51
|
Gay MHP, Valenta T, Herr P, Paratore-Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol 2015; 13:24. [PMID: 25885041 PMCID: PMC4416270 DOI: 10.1186/s12915-015-0134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background β-catenin plays a central role in multiple developmental processes. However, it has been difficult to study its pleiotropic effects, because of the dual capacity of β-catenin to coordinate cadherin-dependent cell adhesion and to act as a component of Wnt signal transduction. To distinguish between the divergent functions of β-catenin during peripheral nervous system development, we made use of a mutant allele of β-catenin that can mediate adhesion but not Wnt-induced TCF transcriptional activation. This allele was combined with various conditional inactivation approaches. Results We show that of all peripheral nervous system structures, only sensory dorsal root ganglia require β-catenin for proper formation and growth. Surprisingly, however, dorsal root ganglia development is independent of cadherin-mediated cell adhesion. Rather, both progenitor cell proliferation and fate specification are controlled by β-catenin signaling. These can be divided into temporally sequential processes, each of which depends on a different function of β-catenin. Conclusions While early stage proliferation and specific Neurog2- and Krox20-dependent waves of neuronal subtype specification involve activation of TCF transcription, late stage progenitor proliferation and Neurog1-marked sensory neurogenesis are regulated by a function of β-catenin independent of TCF activation and adhesion. Thus, switching modes of β-catenin function are associated with consecutive cell fate specification and stage-specific progenitor proliferation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0134-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Max Hans-Peter Gay
- Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Patrick Herr
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Present address: SciLifeLab, Stockholm, Sweden.
| | - Lisette Paratore-Hari
- Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Present address: University Hospital Zurich, Clinical Trials Center, Zurich, Switzerland.
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Lukas Sommer
- Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
52
|
Azzarelli R, Hardwick LJA, Philpott A. Emergence of neuronal diversity from patterning of telencephalic progenitors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:197-214. [PMID: 25619507 DOI: 10.1002/wdev.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | |
Collapse
|
53
|
Greenberg Z, Ramshaw H, Schwarz Q. Time Windows of Interneuron Development: Implications to Our Understanding of the Aetiology and Treatment of Schizophrenia. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.4.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
54
|
Azim K, Fischer B, Hurtado-Chong A, Draganova K, Cantù C, Zemke M, Sommer L, Butt A, Raineteau O. Persistent Wnt/β-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 2014; 32:1301-12. [PMID: 24449255 DOI: 10.1002/stem.1639] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 12/12/2022]
Abstract
In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/β-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/β-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/β-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/β-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the β-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/β-catenin by infusion of the specific glycogen synthase kinase 3β inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/β-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/β-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/β-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/β-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs.
Collapse
Affiliation(s)
- Kasum Azim
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Okamura-Oho Y, Shimokawa K, Nishimura M, Takemoto S, Sato A, Furuichi T, Yokota H. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain. Sci Rep 2014; 4:6969. [PMID: 25382412 PMCID: PMC4225549 DOI: 10.1038/srep06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.
Collapse
Affiliation(s)
- Yuko Okamura-Oho
- Brain Research Network (BReNt), 2-2-41 Sakurayama, Zushi-shi, Kanagawa, 249-0005, Japan
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Kazuro Shimokawa
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-chou Aoba-ku Sendai-shi Miyagi, 980-8573, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Satoko Takemoto
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Akira Sato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hideo Yokota
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| |
Collapse
|
56
|
Gan Q, Lee A, Suzuki R, Yamagami T, Stokes A, Nguyen BC, Pleasure D, Wang J, Chen HW, Zhou CJ. Pax6 mediates ß-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells. Stem Cells 2014; 32:45-58. [PMID: 24115331 DOI: 10.1002/stem.1561] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022]
Abstract
The Wnt/ß-catenin pathway is a critical stem cell regulator and plays important roles in neuroepithelial cells during early gestation. However, the role of Wnt/ß-catenin signaling in radial glia, a major neural stem cell population expanded by midgestation, remains poorly understood. This study shows that genetic ablation of ß-catenin with hGFAP-Cre mice inhibits neocortical formation by disrupting radial glial development. Reduced radial glia and intermediate progenitors are found in the ß-catenin-deficient neocortex during late gestation. Increased apoptosis and divergent localization of radial glia in the subventricular zone are also observed in the mutant neocortex. In vivo and in vitro proliferation and neurogenesis as well as oligodendrogenesis by cortical radial glia or by dissociated neural stem cells are significantly defective in the mutants. Neocortical layer patterning is not apparently altered, while astrogliogenesis is ectopically increased in the mutants. At the molecular level, the expression of the transcription factor Pax6 is dramatically diminished in the cortical radial glia and the sphere-forming neural stem cells of ß-catenin-deficient mutants. Chromatin immunoprecipitation and luciferase assays demonstrate that ß-catenin/Tcf complex binds to Pax6 promoter and induces its transcriptional activities. The forced expression of Pax6 through lentiviral transduction partially rescues the defective proliferation and neurogenesis by ß-catenin-deficient neural stem cells. Thus, Pax6 is a novel downstream target of the Wnt/ß-catenin pathway, and ß-catenin/Pax6 signaling plays critical roles in self-renewal and neurogenesis of radial glia/neural stem cells during neocortical development.
Collapse
Affiliation(s)
- Qini Gan
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, Sacramento, California, USA; Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Granule neurons in the hippocampal dentate gyrus (DG) receive their primary inputs from the cortex and are known to be continuously generated throughout adult life. Ongoing integration of newborn neurons into the existing hippocampal neural circuitry provides enhanced neuroplasticity, which plays a crucial role in learning and memory; deficits in this process have been associated with cognitive decline under neuropathological conditions. In this Primer, we summarize the developmental principles that regulate the process of DG neurogenesis and discuss recent advances in harnessing these developmental cues to generate DG granule neurons from human pluripotent stem cells.
