51
|
Pilch J, Kowalik P, Bujak P, Nowicka AM, Augustin E. Quantum Dots as a Good Carriers of Unsymmetrical Bisacridines for Modulating Cellular Uptake and the Biological Response in Lung and Colon Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:462. [PMID: 33670297 PMCID: PMC7917955 DOI: 10.3390/nano11020462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
Nanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD-UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry and light microscopy) in lung H460 and colon HCT116 cancer cells. We show the time-dependent cellular uptake of QD-UA hybrids, which were more efficiently retained inside the cells compared to UAs alone, especially in H460 cells, which could be due to multiple endocytosis pathways. In contrast, in HCT116 cells, the hybrids were taken up only by one endocytosis mechanism. Both UAs and their hybrids induced apoptosis in H460 and HCT116 cells (to a greater extent in H460). Cells which did not die underwent senescence more efficiently following QDs-UAs treatment, compared to UAs alone. Cellular senescence was not observed in HCT116 cells following treatment with both UAs and their hybrids. Importantly, QDgreen/red themselves did not provoke toxic responses in cancer or normal cells. In conclusion, QDs are good candidates for targeted UA delivery carriers to cancer cells while protecting normal cells from toxic drug activities.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland; (P.K.); (A.M.N.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland;
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland;
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland; (P.K.); (A.M.N.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
52
|
Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective Effect of Natural Products against Huntington's Disease: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. ACS Chem Neurosci 2021; 12:391-418. [PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
53
|
Yang X, Yuan D, Hou J, Sedgwick AC, Xu S, James TD, Wang L. Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
54
|
Lafi Z, Alshaer W, Hatmal MM, Zihlif M, Alqudah DA, Nsairat H, Azzam H, Aburjai T, Bustanji Y, Awidi A. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv 2021; 11:29164-29177. [PMID: 35479561 PMCID: PMC9040599 DOI: 10.1039/d1ra05138e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022] Open
Abstract
Echinomycin (quinomycin A) is a peptide antibiotic from the quinoxaline family, which has a DNA bifunctional intercalating activity and an inhibitor of hypoxia-inducible factor (HIF1α). Echinomycin was discovered in 1957 as a potent antitumor agent; however, it was not successful in clinical use due to its low water solubility and short half-life. To revitalize this potent drug, it is important to increase its aqueous solubility and bioavailability. In this study, echinomycin was loaded into PEGylated pH-sensitive liposomes (PEGLippH) and functionalized with anti-nucleolin aptamer (AptNCL) for selective targeting and pH-responsive release of echinomycin into cancer cells. Echinomycin was complexed with γ-cyclodextrin (ECγCD) to enhance its water solubility and then encapsulated into pH-sensitive liposomes (PEGLippH-ECγCD). Then, liposomes were functionalized with AptNCL (AptNCL-PEGLippH-ECγCD) and the successful functionalization was confirmed by dynamic light scattering (DLS) measurements and gel electrophoresis. Cellular uptake for AptNCL-PEGLippH was evaluated by flow cytometry analysis using MDA-MB-231, MCF7, A549 cancer cell lines with respect to the normal fibroblast cells. The results showed a higher uptake and selectivity for AptNCL-PEGLippH compared to PEGLippH. The anti-proliferative effects of AptNCL-PEGLippH-ECγCD were more potent than PEGLippH-ECγCD by 3.5, 4, and 5 folds for A549, MDA-MB-231, and MCF7, respectively. Selectivity indices (SI) for AptNCL-PEGLippH-ECγCD for the tumor cell lines compared to the normal cell line after 72 h were MDA-MB-231 (43.3), MCF7 (16.9), and A549 (8.5). Furthermore, SI after 3 h for the three cancer cell lines were 4.7, 2.5, 2.8, respectively. Echinomycin was loaded into PEGylated pH-sensitive liposomes and functionalized with anti-nucleolin aptamer for selective targeting and pH-responsive release of echinomycin into cancer cells.![]()
Collapse
Affiliation(s)
- Zainab Lafi
- Faculty of Pharmacy, The Middle East University, Amman, Jordan
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hanan Azzam
- HMCSR, The University of Jordan, Amman 11942, Jordan
| | - Talal Aburjai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
55
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
56
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
57
|
Yoon S, Kim Y, Youn YS, Oh KT, Kim D, Lee ES. Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery. Pharmaceutics 2020; 12:pharmaceutics12111109. [PMID: 33218116 PMCID: PMC7698888 DOI: 10.3390/pharmaceutics12111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we developed γ-cyclodextrin-based multifunctional nanoparticles (NPs) for tumor-targeted therapy. The NPs were self-assembled using a γ-cyclodextrin (γCD) coupled with phenylacetic acid (PA), 2,3-dimethylmaleic anhydride (DMA), poly(ethylene glycol) (PEG), and transferrin (Tf), termed γCDP-(DMA/PEG-Tf) NPs. These γCDP-(DMA/PEG-Tf) NPs are effective in entrapping topotecan (TPT, as a model antitumor drug) resulting from the ionic interaction between pH-responsive DMA and TPT or the host–guest interaction between γCDP and TPT. More importantly, the γCDP-(DMA/PEG-Tf) NPs can induce ionic repulsion at an endosomal pH (~6.0) resulting from the chemical detachment of DMA from γCDP, which is followed by extensive TPT release. We demonstrated that γCDP-(DMA/PEG-Tf) NPs led to a significant increase in cellular uptake and MDA-MB-231 tumor cell death. In vivo animal studies using an MDA-MB-231 tumor xenografted mice model supported the finding that γCDP-(DMA/PEG-Tf) NPs are effective carriers of TPT to Tf receptor-positive MDA-MB-231 tumor cells, promoting drug uptake into the tumors through the Tf ligand-mediated endocytic pathway and increasing their toxicity due to DMA-mediated cytosolic TPT delivery.
Collapse
Affiliation(s)
- Seonyoung Yoon
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (S.Y.); (Y.K.)
