: 10.3389/fmicb.2020.590061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
Chlordecone (Kepone®) and γ-hexachlorocyclohexane (γ-HCH or lindane) have been used for decades in the French West Indies (FWI) resulting in long-term soil and water pollution. In a previous work, we have identified a new Citrobacter species (sp.86) that is able to transform chlordecone into numerous products under anaerobic conditions. No homologs to known reductive dehalogenases or other candidate genes were found in the genome sequence of Citrobacter sp.86. However, a complete anaerobic pathway for cobalamin biosynthesis was identified. In this study, we investigated whether cobalamin or intermediates of cobalamin biosynthesis was required for chlordecone microbiological transformation. For this purpose, we constructed a set of four Citrobacter sp.86 mutant strains defective in several genes belonging to the anaerobic cobalamin biosynthesis pathway. We monitored chlordecone and its transformation products (TPs) during long-term incubation in liquid cultures under anaerobic conditions. Chlordecone TPs were detected in the case of cobalamin-producing Citrobacter sp.86 wild-type strain but also in the case of mutants able to produce corrinoids devoid of lower ligand. In contrast, mutants unable to insert the cobalt atom in precorrin-2 did not induce any transformation of chlordecone. In addition, it was found that lindane, previously shown to be anaerobically transformed by Citrobacter freundii without evidence of a mechanism, was also degraded in the presence of the wild-type strain of Citrobacter sp.86. The lindane degradation abilities of the various Citrobacter sp.86 mutant strains paralleled chlordecone transformation. The present study shows the involvement of cobalt-containing corrinoids in the microbial degradation of chlorinated compounds with different chemical structures. Their increased production in contaminated environments could accelerate the decontamination processes.
Collapse
Affiliation(s)
- Agnès Barbance
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Oriane Della-Negra
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sébastien Chaussonnerie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Valérie Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Delphine Muselet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Edgardo Ugarte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pierre-Loïc Saaidi
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Cécile Fischer
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Denis Le Paslier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Denis Le Paslier,
| | - Nuria Fonknechten
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Laboratoire de Cancérologie Expérimentale, IRCM, Institut François Jacob, CEA, Université Paris-Saclay, Fontenay aux Roses, France
- *Correspondence: Nuria Fonknechten,
| |
Collapse
|
52
|
Zhou Y, Zhang Y, Li Z, Hao C, Wang Y, Li Y, Dang Y, Sun X, Han G, Fu Y. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: Treatment of organic wastewater and catalytic principle. CHEMOSPHERE 2020; 259:127463. [PMID: 32599388 DOI: 10.1016/j.chemosphere.2020.127463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
To treat typical organic wastewater efficiently, a novel Fenton-like processes based on ZnO/CuO composite cathode induced by oxygen reduction reaction (ORR) electrocatalysis with enhanced electrocatalytic performance was established successfully. Electrochemical testing investigation indicated that the ZnO/CuO cathode possessed conspicuous redox peak and better conductivity than uncompounded electrodes. Additionally, the removal efficiency of methylene blue and its chemical oxygen demand (COD) reached 96.4% and 70.8% after 120 min, respectively. Next, the feasibility of the material in practical application was also discussed. Subsequently, electrocatalytic principle based on valence state changes of metal elements on the electrode surface were also studied by x-ray photoelectron spectroscopy (XPS). Redox reactions between the active species H2O2 and the species Cu+ promoting Fenton-like processes were deduced. Namely, the conversion of Cu(I) and Cu(II) on the electrode surface was accompanied by OH generation. The combination of ZnO and CuO improved the surface morphology, increasing the active site of ORR and the yield of H2O2, thus greatly enhanced the Fenton-like activity. Finally, the main intermediates were identified by Gas chromatography-mass spectrometer (GC-MS), and possible pathways for dye degradation were proposed. In short, the research of ZnO/CuO cathode provided great significance for heterogeneous Fenton-like degradation and also showed its application potential in water treatment and remediation.