Collapse
Affiliation(s)
- Diana X Yu
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria C Marchetto
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
58
|
Capetian P, Pauly MG, Azmitia LM, Klein C. Striatal cholinergic interneurons in isolated generalized dystonia-rationale and perspectives for stem cell-derived cellular models. Front Cell Neurosci 2014; 8:205. [PMID: 25120431 PMCID: PMC4112996 DOI: 10.3389/fncel.2014.00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/07/2014] [Indexed: 12/28/2022] Open
Abstract
Interneurons comprise a minority of the striatal neuronal population of roughly 5%. However, this heterogeneous population is of particular interest as it fulfills an important relay function in modulating the output of the only type of striatal projection neurons, i.e., the medium spiny neuron (MSN).One subtype of this heterogenous group, the cholinergic interneuron, is of particular scientific interest as there is a relevant body of evidence from animal models supporting its special significance in the disease process. The development of protocols for directed differentiation of human pluripotent stem cells (PSC) into striatal interneurons provides a unique opportunity to derive in vitro those cell types that are most severely affected in dystonia.In this review we first aim to give a concise overview about the normal function of striatal interneurons and their dysfunction in dystonia in order to identify the most relevant interneuronal subtype for the pathogenesis of dystonia. Secondly we demonstrate how knowledge about the embryonic development of striatal interneurons is of particular help for the development of differentiation protocols from PSC and by this depict potential ways of deriving in vitro disease models of dystonia. We furthermore address the question as to whether cell replacement therapies might represent a beneficial approach for the treatment of dystonia.
Collapse
Affiliation(s)
- Philipp Capetian
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| | | | - Luis Manuel Azmitia
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neuroscience, University Medical Center, Freiburg Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck Lübeck, Germany
| |
Collapse
|
59
|
Forsdahl S, Kiselev Y, Hogseth R, Mjelle JE, Mikkola I. Pax6 regulates the expression of Dkk3 in murine and human cell lines, and altered responses to Wnt signaling are shown in FlpIn-3T3 cells stably expressing either the Pax6 or the Pax6(5a) isoform. PLoS One 2014; 9:e102559. [PMID: 25029272 PMCID: PMC4100929 DOI: 10.1371/journal.pone.0102559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
Abstract
Pax6 is a transcription factor important for early embryo development. It is expressed in several cancer cell lines and tumors. In glioblastoma, PAX6 has been shown to function as a tumor suppressor. Dickkopf 3 (Dkk3) is well established as a tumor suppressor in several tumor types, but not much is known about the regulation of its expression. We have previously found that Pax6 and Pax6(5a) increase the expression of the Dkk3 gene in two stably transfected mouse fibroblast cell lines. In this study the molecular mechanism behind this regulation is looked at. Western blot and reverse transcriptase quantitative PCR (RT-qPCR) confirmed higher level of Dkk3 expression in both Pax6 and Pax6(5a) expressing cell lines compared to the control cell line. By the use of bioinformatics and electrophoretic mobility shift assay (EMSA) we have mapped a functional Pax6 binding site in the mouse Dkk3 promoter. The minimal Dkk3 promoter fragment required for transcriptional activation by Pax6 and Pax6(5a) was a 200 bp region just upstream of the transcriptional start site. Mutation of the evolutionary conserved binding site in this region abrogated transcriptional activation and binding of Pax6/Pax6(5a) to the mouse Dkk3 promoter. Since the identified Pax6 binding site in this promoter is conserved, RT-qPCR and Western blot were used to look for regulation of Dkk3/REIC expression in human cell lines. Six of eight cell lines tested showed changes in Dkk3/REIC expression after PAX6 siRNA knockdown. Interestingly, we observed that the Pax6/Pax6(5a) expressing mouse fibroblast cell lines were less responsive to canonical Wnt pathway stimulation than the control cell line when TOP/FOP activity and the levels of active β-catenin and GSK3-β Ser9 phosphorylation were measured after LiCl stimulation.
Collapse
Affiliation(s)
- Siri Forsdahl
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
| | - Yury Kiselev
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
- Norwegian Translational Cancer Research Center, Department of Medical Biology, UiT – The Arctic University of Norway, Tromsoe, Norway
| | - Rune Hogseth
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
| | - Janne E. Mjelle
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
| | - Ingvild Mikkola
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
- * E-mail:
| |
Collapse
|
60
|
Kumamoto T, Hanashima C. Neuronal subtype specification in establishing mammalian neocortical circuits. Neurosci Res 2014; 86:37-49. [PMID: 25019611 DOI: 10.1016/j.neures.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
61
|
Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA. The cortical hem regulates the size and patterning of neocortex. Development 2014; 141:2855-65. [PMID: 24948604 DOI: 10.1242/dev.106914] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cortical hem, a source of Wingless-related (WNT) and bone morphogenetic protein (BMP) signaling in the dorsomedial telencephalon, is the embryonic organizer for the hippocampus. Whether the hem is a major regulator of cortical patterning outside the hippocampus has not been investigated. We examined regional organization across the entire cerebral cortex in mice genetically engineered to lack the hem. Indicating that the hem regulates dorsoventral patterning in the cortical hemisphere, the neocortex, particularly dorsomedial neocortex, was reduced in size in late-stage hem-ablated embryos, whereas cortex ventrolateral to the neocortex expanded dorsally. Unexpectedly, hem ablation also perturbed regional patterning along the rostrocaudal axis of neocortex. Rostral neocortical domains identified by characteristic gene expression were expanded, and caudal domains diminished. A similar shift occurs when fibroblast growth factor (FGF) 8 is increased at the rostral telencephalic organizer, yet the FGF8 source was unchanged in hem-ablated brains. Rather we found that hem WNT or BMP signals, or both, have opposite effects to those of FGF8 in regulating transcription factors that control the size and position of neocortical areas. When the hem is ablated a necessary balance is perturbed, and cerebral cortex is rostralized. Our findings reveal a much broader role for the hem in cortical development than previously recognized, and emphasize that two major signaling centers interact antagonistically to pattern cerebral cortex.
Collapse
Affiliation(s)
| | - Michio Yoshida
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA RIKEN Center for Developmental Biology, Kobe, Japan
| | - Forrest Gulden
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
62
|
Clowry GJ. An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex. J Anat 2014; 227:384-93. [PMID: 24839870 DOI: 10.1111/joa.12198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.
Collapse
Affiliation(s)
- Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
63
|
Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y, Gotoh Y. Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development. PLoS One 2014; 9:e94408. [PMID: 24832538 PMCID: PMC4022625 DOI: 10.1371/journal.pone.0094408] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/15/2014] [Indexed: 01/02/2023] Open
Abstract
During mouse neocortical development, the Wnt–β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs). Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1) contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs) committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1) and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7) and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation.