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea;
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117, USA;
| | - Eun Seong Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea
- Correspondence: ; Tel.: +82-2-2164-4921
| |
Collapse
|
58
|
Zhang J, Zhu Y, Zhang Y. Potential ability of different types of cyclodextrins to modulate the interaction between bovine serum albumin and 1-hydroxypyrene. Food Chem 2020; 343:128516. [PMID: 33183870 DOI: 10.1016/j.foodchem.2020.128516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023]
Abstract
Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) can bind with functional biomacromolecules and thus cause toxic effects in vivo. Four types of cyclodextrins (CDs) were selected to explore their potential ability to regulate the bindings between 1-hydroxypyrene (1-OHPyr) and bovine serum albumin (BSA) using multi-spectroscopic methods combined with molecular docking. The results showed that the four CDs caused varied modulating effects on the binding of BSA with 1-OHPyr, and the effects of γ-CD and (2-hydroxypropyl)-β-CD (HPCD) are the most significant. Specifically, γ-CD and HPCD could significantly reduce the binding affinity between 1-OHPyr and BSA, inhibit the micro-environmental changes of tryptophan residues, and slightly recover the helicity of BSA. The interactions and inclusion behavior of CDs with 1-OHPyr was the main reason why CDs could affect the binding of 1-OHPyr to BSA. The results indicated that γ-CD and HPCD might have potential application value in regulating the toxic effects of OH-PAHs.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
59
|
Naik J, Rajput R, Singh MK. Development and Evaluation of Ibuprofen Loaded Hydrophilic Biocompatible Polymeric Nanoparticles for the Taste Masking and Solubility Enhancement. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00798-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
60
|
Zhang L, Yang S, Wong LR, Xie H, Ho PCL. In Vitro and In Vivo Comparison of Curcumin-Encapsulated Chitosan-Coated Poly(lactic- co-glycolic acid) Nanoparticles and Curcumin/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes Administered Intranasally as Therapeutic Strategies for Alzheimer's Disease. Mol Pharm 2020; 17:4256-4269. [PMID: 33084343 DOI: 10.1021/acs.molpharmaceut.0c00675] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin (CUR) has antioxidant and anti-inflammatory effects that are beneficial to Alzheimer's disease (AD). However, the poor solubility and high instability of CUR compromise its application greatly. In this study, CUR-encapsulated chitosan-coated poly (lactic-co-glycolic acid) nanoparticles (CUR-CS-PLGA-NPs) and hydroxypropyl-β-cyclodextrin-encapsulated CUR complexes (CUR/HP-β-CD inclusion complexes) were developed and compared through intranasal administration. In vitro studies indicated that CUR in CUR/HP-β-CD inclusion complexes was stable under physiological conditions over 72 h with 95.41 ± 0.01% remaining, which was higher than 49.66 ± 3.91% remaining in CUR-CS-PLGA-NPs. Meanwhile, CUR/HP-β-CD inclusion complexes showed a higher cellular uptake level of CUR than CUR-CS-PLGA-NPs in SH-SY5Y cells. Both formulations could reduce CUR's cellular cytotoxicity and showed a comparable antioxidant effect. Both formulations displayed the anti-inflammatory effect at 20 μM CUR in BV-2 cells, which decreased TNF-α and IL-6 levels to approximately 70 and 40%, respectively, when compared to the positive control, respectively. In vivo pharmacokinetic studies indicated that after intranasal administration, the AUC values of CUR in the plasma and brain of the CUR/HP-β-CD inclusion complex group were 2.57-fold and 1.12-fold higher than those in the CUR-CS-PLGA-NP group at the same dose of 2 mg/kg, respectively. In conclusion, CUR/HP-β-CD inclusion complexes displayed better properties than CUR-CS-PLGA-NPs as a carrier for intranasal delivery of CUR for application in AD.
Collapse
Affiliation(s)
- Li Zhang
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117583, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ling Rong Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hui Xie
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Paul Chi-Lui Ho
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117583, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
61
|
Loftsson T. Cyclodextrins in Parenteral Formulations. J Pharm Sci 2020; 110:654-664. [PMID: 33069709 DOI: 10.1016/j.xphs.2020.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Most drugs have very limited solubility in water and some can be extremely difficult to formulate as parenteral solutions where the dose should preferably be dissolved in couple of ml of aqueous media without use of organic solvents and surface active agents, or application of somewhat extreme techniques such as prodrug formation. Thus, pharmaceutical formulators are constantly looking for new, biologically acceptable, and low-cost armamentarium for parenteral formulation development. Cyclodextrins (CDs) are enabling pharmaceutical excipients that can temporarily camouflage undesirable physiochemical drug properties such as low aqueous solubility through formation of drug/CD inclusion complexes. CDs are cyclic oligosaccharides that have similar physiological and biological properties like linear saccharides of comparable molecular weight. Due to their very favorable toxicological and pharmacokinetic profiles their usage in parenteral drug formulations is frequently preferred over other solubilizing techniques. Here the physiochemical and biological properties of CDs are reviewed as well as their pharmacokinetics after intravenous administration. Their regulatory status is briefly reviewed and their tendency to self-assemble to form clusters or aggregates discussed. Finally, some examples are given of how CDs are applied in aqueous parenteral formulations, how their solubilizing effect has been enhanced and how their target concentration is determined.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
62
|
Boyko V, Kobrina L, Bortnitsky V, Bandurina D, Riabov S. STUDY OF INCLUSION COMPLEXES OF CARBOXYMETHYLATED-β-CYCLODEXTRIN WITH BIPHONAZOLE AND CLOTRIMAZOL BY THE PYROLYTIC MASS SPECTROMETRY METHOD. Polym J 2020. [DOI: 10.15407/polymerj.42.03.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
63
|
Goñi-Ciaurriz L, González-Gaitano G, Vélaz I. Cyclodextrin-grafted nanoparticles as food preservative carriers. Int J Pharm 2020; 588:119664. [PMID: 32736021 DOI: 10.1016/j.ijpharm.2020.119664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023]
Abstract
Photocatalytic properties of titanium dioxide nanoparticles (TiO2 NPs) have encouraged their use as fillers in polymer-based nanocomposites for application in food packaging. The surface modification of TiO2 NPs with cyclodextrins (CDs) can improve their functionality in a large extent. With this purpose, sorbic acid (SA) and benzoic acid (BA), commonly used as antifungal and antibacterial food preservatives, respectively, have been encapsulated in CD-grafted NPs. Inclusion complex formation of SA and BA with α and βCDs in water has been assessed first by means of 1H NMR and UV-Vis spectroscopy to determine the affinity of the preservatives for the macrocycles and the stoichiometry of the complexes. The association constants of both preservatives were found to be lower for βCD, however, the loading efficiency in βCD-grafted NPs was higher than that exhibited by αCD-NPs. Release kinetics from the CD-grafted NPs have been carried out. In the case of SA, the αCD-grafted NPs showed a prolonged and sustained release profile, suggesting its application as microbial growth inhibition system if incorporated into packaging materials.
