51
|
Mohapatra C, Barman HK, Panda RP, Kumar S, Das V, Mohanta R, Mohapatra SD, Jayasankar P. Cloning of cDNA and prediction of peptide structure of Plzf expressed in the spermatogonial cells of Labeo rohita. Mar Genomics 2010; 3:157-63. [PMID: 21798210 DOI: 10.1016/j.margen.2010.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The promyelocytic leukemia zinc finger (Plzf) gene containing an evolutionary conserved BTB (bric-a-brac/tramtrack/broad complex) domain plays a key role in self-renewal of mammalian spermatogonial stem cells (SSCs) via recruiting transcriptional co-repressors. Little is known about the function of Plzf in vertebrate, especially in fish species. To gain better understanding of its role in fishes, we have cloned Plzf from the testis of Labeo rohita (rohu), a commercially important freshwater carp. The full-length cDNA contains an open reading frame (ORF) of 2004bp translatable to 667 amino acids (aa) containing a conserved N-terminal BTB domain and C-terminal C(2)H(2)-zinc finger motifs. L. rohita Plzf, which is phylogenetically related to Danio rerio counterpart, abundantly expressed in spermatogonial stem cells (SSCs). A three-dimensional (3D) model of BTB domain of Plzf protein was constructed by homology modeling approach. Molecular docking on this 3D structure established a homo-dimer between two BTB domains creating a charged pocket containing conserved aa residues: L33, C34, D35 and R49. Thus, Plzf of SSC is structurally and possibly functionally conserved. The conserved aa residues in the cleft resulting from Plzf BTB self-association are likely to be the binding platform for interaction with recruited co-repressor peptides. The identified Plzf could be the first step towards exploring its role in rohu SSC behavior.
Collapse
Affiliation(s)
- Chinmayee Mohapatra
- Fish Genetics & Biotechnology Division, Central Institute of Freshwater Aquaculture (Indian Council of Agricultural Research), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Godmann M, May E, Kimmins S. Epigenetic mechanisms regulate stem cell expressed genes Pou5f1 and Gfra1 in a male germ cell line. PLoS One 2010; 5:e12727. [PMID: 20856864 PMCID: PMC2939054 DOI: 10.1371/journal.pone.0012727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/19/2010] [Indexed: 01/15/2023] Open
Abstract
Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Erin May
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Sarah Kimmins
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
53
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
54
|
Kress C, Ballester M, Devinoy E, Rijnkels M. Epigenetic modifications in 3D: nuclear organization of the differentiating mammary epithelial cell. J Mammary Gland Biol Neoplasia 2010; 15:73-83. [PMID: 20143138 DOI: 10.1007/s10911-010-9169-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022] Open
Abstract
During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. It has recently been shown that the 3D spatial organization of chromosomes in the nucleus also plays a role in genome function. Indeed, the eukaryotic interphase nucleus contains sub-domains that are characterized by their enrichment in specific factors such as RNA Polymerase II, splicing machineries or heterochromatin proteins which render portions of the genome differentially permissive to gene expression. The positioning of individual genes relative to these sub-domains is thought to participate in the control of gene expression as an epigenetic mechanism acting in the nuclear space. Here, we review what is known about the sub-nuclear organization of mammary epithelial cells in connection with gene expression and epigenetics. Throughout differentiation, global changes in nuclear architecture occur, notably with respect to heterochromatin distribution. The positions of mammary-specific genes relative to nuclear sub-compartments varies in response to hormonal stimulation. The contribution of tissue architecture to cell differentiation in the mammary gland is also seen at the level of nuclear organization, which is sensitive to microenvironmental stimuli such as extracellular matrix signaling. In addition, alterations in nuclear organization are concomitant with immortalization and carcinogenesis. Thus, the fate of cells appears to be controlled by complex pathways connecting external signal integration, gene expression, epigenetic modifications and chromatin organization in the nucleus.