Collapse
Affiliation(s)
- Atsushi Kuwahara
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Sakai
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuanjiang Xu
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Itoh
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yukiko Gotoh
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
64
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|
65
|
Abstract
The three-layered piriform cortex, an integral part of the olfactory system, processes odor information relayed by olfactory bulb mitral cells. Specifically, mitral cell axons form the lateral olfactory tract (LOT) by targeting lateral olfactory tract (lot) guidepost cells in the piriform cortex. While lot cells and other piriform cortical neurons share a pallial origin, the factors that specify their precise phenotypes are poorly understood. Here we show that in mouse, the proneural genes Neurog1 and Neurog2 are coexpressed in the ventral pallium, a progenitor pool that first gives rise to Cajal-Retzius (CR) cells, which populate layer I of all cortical domains, and later to layer II/III neurons of the piriform cortex. Using loss-of-function and gain-of-function approaches, we find that Neurog1 has a unique early role in reducing CR cell neurogenesis by tempering Neurog2's proneural activity. In addition, Neurog1 and Neurog2 have redundant functions in the ventral pallium, acting in two phases to first specify a CR cell fate and later to specify layer II/III piriform cortex neuronal identities. In the early phase, Neurog1 and Neurog2 are also required for lot cell differentiation, which we reveal are a subset of CR neurons, the loss of which prevents mitral cell axon innervation and LOT formation. Consequently, mutation of Trp73, a CR-specific cortical gene, results in lot cell and LOT axon displacement. Neurog1 and Neurog2 thus have unique and redundant functions in the piriform cortex, controlling the timing of differentiation of early-born CR/lot cells and specifying the identities of later-born layer II/III neurons.
Collapse
|
66
|
Bielen H, Houart C. The Wnt cries many: Wnt regulation of neurogenesis through tissue patterning, proliferation, and asymmetric cell division. Dev Neurobiol 2014; 74:772-80. [DOI: 10.1002/dneu.22168] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/23/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Holger Bielen
- MRC Centre for Developmental Neurobiology; King's College London, Guy's Campus; London SE1 1UL United Kingdom
| | - Corinne Houart
- MRC Centre for Developmental Neurobiology; King's College London, Guy's Campus; London SE1 1UL United Kingdom
| |
Collapse
|
67
|
Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline. PLoS One 2014; 9:e86025. [PMID: 24516524 PMCID: PMC3916303 DOI: 10.1371/journal.pone.0086025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.
Collapse
|
68
|
Rolando C, Taylor V. Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease. Curr Top Dev Biol 2014; 107:183-206. [PMID: 24439807 DOI: 10.1016/b978-0-12-416022-4.00007-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of the hippocampus is generated during embryonic development, but most neurons within the structure are produced after birth. The hippocampus is a primary region of neurogenesis within the adult mammalian brain. Adult-born neurons have to integrate into the established neural circuitry throughout life. Although the function of neurogenesis in the adult hippocampus, particularly in humans, remains unclear, experimental data suggest that adult-born neurons are involved in some forms of memory, as well as in diseases. Adult hippocampal neurogenesis is dynamic, responding to physiological and pathological stimuli that may promote brain function or contribute to diseases such as epilepsy. Here, we review some of the mechanisms and signaling pathways involved in the development of the hippocampus, as well as in adult neurogenesis. We discuss some recent findings suggesting heterogeneity within the hippocampal stem cell pool and the regulation of activation of quiescent stem cells. Finally, we discuss some of the issues relating neurogenesis to pathophysiology and aging.
Collapse
Affiliation(s)
- Chiara Rolando
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
69
|
Nicoleau C, Varela C, Bonnefond C, Maury Y, Bugi A, Aubry L, Viegas P, Bourgois-Rocha F, Peschanski M, Perrier AL. Embryonic stem cells neural differentiation qualifies the role of Wnt/β-Catenin signals in human telencephalic specification and regionalization. Stem Cells 2013; 31:1763-74. [DOI: 10.1002/stem.1462] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/21/2013] [Accepted: 05/11/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Camille Nicoleau
- Inserm U861; I-STEM, AFM, Evry 91030 Cedex France
- UEVE U861; I-STEM, AFM, Evry 91030 Cedex France
| | | | | | - Yves Maury
- CECS; I-STEM, AFM, Evry 91030 Cedex France
| | | | - Laetitia Aubry
- Inserm U861; I-STEM, AFM, Evry 91030 Cedex France
- UEVE U861; I-STEM, AFM, Evry 91030 Cedex France
| | - Pedro Viegas
- Inserm U861; I-STEM, AFM, Evry 91030 Cedex France
- UEVE U861; I-STEM, AFM, Evry 91030 Cedex France
| | - Fany Bourgois-Rocha
- Inserm U861; I-STEM, AFM, Evry 91030 Cedex France
- UEVE U861; I-STEM, AFM, Evry 91030 Cedex France
| | - Marc Peschanski
- Inserm U861; I-STEM, AFM, Evry 91030 Cedex France
- UEVE U861; I-STEM, AFM, Evry 91030 Cedex France
| | - Anselme L Perrier
- Inserm U861; I-STEM, AFM, Evry 91030 Cedex France
- UEVE U861; I-STEM, AFM, Evry 91030 Cedex France
| |
Collapse
|
70
|
Wilkinson G, Dennis D, Schuurmans C. Proneural genes in neocortical development. Neuroscience 2013; 253:256-73. [PMID: 23999125 DOI: 10.1016/j.neuroscience.2013.08.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Abstract
Neurons, astrocytes and oligodendrocytes arise from CNS progenitor cells at defined times and locations during development, with transcription factors serving as key determinants of these different neural cell fates. An emerging theme is that the transcription factors that specify CNS cell fates function in a context-dependent manner, regulated by post-translational modifications and epigenetic alterations that partition the genome (and hence target genes) into active or silent domains. Here we profile the critical roles of the proneural genes, which encode basic-helix-loop-helix (bHLH) transcription factors, in specifying neural cell identities in the developing neocortex. In particular, we focus on the proneural genes Neurogenin 1 (Neurog1), Neurog2 and Achaete scute-like 1 (Ascl1), which are each expressed in a distinct fashion in the progenitor cell pools that give rise to all of the neuronal and glial cell types of the mature neocortex. Notably, while the basic functions of these proneural genes have been elucidated, it is becoming increasingly evident that tight regulatory controls dictate when, where and how they function. Current efforts to better understand how proneural gene function is regulated will not only improve our understanding of neocortical development, but are also critical to the future development of regenerative therapies for the treatment of neuronal degeneration or disease.