Collapse
Affiliation(s)
- Leire Goñi-Ciaurriz
- Department of Chemistry, Faculty of Sciences, University of Navarra, 31080 Pamplona, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, Faculty of Sciences, University of Navarra, 31080 Pamplona, Spain.
| |
Collapse
|
64
|
Wang S, Chen L, Wang J, Du J, Li Q, Gao Y, Yu S, Yang Y. Enhanced-fluorescent imaging and targeted therapy of liver cancer using highly luminescent carbon dots-conjugated foliate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111233. [PMID: 32806246 DOI: 10.1016/j.msec.2020.111233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022]
Abstract
Carbon dots (CDs) have shown great potential in drug delivery and biological imaging applications. In this work, a doxorubicin (DOX) delivery carrier and imaging probe for liver cancer-targeted therapy was designed based on CDs with high fluorescence quantum yield (97%), aiming to enhance the antitumor activity and imaging efficiency. Folic acid (FA), which showed high expression in hepatoma cells, was used as targeting components to modify CDs (FA-CDs), and then FA-CDs-DOX was obtained by loading DOX. Results show that CDs and FA-CDs have good biocompatibility, and the DOX release from FA-CDs-DOX is targeted and selective. Confocal microscope demonstrates that FA-CDs-DOX has excellent ability of fluorescence imaging in liver cancer cells. The imaging in vivo shows the fluorescence intensity of FA-CDs-DOX is strong enough to penetrate tumor tissue and skin, further verifying its enhanced-fluorescent imaging effects. Tumor inhibition in vivo indicates that the targeting ability of FA-CDs-DOX is significantly higher than that of free DOX, showing obvious better therapeutic effect. To sum up, the targeted and fluorescent drug delivery system based on CDs with high fluorescence quantum yield show an excellent imaging in vivo and tumor inhibition effect, which provide a novel strategy for promoting the potential clinical application of CDs in liver cancer treatment.
Collapse
Affiliation(s)
- Shicai Wang
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Junli Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Jinglei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yuduan Gao
- Department of Ophthalmology, Shanxi Bethune Hospital, Taiyuan 030021, China
| | - Shiping Yu
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| |
Collapse
|
65
|
Haley RM, Zuckerman ST, Dakhlallah H, Capadona JR, von Recum HA, Ereifej ES. Resveratrol Delivery from Implanted Cyclodextrin Polymers Provides Sustained Antioxidant Effect on Implanted Neural Probes. Int J Mol Sci 2020; 21:ijms21103579. [PMID: 32438593 PMCID: PMC7279014 DOI: 10.3390/ijms21103579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Intracortical microelectrodes are valuable tools used to study and treat neurological diseases. Due in large part to the oxidative stress and inflammatory response occurring after electrode implantation, the signal quality of these electrodes decreases over time. To alleviate this response, resveratrol, a natural antioxidant which elicits neuroprotective effects through reduction of oxidative stress, was utilized. This work compares traditional systemic delivery of resveratrol to the novel cyclodextrin polymer (pCD) local delivery approach presented herein, both in vitro and in vivo. The pCD displayed an extended resveratrol release for 100 days, as well as 60 days of free radical scavenging activity in vitro. In vivo results indicated that our pCD delivery system successfully delivered resveratrol to the brain with a sustained release for the entire short-duration study (up to 7 days). Interestingly, significantly greater concentrations of resveratrol metabolites were found at the intracortical probe implantation site compared to the systemic administration of resveratrol. Together, our pilot results provide support for the possibility of improving the delivery of resveratrol in an attempt to stabilize long-term neural interfacing applications.
Collapse
Affiliation(s)
- Rebecca M. Haley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.M.H.); (J.R.C.)
| | - Sean T. Zuckerman
- Affinity Therapeutics, LLC, 11000 Cedar Avenue, Suite 285, Cleveland, OH 44106, USA;
| | - Hassan Dakhlallah
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
| | - Jeffery R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.M.H.); (J.R.C.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.M.H.); (J.R.C.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Correspondence: (H.A.v.R.); (E.S.E.)
| | - Evon S. Ereifej
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.M.H.); (J.R.C.)