Collapse
Affiliation(s)
- Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yichen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zonglu Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chentao Hao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guoping Han
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
53
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
54
|
Pérez de Vargas A, Cuadrado M, Camarero PR, Mateo R. An assessment of eggshell pigments as non-invasive biomarkers of organochlorine pollutants in gull-billed tern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139210. [PMID: 32438180 DOI: 10.1016/j.scitotenv.2020.139210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Eggshell pigmentation has been assessed as an indicator of exposure to environmental pollutants in birds, but these studies have only used reflectance spectrophotometry to measure such pigmentation. The present study is the first one that measures eggshell pigments and pollutants in the same eggs to explore their use as biomarkers in birds. We have studied the concentration of organochlorine pesticides and polychlorinated biphenyls (PCBs) in the content of 97 deserted eggs of gull-billed terns (Gelochelidon nilotica) after the abandonment of the colony in Mesas de Asta (Cádiz, S Spain) in 2012. Eggshell thickness and stage of embryo development were studied together along with the concentrations of protoporphyrin IX and biliverdin in eggshells. p,p'-DDE concentrations were high when compared with other studies done with terns in the Mediterranean basin in the past. p,p'-DDE and PCB levels associated with reduced reproductive success were found in 5.1% and 2.1% of the eggs respectively. Eggshell index was largely affected by the embryo development stage, which highlights the need of knowing this information to avoid potential biases in the interpretation of results. The concentrations of protoporphyrin IX and biliverdin in the eggs of gull-billed terns were negatively associated with DDTs levels, which seems to confirm previous observations with phylogenetically related species.
Collapse
Affiliation(s)
- Ana Pérez de Vargas
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Veterinary Diagnostic and Research Unit, Veterinary Section, Al Ain Zoo, PO Box 1204, United Arab Emirates
| | - Mariano Cuadrado
- ZooBotánico Jerez - Ayuntamiento de Jerez, Madreselva s/n, 11408 Jerez de la Frontera, Cádiz, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
55
|
Yang J, Qi X, Shen F, Qiu M, Smith RL. Complete dechlorination of lindane over N-doped porous carbon supported Pd catalyst at room temperature and atmospheric pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137534. [PMID: 32135324 DOI: 10.1016/j.scitotenv.2020.137534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Transfer hydrogenation is highly effective for dechlorinating priority organic pollutants in wastewater. Lindane could be completely dechlorinated at room temperature and atmospheric pressure via transfer hydrogenation, in which Pd (3.1 wt%) supported on chitosan-derived porous carbon (3.1Pd@A600) and formic acid (FA) were used as catalyst and hydrogen source, respectively. Favorable catalytic activity of 3.1Pd@A600 is attributed to pyridinic N of the support that allowed Pd nanoparticles to be well-dispersed in the solid and to pyridinic N-Pd interactions that enhanced FA decomposition over that observed for commercial carbon supported Pd catalyst (5Pd@AC). In the reaction system containing 3.1Pd@A600 and FA, 99.7% lindane conversion and 100% dechlorination efficiency could be achieved at 25 °C and atmospheric pressure within 60 min. Benzene and cyclohexane were identified as end-products of lindane dechlorination. The transfer hydrogenation strategy developed in this study has wide application to chlorinated organic pollutants contained in actual waste streams.