Collapse
Affiliation(s)
- G Wilkinson
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
71
|
Yang P, Li X, Xu C, Eckert RL, Reece EA, Zielke HR, Wang F. Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects. Sci Signal 2013; 6:ra74. [PMID: 23982205 DOI: 10.1126/scisignal.2004020] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neural tube defects result from failure to completely close neural tubes during development. Maternal diabetes is a substantial risk factor for neural tube defects, and available evidence suggests that the mechanism that links hyperglycemia to neural tube defects involves oxidative stress and apoptosis. We demonstrated that maternal hyperglycemia correlated with activation of the apoptosis signal-regulating kinase 1 (ASK1) in the developing neural tube, and Ask1 gene deletion was associated with reduced neuroepithelial cell apoptosis and development of neural tube defects. ASK1 activation stimulated the activity of the transcription factor FoxO3a, which increased the abundance of the apoptosis-promoting adaptor protein TRADD, leading to activation of caspase 8. Hyperglycemia-induced apoptosis and the development of neural tube defects were reduced with genetic ablation of either FoxO3a or Casp8 or inhibition of ASK1 by thioredoxin. Examination of human neural tissues affected by neural tube defects revealed increased activation or abundance of ASK1, FoxO3a, TRADD, and caspase 8. Thus, activation of an ASK1-FoxO3a-TRADD-caspase 8 pathway participates in the development of neural tube defects, which could be prevented by inhibiting intermediates in this cascade.
Collapse
Affiliation(s)
- Peixin Yang
- Department of Obstetrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Xie Y, Jüschke C, Esk C, Hirotsune S, Knoblich JA. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron 2013; 79:254-65. [PMID: 23830831 PMCID: PMC3725415 DOI: 10.1016/j.neuron.2013.05.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PP4c is required for spindle orientation in cortical progenitors Loss of PP4c leads to premature neuronal differentiation Spindle misorientation causes layering defects during a critical time window PP4c acts on Ndel1 and Lis1
Collapse
Affiliation(s)
- Yunli Xie
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3-5, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
73
|
Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 2013; 33:3967-80. [PMID: 23447606 DOI: 10.1523/jneurosci.0726-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The structural complexity of the brain depends on precise molecular and cellular regulatory mechanisms orchestrated by regional morphogenetic organizers. The thalamic organizer is the zona limitans intrathalamica (ZLI), a transverse linear neuroepithelial domain in the alar plate of the diencephalon. Because of its production of Sonic hedgehog, ZLI acts as a morphogenetic signaling center. Shh is expressed early on in the prosencephalic basal plate and is then gradually activated dorsally within the ZLI. The anteroposterior positioning and the mechanism inducing Shh expression in ZLI cells are still partly unknown, being a subject of controversial interpretations. For instance, separate experimental results have suggested that juxtaposition of prechordal (rostral) and epichordal (caudal) neuroepithelium, anteroposterior encroachment of alar lunatic fringe (L-fng) expression, and/or basal Shh signaling is required for ZLI specification. Here we investigated a key role of Wnt signaling in the molecular regulation of ZLI positioning and Shh expression, using experimental embryology in ovo in the chick. Early Wnt expression in the ZLI regulates Gli3 and L-fng to generate a permissive territory in which Shh is progressively induced by planar signals of the basal plate.
Collapse
|
74
|
Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/β-catenin-responsive neural stem cells. Proc Natl Acad Sci U S A 2013; 110:7324-9. [PMID: 23589866 DOI: 10.1073/pnas.1305411110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the discovery of neural stem cells in the mammalian brain, there has been significant interest in understanding their contribution to tissue homeostasis at both the cellular and molecular level. Wnt/β-catenin signaling is crucial for development of the central nervous system and has been implicated in stem cell maintenance in multiple tissues. Based on this, we hypothesized that the Wnt pathway likely controls neural stem cell maintenance and differentiation along the entire developmental continuum. To test this, we performed lineage tracing experiments using the recently developed tamoxifen-inducible Cre at Axin2 mouse strain to follow the developmental fate of Wnt/β-catenin-responsive cells in both the embryonic and postnatal mouse brain. From as early as embryonic day 8.5 onwards, Axin2(+) cells can give rise to spatially and functionally restricted populations of adult neural stem cells in the subventricular zone. Similarly, progeny from Axin2(+) cells labeled from E12.5 contribute to both the subventricular zone and the dentate gyrus of the hippocampus. Labeling in the postnatal brain, in turn, demonstrates the persistence of long-lived, Wnt/β-catenin-responsive stem cells in both of these sites. These results demonstrate the continued importance of Wnt/β-catenin signaling for neural stem and progenitor cell formation and function throughout developmental time.
Collapse
|
75
|
MuhChyi C, Juliandi B, Matsuda T, Nakashima K. Epigenetic regulation of neural stem cell fate during corticogenesis. Int J Dev Neurosci 2013; 31:424-33. [DOI: 10.1016/j.ijdevneu.2013.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/18/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chai MuhChyi
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
| | - Berry Juliandi
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
- Department of BiologyBogor Agricultural University (IPB)DramagaBogor16680Indonesia
| | - Taito Matsuda
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
| | - Kinichi Nakashima
- Laboratory of Molecular NeuroscienceGraduate School of Biological SciencesNara Institute of Science and TechnologyTakayama 8916‐5IkomaNara630‐0192Japan
| |
Collapse
|
76
|
Kaye JA, Finkbeiner S. Modeling Huntington's disease with induced pluripotent stem cells. Mol Cell Neurosci 2013; 56:50-64. [PMID: 23459227 DOI: 10.1016/j.mcn.2013.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) causes severe motor dysfunction, behavioral abnormalities, cognitive impairment and death. Investigations into its molecular pathology have primarily relied on murine tissues; however, the recent discovery of induced pluripotent stem cells (iPSCs) has opened new possibilities to model neurodegenerative disease using cells derived directly from patients, and therefore may provide a human-cell-based platform for unique insights into the pathogenesis of HD. Here, we will examine the practical implementation of iPSCs to study HD, such as approaches to differentiate embryonic stem cells (ESCs) or iPSCs into medium spiny neurons, the cell type most susceptible in HD. We will explore the HD-related phenotypes identified in iPSCs and ESCs and review how brain development and neurogenesis may actually be altered early, before the onset of HD symptoms, which could inform the search for drugs that delay disease onset. Finally, we will speculate on the exciting possibility that ESCs or iPSCs might be used as therapeutics to restore or replace dying neurons in HD brains.