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (H.A.v.R.); (E.S.E.)
| |
Collapse
|
66
|
Zeng L, Liao Z, Li W, Yuan Q, Wu P, Gu Z, Liu Z, Liao G. Non-covalent glycosylated gold nanoparticles/peptides nanovaccine as potential cancer vaccines. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
67
|
De Los Reyes-Berbel E, Ortiz-Gomez I, Ortega-Muñoz M, Salinas-Castillo A, Capitan-Vallvey LF, Hernandez-Mateo F, Lopez-Jaramillo FJ, Santoyo-Gonzalez F. Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular "off-on" (bio)sensors. NANOSCALE 2020; 12:9178-9185. [PMID: 32297891 DOI: 10.1039/d0nr01004a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chromophore-appended cyclodextrins combine the supramolecular loading capabilities of cyclodextrins (CDs) with the optical properties of the affixed chromophores. Among fluorescent materials, carbon dots (CNDs) are attractive and the feasibility of CND-appended CDs as sensors has been demonstrated by different authors. However, CNDs are intrinsically heterogeneous materials and their ulterior functionalization yields hybrid composites that are not well defined in terms of structure and composition. Inspired by the fluorescence properties of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA), the most paradigmatic of the molecular fluorophores detected in CNDs, herein we report two highly efficient synthetic chemical strategies for the preparation of IPCA-appended CDs that behave as CND-based CD "turn off-on" biosensors suitable for the analysis of cholesterol and β-galactosidase activity. We have deconstructed the CND-CD systems to demonstrate that (i) the role of CNDs is limited to acting as a support for the molecular fluorophores produced during their synthesis and (ii) the molecular fluorophores suffice for the determination of the enzymatic activity based on the quenching by p-nitrophenol as a sacrificial quencher.
Collapse
Affiliation(s)
- Eduardo De Los Reyes-Berbel
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, Campus Fuentenueva sn, University of Granada, 18071-Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Citric acid-crosslinked β-cyclodextrin supported zinc peroxide as a biocompatible H 2O 2 scavenger. J Biol Inorg Chem 2020; 25:411-417. [PMID: 32146511 DOI: 10.1007/s00775-020-01771-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to evaluate the H2O2 scavenging activity of the ZnO2/β-CD as a biocompatible composite. Zinc peroxide was prepared via sonochemical approach. To synthesize a green composite, β-cyclodextrin was modified by citric acid (CA) and reacted with ZnO2 under ultrasonic irradiation. The prepared samples were characterized using XRD, SEM, TGA and FTIR analytical techniques. XRD analysis exhibited a typical pattern of ZnO2 and demonstrated the presence of citric acid and β-cyclodextrin in composite. The results of the catalytic assay showed that the ZnO2/CA-βCD composite displayed stronger capability to decompose H2O2 in comparison to ZnO2 particles (about seven times). It was attributed to increased adsorption capacity and solubility of composite due to the presence of citric acid and β-cyclodextrin. MTT assay studies confirmed the non-cytotoxic nature of ZnO2 particles and ZnO2/CA-βCD composite.
Collapse
|
70
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK. Inclusion complexation of imidazolium-based ionic liquid and β-cyclodextrin: A detailed spectroscopic investigation. J Mol Liq 2020; 302:112530. [DOI: https:/doi.org/10.1016/j.molliq.2020.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
71
|
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232:115805. [DOI: 10.1016/j.carbpol.2019.115805] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
72
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK. Inclusion complexation of imidazolium-based ionic liquid and β-cyclodextrin: A detailed spectroscopic investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
73
|
Gadade DD, Pekamwar SS. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull 2020; 10:166-183. [PMID: 32373486 PMCID: PMC7191229 DOI: 10.34172/apb.2020.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colloidal nanoparticulate technology has been described in the literature as a versatile drug delivery system. But it possesses some inherent lacunae in their formulation. Cyclodextrins (CDs) have been extensively reported for the solubility enhancement of poorly water-soluble drugs. The CDs can cause intervention in aspects related to nanoparticles (NPs) that include improving drug loading in nano-system, improving stability, site-specific/targeted drug delivery, improving solubility profile and absorption of the drug in nanosystem with consequent improvement in bioavailability, with the possibility of controlled release, safety and efficacy. They find application in for simultaneous diagnosis and therapeutics for better treatment procedures. The current communication is focused on the application of CDs to overcome troubles in nanoparticulate formulation and enhancement of their performance. It also envisages the theranostic aspects of CDs.
Collapse
Affiliation(s)
- Dipak Dilip Gadade
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, CIDCO, N-6, Dr. Y.S. Khedkar Marg, Aurangabad-431001, India.,School of Pharmacy, SRTM University,Vishnupuri, Nanded- 431606, India
| | | |
Collapse
|
74
|
Banjare MK, Banjare RK, Behera K, Pandey S, Mundeja P, Ghosh KK. Inclusion complexation of novel synthesis amino acid based ionic liquids with β-cyclodextrin. J Mol Liq 2020; 299:112204. [DOI: https:/doi.org/10.1016/j.molliq.2019.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
75
|
Banjare MK, Banjare RK, Behera K, Pandey S, Mundeja P, Ghosh KK. Inclusion complexation of novel synthesis amino acid based ionic liquids with β-cyclodextrin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
76
|
Elmotasem H, Awad GEA. A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian J Pharm Sci 2019; 15:617-636. [PMID: 33193864 PMCID: PMC7610214 DOI: 10.1016/j.ajps.2019.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/22/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Fungal keratitis and endopthalmitis are serious eye diseases. Fluconazole (FL) is indicated for their treatment, but suffers from poor topical ocular availability. This study was intended to improve and prolong its ocular availability. FL niosomal vesicles were prepared using span 60. Also, polymeric nanoparticles were prepared using cationic Eudragit RS100 and Eudragit RL100. The investigated particles had adequate entrapment efficiency (EE%), nanoscale particle size and high zeta potential. Subsequently, formulations were optimized using full factorial design. FL-HP-β-CD complex was encapsulated in selected Eudragit nanoprticles (FL-CD-ERS1) and niosmal vesicles. The niosomes were further coated with cationic and bioadhesive chitosan (FL-CD-Nios-ch). EE% for FL-CD-ERS1 and FL-CD-Nios-ch formulations were 76.4% and 61.7%; particle sizes were 151.1 and 392 nm; also, they exhibited satisfactory zeta potential +40.1 and +28.5 mV. In situ gels were prepared by poloxamer P407, HPMC and chitosan and evaluated for gelling capacity, rheological behavior and gelling temperature. To increase the precorneal residence time, free drug and selected nano-formulations were incorporated in the selected in situ gel. Release study revealed sustained release within 24 h. Permeation through excised rabbits corneas demonstrated enhanced drug flux and large AUC0-6h in comparison to plain drug. Corneal permeation of selected formulations labeled with Rhodamine B was visualized by Confocal laser microscopy. Histopathological study and in vivo tolerance test evidenced safety. In vivo susceptibility test using Candida albicans depicted enhanced growth inhibition and sustained effect. In this study the adopted stepwise optimization strategy combined cylodextrin complexation, drug nano-encapsulation and loading within thermosenstive in situ gel. Finally, the developed innovated formulations displayed boosted corneal permeation, enhanced antifungal activity and prolonged action.