Collapse
Affiliation(s)
- Jirui Yang
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Xinhua Qi
- College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Feng Shen
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Mo Qiu
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Richard Lee Smith
- Research Center of Supercritical Fluid Technology, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
56
|
Acosta-Santoyo G, Llanos J, Raschitor A, Bustos E, Cañizares P, Rodrigo M. Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Gotelli MJ, Lo Balbo A, Caballero GM, Gotelli CA. Hexachlorocyclohexane phytoremediation using Eucalyptus dunnii of a contaminated site in Argentina. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1129-1136. [PMID: 32186400 DOI: 10.1080/15226514.2020.1736511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In 1996, a diagnostic study performed in a 16-ha field located in Buenos Aires Province (Argentina), where a chemical industry produced 1,2,3,4,5,6-hexachlorocyclohexane (HCH) from 1960 to 1978, showed contamination with HCH ranging from 10 to 20,000 mg kg-1 dry soil (706.4 mg kg-1 average). For remediation purposes, a forestation plan was put into practice in 1997 employing approximately 12,300 Eucalyptus dunnii seedlings which by 2016 where fully grown into trees that formed a forest where local fauna can be found. Midterm analysis done in 2005, when E. dunnii trees had developed into 8-10 m high trees, indicated that HCH was incorporated into leaves and logs and soil phytoremediation was progressing. Final quantitation analysis of HCH in soil performed in 2016 demonstrated that the 97.2% of the field area was effectively decontaminated with 98.1% overall average efficiency. Thus, this work is the first global example of a successful employment of E. dunnii trees for HCH phytoremediation purposes at field scale. These results may encourage other researchers to test the ability of E. dunnii to phytoremediate soils contaminated with other chlorinated compounds like polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).
Collapse
Affiliation(s)
- M J Gotelli
- Centro de Investigaciones Toxicológicas S.A., Juan Bautista Alberdi 2986, Buenos Aires, Argentina
| | - A Lo Balbo
- Centro de Investigaciones Toxicológicas S.A., Juan Bautista Alberdi 2986, Buenos Aires, Argentina
| | - G M Caballero
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Provincia de Buenos Aires, Argentina
| | - C A Gotelli
- Centro de Investigaciones Toxicológicas S.A., Juan Bautista Alberdi 2986, Buenos Aires, Argentina
| |
Collapse
|
58
|
Torralba-Sanchez TL, Bylaska EJ, Salter-Blanc AJ, Meisenheimer DE, Lyon MA, Tratnyek PG. Reduction of 1,2,3-trichloropropane (TCP): pathways and mechanisms from computational chemistry calculations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:606-616. [PMID: 31990012 DOI: 10.1039/c9em00557a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The characteristic pathway for degradation of halogenated aliphatic compounds in groundwater or other environments with relatively anoxic and/or reducing conditions is reductive dechlorination. For 1,2-dihalocarbons, reductive dechlorination can include hydrogenolysis and dehydrohalogenation, the relative significance of which depends on various structural and energetic factors. To better understand how these factors influence the degradation rates and products of the lesser halogenated hydrocarbons (in contrast to the widely studied per-halogenated hydrocarbons, like trichloroethylene and carbon tetrachloride), density functional theory calculations were performed to compare all of the possible pathways for reduction and elimination of 1,2,3-trichloropropane (TCP). The results showed that free energies of each species and reaction step are similar for all levels of theory, although B3LYP differed from the others. In all cases, the reaction coordinate diagrams suggest that β-elimination of TCP to allyl chloride followed by hydrogenolysis to propene is the thermodynamically favored pathway. This result is consistent with experimental results obtained using TCP, 1,2-dichloropropane, and 1,3-dichloropropane in batch experiments with zerovalent zinc (Zn0, ZVI) as a reductant.