Collapse
Affiliation(s)
- Julia A Kaye
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, United States.
| | | |
Collapse
|
77
|
Wisniewska MB. Physiological role of β-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 2013; 38:1144-55. [PMID: 23377854 PMCID: PMC3653035 DOI: 10.1007/s11064-013-0980-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/21/2012] [Accepted: 01/19/2013] [Indexed: 12/21/2022]
Abstract
Wnt/β-catenin pathway, the effectors of which are transcription factors of the LEF1/TCF family, is primarily associated with development. Strikingly, however, some of the genes of the pathway are schizophrenia susceptibility genes, and the proteins that are often mutated in neurodegenerative diseases have the ability to regulate β-catenin levels. If impairment of this pathway indeed leads to these pathologies, then it likely plays a physiological role in the adult brain. This review provides an overview of the current knowledge on this subject. The involvement of β-catenin and LEF1/TCF factors in adult neurogenesis, synaptic plasticity, and the function of thalamic neurons are discussed. The data are still very preliminary and often based on circumstantial or indirect evidence. Further research might help to understand the etiology of the aforementioned pathologies.
Collapse
Affiliation(s)
- Marta B Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
78
|
Liu Y, Li Z, Zhang M, Deng Y, Yi Z, Shi T. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med Genomics 2013; 6 Suppl 1:S17. [PMID: 23369358 PMCID: PMC3552677 DOI: 10.1186/1755-8794-6-s1-s17] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) and type 2 diabetes mellitus (T2D) are both complex diseases. Accumulated studies indicate that schizophrenia patients are prone to present the type 2 diabetes symptoms, but the potential mechanisms behind their association remain unknown. Here we explored the pathogenetic association between SCZ and T2D based on pathway analysis and protein-protein interaction. RESULTS With sets of prioritized susceptibility genes for SCZ and T2D, we identified significant pathways (with adjusted p-value < 0.05) specific for SCZ or T2D and for both diseases based on pathway enrichment analysis. We also constructed a network to explore the crosstalk among those significant pathways. Our results revealed that some pathways are shared by both SCZ and T2D diseases through a number of susceptibility genes. With 382 unique susceptibility proteins for SCZ and T2D, we further built a protein-protein interaction network by extracting their nearest interacting neighbours. Among 2,104 retrieved proteins, 364 of them were found simultaneously interacted with susceptibility proteins of both SCZ and T2D, and proposed as new candidate risk factors for both diseases. Literature mining supported the potential association of partial new candidate proteins with both SCZ and T2D. Moreover, some proteins were hub proteins with high connectivity and interacted with multiple proteins involved in both diseases, implying their pleiotropic effects for the pathogenic association. Some of these hub proteins are the components of our identified enriched pathways, including calcium signaling, g-secretase mediated ErbB4 signaling, adipocytokine signaling, insulin signaling, AKT signaling and type II diabetes mellitus pathways. Through the integration of multiple lines of information, we proposed that those signaling pathways, which contain susceptibility genes for both diseases, could be the key pathways to bridge SCZ and T2D. AKT could be one of the important shared components and may play a pivotal role to link both of the pathogenetic processes. CONCLUSIONS Our study is the first network and pathway-based systematic analysis for SCZ and T2D, and provides the general pathway-based view of pathogenetic association between two diseases. Moreover, we identified a set of candidate genes potentially contributing to the linkage between these two diseases. This research offers new insights into the potential mechanisms underlying the co-occurrence of SCZ and T2D, and thus, could facilitate the inference of novel hypotheses for the co-morbidity of the two diseases. Some etiological factors that exert pleiotropic effects shared by the significant pathways of two diseases may have important implications for the diseases and could be therapeutic intervention targets.
Collapse
Affiliation(s)
- Yanli Liu
- Center for Bioinformatics and Computational Biology, and The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zezhi Li
- Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, 168 Changhai Road, Shanghai, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University 37 Guoxuexiang, Chengdu, Sichuan, 610041, China
| | - Youping Deng
- Rush University Cancer Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhenghui Yi
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
79
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
80
|
Constitutive activation of β-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Dev Biol 2012; 374:319-32. [PMID: 23237957 DOI: 10.1016/j.ydbio.2012.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/20/2022]
Abstract
Wnt signaling is known to play crucial roles in the development of multiple organs as well as in cancer. In particular, constitutive activation of Wnt/β-Catenin signaling in distinct populations of forebrain or brainstem precursor cells has previously been shown to result in dramatic brain enlargement during embryonic stages of development as well as in the formation of medulloblastoma, a malignant brain tumor in childhood. In order to extend this knowledge to postnatal stages of both cerebral and cerebellar cortex development, we conditionally activated Wnt signaling by introducing a dominant active form of β-catenin in hGFAP-positive neural precursors. Such mutant mice survived up to 21 days postnatally. While the mice revealed enlarged ventricles and an initial expansion of the Pax6-positive ventricular zone, Pax6 expression and proliferative activity in the ventricular zone was virtually lost by embryonic day 16.5. Loss of Pax6 expression was not followed by expression of the subventricular zone marker Tbr2, indicating insufficient neuronal differentiation. In support of this finding, cortical thickness was severely diminished in all analyzed stages from embryonic day 14.5 to postnatal day 12, and appropriate layering was not detectable. Similarly, cerebella of hGFAP-cre::Ctnnb1(ex3)(Fl/+) mice were hypoplastic and displayed severe lamination defects. Constitutively active β-Catenin induced inappropriate proliferation of granule neurons and inadequate development of Bergmann glia, thereby preventing regular migration of granule cells and normal cortical layering. We conclude that Wnt signaling has divergent roles in the central nervous system and that Wnt needs to be tightly controlled in a time- and cell type-specific manner.