Collapse
Affiliation(s)
- Heba Elmotasem
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt
| | - Ghada E A Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
77
|
Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. J Control Release 2019; 319:77-86. [PMID: 31843641 DOI: 10.1016/j.jconrel.2019.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/23/2023]
Abstract
Recently, cyclodextrin (CD) has shown the potential for effective treatment of atherosclerotic plaques in mice by solubilizing plaque cholesterol. While promising as a new therapy for atherosclerosis, poor pharmacokinetics and ototoxicity of CD pose a therapeutic challenge. Thus far, however, there has been no attempts to overcome such limitations. Here, we showed that cyclodextrin polymer (CDP) with a diameter of ~ 10 nm exhibits outstanding pharmacokinetics and plaque targeting efficacy compared to a monomeric CD. Furthermore, we found out that CDP does not induce plasma membrane disruption as opposed to CD, which eliminated cytotoxicity and hemolytic activity of CD. In a mouse model of atherosclerosis, subcutaneous injections of beta-cyclodextrin polymer (βCDP) significantly inhibited plaque growth compared to monomeric hydroxypropyl-beta-cyclodextrin (HPβCD) at the same dose (1 g/kg). More importantly, βCDP did not induce significant ototoxicity at a high-dose (8 g/kg) where HPβCD reduced the outer hair cell content by 36%. These findings suggest that the polymerization of CD can overcome major limitations of CD therapy for treatment of atherosclerosis.
Collapse
|
78
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
79
|
Giachino C, Viale M, Vecchio G. Exploring the Functionalization of Polymeric Nanoparticles Based on Cyclodextrins for Tumor Cell Targeting. ChemistrySelect 2019. [DOI: 10.1002/slct.201903774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carmela Giachino
- Dipartimento di Scienze ChimichetUniversità degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| | - Maurizio Viale
- U.O.C. BioterapieOspedale Policlinico San Martino L.go R. Benzi 10 16132 Genova Italy
| | - Graziella Vecchio
- Dipartimento di Scienze ChimichetUniversità degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
80
|
Viale M, Vecchio G, Maric I, Cilli M, Aprile A, Ponzoni M, Fontana V, Priori EC, Bertone V, Rocco M. Fibrin gels entrapment of a doxorubicin-containing targeted polycyclodextrin: Evaluation of in vivo antitumor activity in orthotopic models of human neuroblastoma. Toxicol Appl Pharmacol 2019; 385:114811. [PMID: 31705944 DOI: 10.1016/j.taap.2019.114811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
In vivo local antitumor activity of fibrin gels (FBGs) loaded with the poly-cyclodextrin oCD-NH2/Dox, compared to free Dox, was evaluated in two mouse orthotopic neuroblastoma (NB) models, after positioning of the releasing devices in the visceral space. FBGs were prepared at the fibrinogen (FG) concentrations of 22 and 40 mg/ml clotted in the presence of 0.81 mM/mg FG Ca2+ and 1.32 U/mg FG thrombin. Our results indicate that FBGs loaded with oCD-NH2/Dox and applied as neoadjuvant loco-regional treatment, show an antitumor activity significantly greater than that displayed by the same FBGs loaded with identical dose of Dox or after free Dox administered intra venous (iv). In particular, FBGs prepared at 40 mg/ml showed a slightly lower antitumor activity, although after their positioning we observed a significant initial reduction of tumor burden lasting for several days after gel implantation. FBGs at 22 mg/ml loaded with oCD-NH2/Dox and applied after tumor removal (adjuvant treatment model) showed a significantly better antitumor activity than the iv administration of free Dox, with 90% tumor regrowth reduction compared to untreated controls. In all cases the weight loss post-treatment was limited after gel application, although in the adjuvant treatment the loss of body weight lasted longer than in the other treatment modality. In accordance with our recent published data on the low local toxic effects of FBGs, the present findings also underline an increase of the therapeutic index of Dox when locally administered through FBGs loaded with the oCD-NH2/Dox complex.
Collapse
Affiliation(s)
- Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy.
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Irena Maric
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Michele Cilli
- UOS Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Anna Aprile
- UOS Biopolimeri e Proteomica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Mirco Ponzoni
- Laboratorio di Terapie Sperimentali in Oncologia, Istituto G. Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Vincenzo Fontana
- UOC Epidemiologia Clinica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Erica C Priori
- Lab. di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie, Università di Pavia "L. Spallanzani", Via Ferrata 9, 27100 Pavia, Italy
| | - Vittorio Bertone
- Lab. di Anatomia Comparata e Citologia, Dipartimento di Biologia e Biotecnologie, Università di Pavia "L. Spallanzani", Via Ferrata 9, 27100 Pavia, Italy
| | - Mattia Rocco
- UOS Biopolimeri e Proteomica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| |
Collapse
|
81
|
Influence of molecular design on the morphology of nanoparticles formed from 1-alkyl-6-alkoxy-quinolinium cations and 4-sulfonatocalix[n]arenes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Vurro M, Miguel-Rojas C, Pérez-de-Luque A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. PEST MANAGEMENT SCIENCE 2019; 75:2403-2412. [PMID: 30672106 DOI: 10.1002/ps.5348] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 05/05/2023]
Abstract
Natural compounds and living organisms continue to play a limited role in crop protection, and few of them have reached the market, despite their attractiveness and the efforts made in research. Very often these products have negative characteristics compared to synthetic compounds, e.g., higher costs of production, lower effectiveness, lack of persistence, and inability to reach and penetrate the target plant. Conversely, nanotechnologies are having an enormous impact on all human activities, including agriculture, even if the production of some nanomaterials is not environmentally friendly or could have adverse effects on agriculture and the environment. Thus, certain nanomaterials could facilitate the development of formulated natural pesticides, making them more effective and more environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and increase shelf-life and persistence. Such controlled-release products can improve delivery to the target pest. This review considers certain available nanomaterials and nanotechnologies for use in agriculture, discussing their properties and the feasibility of their use in sustainable crop protection, in particular, in improving the effectiveness of natural bio-based agrochemicals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council (CNR), Bari, Italy
| | - Cristina Miguel-Rojas
- Department of Science and High Technology, University of Insubria and Total Scattering Laboratory, Como, Italy
| | - Alejandro Pérez-de-Luque
- Genomic and Biotechnology, Centre Alameda del Obispo, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cordoba, Spain
| |
Collapse
|
83
|
Karimian R, Aghajani M. Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627115422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing
six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4)
bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs
are widely used in many industrial products, technologies and analytical methods owing to
their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are
used as complexing agents to enhance aqueous solubility, physico-chemical stability and
bio-availability of administered drugs. Herein, special attention is given to the use of α-, β-
and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the
past few decades through various routes of administration with a major emphasis on the
more recent developments.