Collapse
Affiliation(s)
- Clémence Kress
- UR1196 Génomique et Physiologie de la Lactation, INRA, Domaine de Vilvert, F-78352, Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
55
|
Reding SC, Stepnoski AL, Cloninger EW, Oatley JM. THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 2010; 139:893-903. [PMID: 20154176 DOI: 10.1530/rep-09-0513] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The undifferentiated spermatogonial population consists of stem and progenitor germ cells which function to provide the foundation for spermatogenesis. The stem cell component, termed spermatogonial stem cells (SSCs), is capable of self-renewal and differentiation. These unique attributes have made them a target for novel technologies to enhance reproductive function in males. With bulls, culture and transplantation of SSCs have the potential to enhance efficiency of cattle production and provide a novel avenue to generate transgenic animals. Isolation of SSCs is an essential component for the development of these techniques. In rodents and non-human primates, undifferentiated spermatogonia and SSCs express the surface marker THY1. The hypothesis tested in this study was that THY1 is a conserved marker of the undifferentiated spermatogonial population in bulls. Flow cytometric analyses showed that the THY1+ cell fraction comprises a rare sub-population in testes of pre-pubertal bulls. Immunocytochemical analyses of the isolated THY1+ fraction for expression of VASA showed that this cell population is comprised mostly of germ cells. Additionally, expression of the undifferentiated spermatogonial specific transcription factor promyelocytic leukemia zinc finger (PLZF, ZBTB16) protein was found to be enriched in the isolated THY1+ testis cell fraction. Lastly, xenogeneic transplantation of bull testis cells into seminiferous tubules of immunodeficient mice resulted in greater than sixfold more colonies from isolated THY1+ cells compared to the unselected total testis cell population indicating SSC enrichment. Collectively, these results demonstrate that THY1 is a marker of undifferentiated spermatogonia in testes of pre-pubertal bulls, and isolation of THY1+ cells results in their enrichment from the total testis cell population.
Collapse
Affiliation(s)
- Suzanne C Reding
- Department of Dairy and Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
56
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem 2009; 285:2758-70. [PMID: 19910458 DOI: 10.1074/jbc.m109.066845] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spermatogenesis, a fundamental process in the male reproductive system, requires a series of tightly controlled epigenetic and genetic events in germ cells ranging from spermatogonia to spermatozoa. Jmjd1a is a key epigenetic regulator expressed in the testis. It specifically demethylates mono- and di-methylated histone H3 lysine 9 (H3K9me1 and H3K9me2) but not tri-methylated H3K9 (H3K9me3). In this study, we generated a Jmjd1a antibody for immunohistochemistry and found Jmjd1a was specifically produced in pachytene and secondary spermatocytes. Disruption of the Jmjd1a gene in mice significantly increased H3K9me1 and H3K9me2 levels in pachytene spermatocytes and early elongating spermatids without affecting H3K9me3 levels. Concurrently, the levels of histone acetylation were decreased in Jmjd1a knock-out germ cells. This suggests Jmjd1a promotes transcriptional activation by lowering histone methylation and increasing histone acetylation. Interestingly, the altered histone modifications in Jmjd1a-deficient germ cells caused diminished cAMP-response element modulator (Crem) recruitment to chromatin and decreased expression of the Crem coactivator Act and their target genes Tnp1 (transition protein 1), Tnp2, Prm1 (protamine 1), and Prm2, all of which are essential for chromatin condensation in spermatids. In agreement with these findings, Jmjd1a deficiency caused extensive germ cell apoptosis and blocked spermatid elongation, resulting in severe oligozoospermia, small testes, and infertility in male mice. These results indicate that the Jmjd1a-controlled epigenetic histone modifications are crucial for Crem-regulated gene expression and spermatogenesis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Texas A&M University Health Science Center, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
58
|
Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod 2009; 16:37-47. [PMID: 19906823 DOI: 10.1093/molehr/gap090] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Along with many of the genome-wide transitions in chromatin composition throughout spermatogenesis, epigenetic modifications on histone tails and DNA are continuously modified to ensure stage specific gene expression in the maturing spermatid. Recent findings have suggested that the repertoire of epigenetic modifications in the mature sperm may have a potential role in the developing embryo and alterations in the epigenetic profile have been associated with infertility. These changes include DNA demethylation and the retention of modified histones at important developmental, signaling and micro-RNA genes, which resemble the epigenetic state of an embryonic stem cell. This review assesses the significance of epigenetic changes during spermatogenesis, and provides insight on recent associations made between altered epigenetic profiles in the mature sperm and its relationship to infertility.