Collapse
|
81
|
Wisniewska MB, Nagalski A, Dabrowski M, Misztal K, Kuznicki J. Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability. BMC Genomics 2012; 13:635. [PMID: 23157480 PMCID: PMC3532193 DOI: 10.1186/1471-2164-13-635] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022] Open
Abstract
Background LEF1/TCF transcription factors and their activator β-catenin are effectors of the canonical Wnt pathway. Although Wnt/β-catenin signaling has been implicated in neurodegenerative and psychiatric disorders, its possible role in the adult brain remains enigmatic. To address this issue, we sought to identify the genetic program activated by β-catenin in neurons. We recently showed that β-catenin accumulates specifically in thalamic neurons where it activates Cacna1g gene expression. In the present study, we combined bioinformatics and experimental approaches to find new β-catenin targets in the adult thalamus. Results We first selected the genes with at least two conserved LEF/TCF motifs within the regulatory elements. The resulting list of 428 putative LEF1/TCF targets was significantly enriched in known Wnt targets, validating our approach. Functional annotation of the presumed targets also revealed a group of 41 genes, heretofore not associated with Wnt pathway activity, that encode proteins involved in neuronal signal transmission. Using custom polymerase chain reaction arrays, we profiled the expression of these genes in the rat forebrain. We found that nine of the analyzed genes were highly expressed in the thalamus compared with the cortex and hippocampus. Removal of nuclear β-catenin from thalamic neurons in vitro by introducing its negative regulator Axin2 reduced the expression of six of the nine genes. Immunoprecipitation of chromatin from the brain tissues confirmed the interaction between β-catenin and some of the predicted LEF1/TCF motifs. The results of these experiments validated four genes as authentic and direct targets of β-catenin: Gabra3 for the receptor of GABA neurotransmitter, Calb2 for the Ca2+-binding protein calretinin, and the Cacna1g and Kcna6 genes for voltage-gated ion channels. Two other genes from the latter cluster, Cacna2d2 and Kcnh8, appeared to be regulated by β-catenin, although the binding of β-catenin to the regulatory sequences of these genes could not be confirmed. Conclusions In the thalamus, β-catenin regulates the expression of a novel group of genes that encode proteins involved in neuronal excitation. This implies that the transcriptional activity of β-catenin is necessary for the proper excitability of thalamic neurons, may influence activity in the thalamocortical circuit, and may contribute to thalamic pathologies.
Collapse
Affiliation(s)
- Marta B Wisniewska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
82
|
Abstract
Cancer stem cells may be responsible for tumor initiation and maintenance. The molecular mechanisms that control cancer stem cells are related to alterations in various signaling pathways, including the Wnt/β-catenin signaling pathway. The canonical Wnt/β-catenin signaling pathway is one of the major signaling systems in stem and progenitor cells, and aberrant activation of the Wnt/β-catenin signaling pathway is common in human cancers. As with β-catenin, FoxM1 has been found to play important roles in a number of cancers. In this review, we discuss the evidence that FoxM1 affects the expression and function of a variety of genes that are critical to the survival, proliferation, invasion, angiogenesis, and self-renewal of cancer stem cells. We highlight the pivotal roles of the Wnt/β-catenin and FoxM1 signaling pathways in neural stem and progenitor cells and glioma stem cells. We also discuss the evidence for cross-talk between the β-catenin and FoxM1 signaling pathways in the regulation of the stemness and tumorigenicity of glioma stem cells.
Collapse
Affiliation(s)
- Aihua Gong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center and Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
83
|
Chenn A. Wnt/beta-catenin signaling in cerebral cortical development. Organogenesis 2012; 4:76-80. [PMID: 19279718 DOI: 10.4161/org.4.2.5852] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/17/2023] Open
Abstract
The cerebral cortex is the multilayered sheet of neurons that underlies our highest cognitive abilities. Canonical Wnt/beta-catenin signaling has well-known activities in tissue patterning in regulating rostral-caudal and medial-lateral patterning in the developing cortex. In addition, recent studies suggest that Wnt/beta-catenin signaling also plays important roles in establishing the radial inside to outside organization of the cerebral cortex. Different Wnts, Wnt receptors and inhibitors are expressed in overlapping radial compartments of the cerebral cortex, and in vivo functional studies have provided evidence for Wnt/beta-catenin regulation of neural precursor self-renewal, laminar fate determination and establishing or stabilizing the patterns of neuronal communication of cortical neurons. Wnt/beta-catenin alterations have been observed in human brain tumors, and understanding its many diverse functions during normal neural development may provide greater insight into the mechanisms underlying the development and progression of neural tumors.
Collapse
Affiliation(s)
- Anjen Chenn
- Department of Pathology; Northwestern University; Feinberg School of Medicine; Chicago, Illinois USA
| |
Collapse
|
84
|
Neurogenin2 expression together with NeuroM regulates GDNF family neurotrophic factor receptor α1 (GFRα1) expression in the embryonic spinal cord. Dev Biol 2012; 370:250-63. [DOI: 10.1016/j.ydbio.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
85
|
Wang Q, Yang L, Alexander C, Temple S. The niche factor syndecan-1 regulates the maintenance and proliferation of neural progenitor cells during mammalian cortical development. PLoS One 2012; 7:e42883. [PMID: 22936997 PMCID: PMC3427302 DOI: 10.1371/journal.pone.0042883] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor cells (NPCs) divide and differentiate in a precisely regulated manner over time to achieve the remarkable expansion and assembly of the layered mammalian cerebral cortex. Both intrinsic signaling pathways and environmental factors control the behavior of NPCs during cortical development. Heparan sulphate proteoglycans (HSPG) are critical environmental regulators that help modulate and integrate environmental cues and downstream intracellular signals. Syndecan-1 (Sdc1), a major transmembrane HSPG, is highly enriched in the early neural germinal zone, but its function in modulating NPC behavior and cortical development has not been explored. In this study we investigate the expression pattern and function of Sdc1 in the developing mouse cerebral cortex. We found that Sdc1 is highly expressed by cortical NPCs. Knockdown of Sdc1 in vivo by in utero electroporation reduces NPC proliferation and causes their premature differentiation, corroborated in isolated cells in vitro. We found that Sdc1 knockdown leads to reduced levels of β-catenin, indicating reduced canonical Wnt signaling. Consistent with this, GSK3β inhibition helps rescue the Sdc1 knockdown phenotype, partially restoring NPC number and proliferation. Moreover, exogenous Wnt protein promotes cortical NPC proliferation, but this is prevented by Sdc1 knockdown. Thus, Sdc1 in the germinal niche is a key HSPG regulating the maintenance and proliferation of NPCs during cortical neurogenesis, in part by modulating the ability of NPCs to respond to Wnt ligands.