Collapse
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Aghajani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Ren X, Qian H, Tang P, Tang Y, Liu Y, Pu H, Zhang M, Zhao L, Li H. Preparation, Characterization, and Properties of Inclusion Complexes of Balofloxacin with Cyclodextrins. AAPS PharmSciTech 2019; 20:278. [PMID: 31396732 DOI: 10.1208/s12249-019-1425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
The study mainly aimed to improve the aqueous solubility of Balofloxacin (BLFX) by preparing the inclusion complexes (ICs) of BLFX with cyclodextrins (CDs). In this study, ICs in solid state were obtained by using beta-CD (β-CD), 2-hydroxypropyl-β-CD (HP-β-CD), 2, 6-dimethyl-β-CD (DM-β-CD) through a freeze-drying technique. The formation of ICs was confirmed through Fourier-transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy. Results demonstrated that the water solubility and dissolution rates of three ICs were distinctly improved than that of parent BLFX. Bacteriostatic experiment manifested that the antibacterial effect of BLFX was not inhibited after encapsulation in CDs. The damage of BLFX to kidney and liver cells was reduced. Consequently, successful preparation of the ICs of BLFX with CDs provided possibility for devising new dosage form of BLFX, which held great promise for further applications in clinical fields.
Collapse
|
85
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
86
|
Discovery and Characterization of a Novel Method for Effective Improvement of Cyclodextrin Yield and Product Specificity. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8406-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
87
|
Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors. NANOMATERIALS 2019; 9:nano9070948. [PMID: 31261957 PMCID: PMC6669497 DOI: 10.3390/nano9070948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Paclitaxel is one of the most widely used chemotherapeutic agents thanks to its effectiveness and broad spectrum of antitumor activity. However, it has a very poor aqueous solubility and a limited specificity. To solve these handicaps, a novel paclitaxel-trastuzumab targeted transport nanosystem has been developed and characterized in this work to specifically treat cancer cells that overexpress the human epidermal growth factor receptor-2 (HER2). Methods: Alginate and piperazine nanoparticles were synthetized and conjugated with paclitaxel:β-cyclodextrins complexes and trastuzumab. Conjugated nanoparticles (300 nm) were characterized and their internalization in HER2-overexpressing tumor cells was analyzed by immunofluorescence. Its specific antitumor activity was studied in vitro using human cell lines with different levels of HER2-expression. Results: In comparison with free paclitaxel:β-cyclodextrins complexes, the developed conjugated nanovehicle presented specificity for the treatment of HER2-overpressing cells, in which it was internalized by endocytosis. Conclusions: It seems that potentially avoiding the conventional adverse effects of paclitaxel treatment could be possible with the use of the proposed mixed nanovehicle, which improves its bioavailability and targets HER2-positive cancer cells.
Collapse
|
88
|
Synthesis and characterization of a new cyclodextrin derivative with improved properties to design oral dosage forms. Drug Deliv Transl Res 2019; 9:273-283. [PMID: 30264285 DOI: 10.1007/s13346-018-0591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This work aimed to synthesize a novel β-cyclodextrin derivative, itaconyl-β-cyclodextrin to evaluate whether albendazole inclusion complexes with the new β-cyclodextrin derivative-improved albendazole dissolution efficiency and its anthelminthic activity. The new derivative was thoroughly evaluated and characterized, and an average degree of substitution of 1.4 per cyclodextrin molecule was observed. Albendazole:itaconyl-β-cyclodextrin complexes were prepared by spray drying procedures and investigated using phase solubility diagrams, dissolution efficiency, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared, scanning electronic microscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Phase solubility diagrams and mass spectrometry studies showed that the inclusion complex was formed in an equimolar ratio. Stability constant values were 602 M-1 in water, and 149 M-1 in HCl 0.1 N. Nuclear magnetic resonance experiments of the inclusion complex showed correlation signals between the aromatic and propyl protons of albendazole and the itaconyl-β-cyclodextrin inner protons. The studies indicated solid structure changes of albendazole included in itaconyl-β-cyclodextrin. The maximum drug release was reached at 15 min, and the inclusion complex solubility was 88-fold higher than that of the pure drug. The in vitro anthelmintic activity assay showed that the complex was significantly more effective than pure albendazole.