Collapse
Affiliation(s)
- Tifany L Torralba-Sanchez
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Yang X, Zhang M, Lu T, Chen S, Sun X, Guan Y, Zhang Y, Zhang T, Sun R, Hang B, Wang X, Chen M, Chen Y, Xia Y. Metabolomics study and meta-analysis on the association between maternal pesticide exposome and birth outcomes. ENVIRONMENTAL RESEARCH 2020; 182:109087. [PMID: 32069748 DOI: 10.1016/j.envres.2019.109087] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pregnant women are exposed to a number of pesticides which are widely used in China. Their potential risks on reproduction and infants are still unknown. OBJECTIVE We aimed to investigate whether infant's birth weight and length of gestation were associated with levels of various pesticides in maternal blood based on Nanjing Medical University (NMU) affiliated hospitals data and meta-analysis, and also to explore the possible intermediate metabolomics pathways. METHODS Eligible subjects (n = 102) were included in this study from the affiliated hospitals of NMU. Gas chromatography tandem mass spectrometry (GC/MS) and Q-Exactive mass spectrometer (QE) were used to detect 37 pesticides (9 organophosphorus pesticides, 7 organochlorine pesticides, 5 carbamate pesticides, and 16 others) and 161 metabolites (53 in animo acid metabolism 47 in lipid metabolism, 18 in carbohydrate metabolism, 14 in nucleotide metabolism and 29 in other metabolisms) in maternal blood, respectively. Multi-linear regression and Bayesian kernel machine regression (BKMR) were performed to identify the association of single/mixed pesticide exposure in maternal blood with birth weight and length of gestation. Moreover, we conducted a meta-analysis including additional 2497 subjects to evaluate whether exposure to key pesticide, β-hexachlorocyclohexane (β-HCH) was associated with decreased birth weight globally. Mediation analysis was used to explore the metabolic alteration mediating the association between key pesticide exposure and birth outcomes. RESULTS We found that decreased birth weight was significantly associated with increasing levels of mecarbam and β-HCH. We did not find any association between length of gestation and these pesticides. Among pesticides with detection rate more than 50%, BKMR analysis found an overall negative association of mixed pesticides exposure with birth weight, and verified that β-HCH was the key pesticide for such effect. Meta-analysis revealed a significantly negative association between exposure to β-HCH and birth weight. Metabolomics identified three metabolites and five metabolites as significant mediators for the effect of mecarbam and β-HCH, respectively, among which glyceraldehyde and its related glycerolipid metabolism and thyroxine and its related thyroid hormone metabolism were found to be the mostly enriched mediating metabolic pathway. CONCLUSIONS Based on the comprehensive pesticide exposome and metabolome wide associational study combined with meta-analysis, we found that prenatal exposure to β-HCH and mecarbam decreased birth weight via disrupting thyroid hormone metabolism and glyceraldehyde metabolism, providing new insights into the toxic effects of exposure to pesticides on birth outcomes.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Lu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shiyao Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiyun Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Zhang
- Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Chen
- Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
60
|
Chen C, Li K, Li C, Sun T, Jia J. Combination of Pd-Cu Catalysis and Electrolytic H 2 Evolution for Selective Nitrate Reduction Using Protonated Polypyrrole as a Cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13868-13877. [PMID: 31577132 DOI: 10.1021/acs.est.9b04447] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pd-Cu catalysis is combined with in situ electrolytic H2 evolution for NO3- reduction with protonated polypyrrole (PPy) as a cathode. The surface of PPy is not only beneficial for H2 evolution, but exclusive for NO3- adsorption, and thus inhibits NO3- reduction. Meanwhile, the in situ H2 generation exhibits a much higher utilization efficiency because of the smaller bubble size and higher dispersion. The Pd-Cu catalysts with the ratios of 6:1 and 4:1 exhibit the highest NO3--N removal (100%) and N2 selectivity (93-95%) after 90 min. In comparison with the results obtained with other cathode materials (Ti, Cu, Co3O4, and Fe2O3) and obtained by other researchers, the new process shows a faster NO3--N reduction rate and much higher N2 selectivity. However, the O2 generated on the anode can oxidize Cu to Cu2O that may work as the catalyst for NO3--N reduction to NH4+-N by H2, resulting in more than 60% NH4+-N generated without a proton exchange membrane. Both the PPy film and Pd-Cu catalyst exhibit good stability and there is no Cu2+ or Pd2+ in solution after reaction. Real industrial wastewater is further treated in this system, the NO3--N is reduced from 670 mg L-1 to less than 100 mg L-1 in 90 min, and only little amount of NH4+-N is generated.
Collapse
Affiliation(s)
| | - Kan Li
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | | | | | - Jinping Jia
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| |
Collapse
|