Collapse
Affiliation(s)
- Qingjie Wang
- Neural Stem Cell Institute, Rensselaer, New York, United States of America
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Landi Yang
- Neural Stem Cell Institute, Rensselaer, New York, United States of America
| | - Caroline Alexander
- McArdle Lab for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States of America
- * E-mail:
| |
Collapse
|
86
|
Abstract
The neocortex is comprised of six neuronal layers that are generated in a defined temporal sequence. While extrinsic and intrinsic cues are known to regulate the sequential production of neocortical neurons, how these factors interact and function in a coordinated manner is poorly understood. The proneural gene Neurog2 is expressed in progenitors throughout corticogenesis, but is only required to specify early-born, deep-layer neuronal identities. Here, we examined how neuronal differentiation in general and Neurog2 function in particular are temporally controlled during murine neocortical development. We found that Neurog2 proneural activity declines in late corticogenesis, correlating with its phosphorylation by GSK3 kinase. Accordingly, GSK3 activity, which is negatively regulated by canonical Wnt signaling, increases over developmental time, while Wnt signaling correspondingly decreases. When ectopically activated, GSK3 inhibits Neurog2-mediated transcription in cultured cells and Neurog2 proneural activities in vivo. Conversely, a reduction in GSK3 activity promotes the precocious differentiation of later stage cortical progenitors without influencing laminar fate specification. Mechanistically, we show that GSK3 suppresses Neurog2 activity by influencing its choice of dimerization partner, promoting heterodimeric interactions with E47 (Tcfe2a), as opposed to Neurog2-Neurog2 homodimer formation, which occurs when GSK3 activity levels are low. At the functional level, Neurog2-E47 heterodimers have a reduced ability to transactivate neuronal differentiation genes compared with Neurog2-Neurog2 homodimers, both in vitro and in vivo. We thus conclude that the temporal regulation of Neurog2-E47 heterodimerization by GSK3 is a central component of the neuronal differentiation "clock" that coordinates the timing and tempo of neocortical neurogenesis in mouse.
Collapse
|
87
|
Affiliation(s)
- Clemens Kiecker
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| | - Andrew Lumsden
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| |
Collapse
|
88
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
89
|
Abstract
Components of the Wnt signaling pathway are expressed in a tightly regulated and spatially specific manner during development of the forebrain, and Wnts are key regulators of regional forebrain identity. Wnt signaling from the cortical hem regulates the expansion and cell-type specification of the adjacent neuroepithelium and, in conjunction with Bmp, Fgf, and Shh signaling, controls dorsal-ventral forebrain patterning. Subsequently, Wnt signaling dynamically regulates the behavior of cortical progenitor cells, initially promoting the expansion of radial glia progenitor cells and later inducing neurogenesis by promoting terminal differentiation of intermediate progenitor cells. A role for Wnt signaling in cell-type specification has also been proposed.
Collapse
Affiliation(s)
- Susan J Harrison-Uy
- Department of Neurology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
90
|
Carlin D, Sepich D, Grover VK, Cooper MK, Solnica-Krezel L, Inbal A. Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling. Development 2012; 139:2614-24. [PMID: 22736245 PMCID: PMC3383232 DOI: 10.1242/dev.076018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/18/2023]
Abstract
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Carlin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diane Sepich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Vandana K. Grover
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael K. Cooper
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Adi Inbal
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
91
|
Bluske KK, Vue TY, Kawakami Y, Taketo MM, Yoshikawa K, Johnson JE, Nakagawa Y. β-Catenin signaling specifies progenitor cell identity in parallel with Shh signaling in the developing mammalian thalamus. Development 2012; 139:2692-702. [PMID: 22745311 DOI: 10.1242/dev.072314] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural progenitor cells within the developing thalamus are spatially organized into distinct populations. Their correct specification is critical for generating appropriate neuronal subtypes in specific locations during development. Secreted signaling molecules, such as sonic hedgehog (Shh) and Wnts, are required for the initial formation of the thalamic primordium. Once thalamic identity is established and neurogenesis is initiated, Shh regulates the positional identity of thalamic progenitor cells. Although Wnt/β-catenin signaling also has differential activity within the thalamus during this stage of development, its significance has not been directly addressed. In this study, we used conditional gene manipulations in mice and explored the roles of β-catenin signaling in the regional identity of thalamic progenitor cells. We found β-catenin is required during thalamic neurogenesis to maintain thalamic fate while suppressing prethalamic fate, demonstrating that regulation of regional fate continues to require extrinsic signals. These roles of β-catenin appeared to be mediated at least partly by regulating two basic helix-loop-helix (bHLH) transcription factors, Neurog1 and Neurog2. β-Catenin and Shh signaling function in parallel to specify two progenitor domains within the thalamus, where individual transcription factors expressed in each progenitor domain were regulated differently by the two signaling pathways. We conclude that β-catenin has multiple functions during thalamic neurogenesis and that both Shh and β-catenin pathways are important for specifying distinct types of thalamic progenitor cells, ensuring that the appropriate neuronal subtypes are generated in the correct locations.
Collapse
Affiliation(s)
- Krista K Bluske
- Department of Neuroscience, Developmental Biology Center and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K. Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 2012; 287:24356-64. [PMID: 22645129 DOI: 10.1074/jbc.m112.365643] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
93
|
Fotaki V, Price DJ, Mason JO. Wnt/β-catenin signaling is disrupted in the extra-toes (Gli3(Xt/Xt) ) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects. J Comp Neurol 2012; 519:1640-57. [PMID: 21452227 DOI: 10.1002/cne.22592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The zinc finger transcription factor Gli3 is essential for normal development of the forebrain. Mutant mice with no functional Gli3 (extra-toes, Gli3(Xt/Xt) mutants) display a massive reduction in the size of the telencephalic lobes and absence of dorsomedial telencephalic structures, including the cortical hem, which normally expresses a number of Wnt molecules essential for patterning the hippocampus. Dorsomedial telencephalic Wnt activity, transduced through the Wnt/β-catenin signaling pathway, is also required for hippocampal specification and dorsoventral telencephalic patterning. Wnts whose normal expression is restricted to the cortical hem are completely absent in Gli3(Xt/Xt) embryos, but some expression of those Wnts with a broader expression domain persists, raising the possibility that Wnt/β-catenin signaling may still be active in this mutant. We examined whether the Wnt expression that persists in the Gli3(Xt/Xt) mutant neocortex activates Wnt/β-catenin signaling, using the BAT-gal transgenic reporter. We found Wnt/β-catenin signaling consistently decreased in the forebrains of Gli3(Xt/Xt) mutants, even prior to the formation of the cortical hem. This is accompanied by a severe reduction in expression of Wnt7b and Wnt8b at the lateral edges of the anterior neural plate that will give rise to the pallium. In addition, we found a significant increase in the expression of rostroventral markers of the anterior neural plate that will give rise to the basal forebrain. Our data reveal that Gli3 is required at the neural plate stage to regulate Wnt expression and Wnt/β-catenin signaling in the presumptive forebrain and confirm its previously proposed role in patterning the anterior neural plate.