Collapse
|
89
|
Raut SY, Manne AS, Kalthur G, Jain S, Mutalik S. Cyclodextrins as Carriers in Targeted Delivery of Therapeutic Agents: Focused Review on Traditional and Inimitable Applications. Curr Pharm Des 2019; 25:444-454. [DOI: 10.2174/1381612825666190306163602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
Abstract
The objective of the article is to provide a comprehensive review on the application of cyclodextrin
complexation in the delivery of drugs, bioactive molecules or macromolecules, with more emphasis on targeted
drug delivery. Classically the cyclodextrins have been considered only as a means of improving the solubility of
drugs; however, many attempts have been made to use cyclodextrins as drug delivery carriers. The cyclodextrin
surface can be modified with various ligands for active targeting of drugs. It can also be passively targeted
through various triggering mechanisms like thermal, magnetic, pH dependent, light dependent, ultrasound, etc. A
comprehensive literature review has been done in the area of drug delivery using cyclodextrins. Applications of
inclusion complexes in the drug delivery through various routes with examples are discussed. This review focuses
on receptor mediated active targeting as well as stimuli responsive passive targeting of drugs/genes by using
cyclodextrins. The article provides a detailed insight of the use of cyclodextrins and their derivatives on the targeted
delivery of the drugs/genes.
Collapse
Affiliation(s)
- Sushil Y. Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Alekhya S.N. Manne
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| |
Collapse
|
90
|
Mundhara N, Majumder A, Panda D. Methyl-β-cyclodextrin, an actin depolymerizer augments the antiproliferative potential of microtubule-targeting agents. Sci Rep 2019; 9:7638. [PMID: 31113967 PMCID: PMC6529501 DOI: 10.1038/s41598-019-43947-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Methyl-β-cyclodextrin (MCD), an established pharmacological excipient, depolymerizes the actin cytoskeleton. In this work, we investigated the effect of MCD-mediated actin depolymerization on various cellular phenotypes including traction force, cell stiffness, focal adhesions, and intracellular drug accumulation. In addition to a reduction in the contractile cellular traction, MCD acutely inhibits the maturation of focal adhesions. Alteration of contractile forces and focal adhesions affects the trypsin-mediated detachment kinetics of cells. Moreover, MCD-mediated actin depolymerization increases the intracellular accumulation of microtubule-targeting agents (MTAs) by ~50% with respect to the untreated cells. As MCD treatment enhances the intracellular concentration of drugs, we hypothesized that the MCD-sensitized cancer cells could be effectively killed by low doses of MTAs. Our results in cervical, breast, hepatocellular, prostate cancer and multidrug-resistant breast cancer cells confirmed the above hypothesis. Further, the combined use of MCD and MTAs synergistically inhibits the proliferation of tumor cells. These results indicate the potential use of MCD in combination with MTAs for cancer chemotherapy and suggest that targeting both actin and microtubules simultaneously may be useful for cancer therapy. Importantly, the results provide significant insight into the crosstalk between actin and microtubules in regulating the traction force and dynamics of cell deadhesion.
Collapse
Affiliation(s)
- Nikita Mundhara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
91
|
Development of gold-core silica shell nanospheres coated with poly-2-ethyl-oxazoline and β-cyclodextrin aimed for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:960-968. [DOI: 10.1016/j.msec.2019.01.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023]
|
92
|
Modification of Chitosan for the Generation of Functional Derivatives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071321] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with the most notable growth and potential for applications in various fields. The progress in chitin chemistry and the need to replace additives and non-natural polymers with functional natural-based polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and biological properties can be obtained from this ubiquitous polysaccharide that is composed of β-(1,4)-2-acetamido-2-deoxy-d-glucose repeating units. This review is presented to share insights into multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional properties. An overview will be given on bioadhesive applications, antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments in medical fields or biodegradability.
Collapse
|
93
|
Solubility enhancement and application of cyclodextrins in local drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00434-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
94
|
Haley RM, Qian VR, Learn GD, von Recum HA. Use of affinity allows anti-inflammatory and anti-microbial dual release that matches suture wound resolution. J Biomed Mater Res A 2019; 107:1434-1442. [PMID: 30771234 DOI: 10.1002/jbm.a.36658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 11/08/2022]
Abstract
Surgical sutures are vulnerable to bacterial infections and biofilm formation. At the suture site, pain and undesirable, excess inflammation are additionally detrimental to wound healing. The development of a polymerized cyclodextrin (pCD) coated surgical suture introduces the capability to locally deliver both anti-inflammatory and anti-microbial drugs throughout the phases of acute and chronic healing. Local delivery allows for the improvement of wound healing while reducing related systemic side effects and drug resistance. Through testing, it has been shown that the fabrication of our pCD coating minimally affects the suture's mechanical properties. In vitro studies show measurable and consistent drug delivery for nearly 5 weeks. The therapeutic level of this delivery is sufficient to show inhibition of bacterial growth for 4 weeks, and free-radical scavenging (an in vitro anti-inflammatory activity approximation) for 2 weeks. With this pCD coating technique, we maintain clinical performance standards while also introducing a long-term dual delivery system relevant to the wound healing timeframe. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Victoria R Qian
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Greg D Learn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
95
|
De Luca M, Ioele G, Ragno G. 1,4-Dihydropyridine Antihypertensive Drugs: Recent Advances in Photostabilization Strategies. Pharmaceutics 2019; 11:pharmaceutics11020085. [PMID: 30781584 PMCID: PMC6409574 DOI: 10.3390/pharmaceutics11020085] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/22/2022] Open
Abstract
The 1,4-dihydropyridine (DHP) drugs are nowadays the most used drugs in the treatment of hypertension. However, all the structures in this series present a significant sensitivity to light, leading to the complete loss of pharmacological activity. This degradation is particularly evident in aqueous solution, so much so that almost all DHP drugs on the market are formulated in solid preparations, especially tablets. The first and main process of photodegradation consists in the aromatization of the dihydropyridine ring, after which secondary processes can take place on the various substituents. A potential danger can result from the formation of single oxygen and superoxide species that can in turn trigger phototoxic reactions. Several strategies for the photostabilisation of DHP drugs have been proposed in recent years, in particular with the aim to formulate these drugs in liquid preparations, as well as to limit any toxicity problems related to light degradation. This review summarizes and describes the main aspects of the studies conducted in recent years to obtain photostable formulations of DHP drugs.