Collapse
Affiliation(s)
- Vassiliki Fotaki
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | |
Collapse
|
94
|
Pratt T, Davey JW, Nowakowski TJ, Raasumaa C, Rawlik K, McBride D, Clinton M, Mason JO, Price DJ. The expression and activity of β-catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo. BMC Neurosci 2012; 13:20. [PMID: 22360971 PMCID: PMC3347985 DOI: 10.1186/1471-2202-13-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background The mammalian thalamus relays sensory information from the periphery to the cerebral cortex for cognitive processing via the thalamocortical tract. The thalamocortical tract forms during embryonic development controlled by mechanisms that are not fully understood. β-catenin is a nuclear and cytosolic protein that transduces signals from secreted signaling molecules to regulate both cell motility via the cytoskeleton and gene expression in the nucleus. In this study we tested whether β-catenin is likely to play a role in thalamocortical connectivity by examining its expression and activity in developing thalamic neurons and their axons. Results At embryonic day (E)15.5, the time when thalamocortical axonal projections are forming, we found that the thalamus is a site of particularly high β-catenin mRNA and protein expression. As well as being expressed at high levels in thalamic cell bodies, β-catenin protein is enriched in the axons and growth cones of thalamic axons and its growth cone concentration is sensitive to Netrin-1. Using mice carrying the β-catenin reporter BAT-gal we find high levels of reporter activity in the thalamus. Further, Netrin-1 induces BAT-gal reporter expression and upregulates levels of endogenous transcripts encoding β-actin and L1 proteins in cultured thalamic cells. We found that β-catenin mRNA is enriched in thalamic axons and its 3'UTR is phylogenetically conserved and is able to direct heterologous mRNAs along the thalamic axon, where they can be translated. Conclusion We provide evidence that β-catenin protein is likely to be an important player in thalamocortcial development. It is abundant both in the nucleus and in the growth cones of post-mitotic thalamic cells during the development of thalamocortical connectivity and β-catenin mRNA is targeted to thalamic axons and growth cones where it could potentially be translated. β-catenin is involved in transducing the Netrin-1 signal to thalamic cells suggesting a mechanism by which Netrin-1 guides thalamocortical development.
Collapse
Affiliation(s)
- Thomas Pratt
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Duan D, Fu Y, Paxinos G, Watson C. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct Funct 2012; 218:353-72. [PMID: 22354470 DOI: 10.1007/s00429-012-0397-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
Abstract
The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious colocaliztion of TH and Pax6 was detected. No Pax6 expression was observed in TH-expressing areas in the midbrain at E12, E14, and postnatal day 1. These results support the notion that Pax6 plays pivotal roles in specifying neural progenitor cell commitments and maintaining certain mature neuronal fates.
Collapse
Affiliation(s)
- Deyi Duan
- Neuroscience Research Australia, Randwick, Sydney, NSW, 2031, Australia
| | | | | | | |
Collapse
|
96
|
Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr Opin Cell Biol 2012; 24:269-76. [PMID: 22342580 DOI: 10.1016/j.ceb.2012.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 01/29/2023]
Abstract
The cerebral cortex is composed of hundreds of different types of neurons, which underlie its ability to perform highly complex neural processes. How cortical neurons are generated during development constitutes a major challenge in developmental neurosciences with important implications for brain repair and diseases. Cortical neurogenesis is dependent on intrinsic and extrinsic cues, which interplay to generate cortical neurons at the right number, time and place. While the role of intrinsic factors such as proneural and Notch genes has been well established, recent evidence indicate that most classical morphogens, produced by various neural and non-neural sources throughout embryonic development, contribute to the master control and fine tuning of cortical neurogenesis. Here we review some recent advances in the dissection of the molecular logic underlying neurogenesis in the cortex, with special emphasis on the roles of morphogenic cues in this process.
Collapse
|
97
|
Molecular regulation of striatal development: a review. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:106529. [PMID: 22567304 PMCID: PMC3335634 DOI: 10.1155/2012/106529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/07/2011] [Indexed: 01/26/2023]
Abstract
The central nervous system is composed of the brain and the spinal cord. The brain is a complex organ that processes and coordinates activities of the body in bilaterian, higher-order animals. The development of the brain mirrors its complex function as it requires intricate genetic signalling at specific times, and deviations from this can lead to brain malformations such as anencephaly. Research into how the CNS is specified and patterned has been studied extensively in chick, fish, frog, and mice, but findings from the latter will be emphasised here as higher-order mammals show most similarity to the human brain. Specifically, we will focus on the embryonic development of an important forebrain structure, the striatum (also known as the dorsal striatum or neostriatum). Over the past decade, research on striatal development in mice has led to an influx of new information about the genes involved, but the precise orchestration between the genes, signalling molecules, and transcription factors remains unanswered. We aim to summarise what is known to date about the tightly controlled network of interacting genes that control striatal development. This paper will discuss early telencephalon patterning and dorsal ventral patterning with specific reference to the genes involved in striatal development.
Collapse
|
98
|
Association of the type 2 diabetes mellitus susceptibility gene, TCF7L2, with schizophrenia in an Arab-Israeli family sample. PLoS One 2012; 7:e29228. [PMID: 22247771 PMCID: PMC3256145 DOI: 10.1371/journal.pone.0029228] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 11/22/2011] [Indexed: 11/20/2022] Open
Abstract
Many reports in different populations have demonstrated linkage of the 10q24-q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24-q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10⁻⁶) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10⁻⁶) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required.
Collapse
|
99
|
Boggetti B, Niessen CM. Adherens junctions in mammalian development, homeostasis and disease: lessons from mice. Subcell Biochem 2012; 60:321-55. [PMID: 22674078 DOI: 10.1007/978-94-007-4186-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice have proven to be a particularly powerful model to study molecular mechanisms of development and disease. The reason for this is the close evolutionary relationship between rodents and humans, similarities in physiological mechanisms in mice and human, and the large number of techniques available to study gene functions in mice. A large number of mice mutations, either germ line, conditional or inducible, have been generated in the past years for adherens junctions components, and the number is still increasing. In this review we will discuss mice models that have contributed to understanding the developmental and physiological role of adherens junctions and their components in mammals and have revealed novel mechanistic aspects of how adherens junctions regulate morphogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Barbara Boggetti
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Room 4A.05, Robert Kochstrasse 21, 50931, Cologne, Germany
| | | |
Collapse
|
100
|
Viegas P, Nicoleau C, Perrier AL. Derivation of striatal neurons from human stem cells. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|