Collapse
Affiliation(s)
- Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
96
|
Hajdu I, Angyal J, Szikra D, Kertész I, Malanga M, Fenyvesi É, Szente L, Vecsernyés M, Bácskay I, Váradi J, Fehér P, Ujhelyi Z, Vasvári G, Rusznyák Á, Trencsényi G, Fenyvesi F. Radiochemical synthesis and preclinical evaluation of 68Ga-labeled NODAGA-hydroxypropyl-beta-cyclodextrin (68Ga-NODAGA-HPBCD). Eur J Pharm Sci 2019; 128:202-208. [DOI: 10.1016/j.ejps.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
|
97
|
Nepafenac-Loaded Cyclodextrin/Polymer Nanoaggregates: A New Approach to Eye Drop Formulation. MATERIALS 2019; 12:ma12020229. [PMID: 30641887 PMCID: PMC6356765 DOI: 10.3390/ma12020229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
The topical administration route is commonly used for targeting therapeutics to the eye; however, improving the bioavailability of drugs applied directly to the eye remains a challenge. Different strategies have been studied to address this challenge. One of them is the use of aggregates that are formed easily by self-assembly of cyclodextrin (CD)/drug complexes in aqueous solution. The aim of this study was to design a new eye drop formulation based on aggregates formed between CD/drug complexes. For this purpose, the physicochemical properties of the aggregates associated with six CDs and selected water-soluble polymers were analysed. Complex formation was studied using differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). Results showed that HPβCD performed best in terms of solubilization, while γCD performed best in terms of enhancing nanoaggregate formation. Formation of inclusion complexes was confirmed by DSC, FT-IR and 1H-NMR studies. A mixture of 15% (w/v) γCD and 8% (w/v) HPβCD was selected for formulation studies. It was concluded that formulations with aggregate sizes less than 1 µm and viscosity around 10–19 centipoises can be easily prepared using a mixture of CDs. Formulations containing polymeric drug/CD nanoaggregates represent an interesting strategy for enhanced topical delivery of nepafenac.
Collapse
|
98
|
Novel Findings about Double-Loaded Curcumin-in-HPβcyclodextrin-in Liposomes: Effects on the Lipid Bilayer and Drug Release. Pharmaceutics 2018; 10:pharmaceutics10040256. [PMID: 30513858 PMCID: PMC6321242 DOI: 10.3390/pharmaceutics10040256] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, the encapsulation of curcumin (Cur) in “drug-in-cyclodextrin-in-liposomes (DCL)” by following the double-loading technique (DL) was proposed, giving rise to DCL–DL. The aim was to analyze the effect of cyclodextrin (CD) on the physicochemical, stability, and drug-release properties of liposomes. After selecting didodecyldimethylammonium bromide (DDAB) as the cationic lipid, DCL–DL was formulated by adding 2-hydroxypropyl-α/β/γ-CD (HPβCD)–Cur complexes into the aqueous phase. A competitive effect of cholesterol (Cho) for the CD cavity was found, so cholesteryl hemisuccinate (Chems) was used. The optimal composition of the DCL–DL bilayer was obtained by applying Taguchi methodology and regression analysis. Vesicles showed a lower drug encapsulation efficiency compared to conventional liposomes (CL) and CL containing HPβCD in the aqueous phase. However, the presence of HPβCD significantly increased vesicle deformability and Cur antioxidant activity over time. In addition, drug release profiles showed a sustained release after an initial burst effect, fitting to the Korsmeyer-Peppas kinetic model. Moreover, a direct correlation between the area under the curve (AUC) of dissolution profiles and flexibility of liposomes was obtained. It can be concluded that these “drug-in-cyclodextrin-in-deformable” liposomes in the presence of HPβCD may be a promising carrier for increasing the entrapment efficiency and stability of Cur without compromising the integrity of the liposome bilayer.
Collapse
|
99
|
Methyl-β-Cyclodextrin Impairs the Phosphorylation of the β₂ Subunit of L-Type Calcium Channels and Cytosolic Calcium Homeostasis in Mature Cerebellar Granule Neurons. Int J Mol Sci 2018; 19:ijms19113667. [PMID: 30463327 PMCID: PMC6275079 DOI: 10.3390/ijms19113667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The activation of L-type calcium channels (LTCCs) prevents cerebellar granule neurons (CGNs) from entering low-K+-induced apoptosis. In previous works, we showed that LTCCs are largely associated with caveolin-1-rich lipid rafts in the CGN plasma membrane. In this work, we show that protein kinase A (PKA) and calmodulin-dependent protein kinase II (CaMK-II) are associated with caveolin-1-rich lipid rafts of mature CGNs, and we further show that treatment with the cholesterol-trapping and lipid raft-disrupting agent methyl-β-cyclodextrin decreases the phosphorylation level of the LTCC β2 subunit and the steady-state calcium concentration in neuronal somas ([Ca2+]i) to values close to those measured in 5 mM KCl proapoptotic conditions. These effects correlate with the effects produced by a short (15 min) treatment of CGNs with H-89 and KN-93—inhibitors of PKA and CaMK-II, respectively—in 25 mM KCl medium. Moreover, only a 15 min incubation of CGNs with H-89 produces about a 90% inhibition of the calcium entry that would normally occur through LTCCs to increase [Ca2+]i upon raising the extracellular K+ from 5 to 25 mM, i.e., from proapoptotic to survival conditions. In conclusion, the results of this work suggest that caveolin-1-rich lipid rafts play a major role in the control of the PKA- and CaMK-II-induced phosphorylation level of the LTCC β2 subunit, thus preventing CGNs from entering apoptosis.
Collapse
|
100
|
Barton B, Pohl PL, Hosten EC. Complexes of host compound (−)-(2R,3R)-2,3-dimethoxy-1,1,4,4-tetraphenylbutane-1,4-diol (DMT) with guests anisole and the methyl-substituted anisoles: host selectivity, thermal and single crystal diffraction considerations. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|