Collapse
Affiliation(s)
- Douglas T Carrell
- IVF and Andrology Laboratories, Departments of Surgery (Urology), Obstetrics and Gynecology, and Physiology, 675 S. Arapeen Dr, Suite #205, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
59
|
Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: Its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech 2009; 72:603-19. [PMID: 19319879 DOI: 10.1002/jemt.20715] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spermatogenesis is a truly remarkable process that requires exquisite control and synchronization of germ cell development. It is prone to frequent error, as paternal infertility contributes to 30-50% of all infertility cases; yet, in many cases, the mechanisms underlying its causes are unknown. Strikingly, aberrant epigenetic profiles, in the form of anomalous DNA and histone modifications, are characteristic of cancerous testis cells. Germ cell development is a critical period during which epigenetic patterns are established and maintained. The progression from diploid spermatogonia to haploid spermatozoa involves stage- and testis-specific gene expression, mitotic and meiotic division, and the histone-protamine transition. All are postulated to engender unique epigenetic controls. In support of this idea are the findings that mouse models with gene deletions for epigenetic modifiers have severely compromised fertility. Underscoring the importance of understanding how epigenetic marks are set and interpreted is evidence that abnormal epigenetic programming of gametes and embryos contributes to heritable instabilities in subsequent generations. Numerous studies have documented the existence of transgenerational consequences of maternal nutrition, or other environmental exposures, but it is only now recognized that there are sex-specific male-line transgenerational responses in humans and other species. Epigenetic events in the testis have just begun to be studied. New work on the function of specific histone modifications, chromatin modifiers, DNA methylation, and the impact of the environment on developing sperm suggests that the correct setting of the epigenome is required for male reproductive health and the prevention of paternal disease transmission.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Montreal H9X3V9 Canada
| | | | | |
Collapse
|
60
|
Sadate-Ngatchou PI, Payne CJ, Dearth AT, Braun RE. Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice. Genesis 2009; 46:738-42. [PMID: 18850594 DOI: 10.1002/dvg.20437] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have generated a transgenic mouse line,Tg(Stra8-cre)1Reb (Stra8-cre), which expresses improved Cre recombinase under the control of a 1.4 Kb promoter region of the germ cell-specific stimulated by retinoic acid gene 8 (Stra8). cre is expressed only in males beginning at postnatal day (P)3 in early-stage spermatogonia and is detected through preleptotene-stage spermatocytes. To further define when cre becomes active, we crossed Stra8-cre males with Tg(ACTB-Bgeo/GFP)21Lbe (Z/EG) reporter females and compared the expression of enhanced green fluorescent protein (EGFP) with the protein encoded by the zinc finger and BTB domain containing 16 (Zbtb16) gene, PLZF-a marker for undifferentiated spermatogonia. Co-expression of EGFP is observed in the majority of PLZF+ cells. We also tested recombination efficiency by mating Stra8-cre;Z/EG males and females with wild-type mice and examining EGFP expression in the offspring. Recombination is detected in >95% of Z/EG+ pups born to Stra8-cre;Z/EG fathers but in none of the offspring born to transgenic mothers, a verification that cre is not functional in females. The postnatal, premeiotic, male germ cell-specific activity of Stra8-cre makes this mouse line a unique resource to study testicular germ cell development.
Collapse
|
61
|
Chromatin: linking structure and function in the nucleolus. Chromosoma 2008; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
|
62
|
Dann CT, Alvarado AL, Molyneux LA, Denard BS, Garbers DL, Porteus MH. Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 2008; 26:2928-37. [PMID: 18719224 DOI: 10.1634/stemcells.2008-0134] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The long-term production of billions of spermatozoa relies on the regulated proliferation and differentiation of spermatogonial stem cells (SSCs). To date only a few factors are known to function in SSCs to provide this regulation. Octamer-4 (OCT4) plays a critical role in pluripotency and cell survival of embryonic stem cells and primordial germ cells; however, it is not known whether it plays a similar function in SSCs. Here, we show that OCT4 is required for SSC maintenance in culture and for colonization activity following cell transplantation, using lentiviral-mediated short hairpin RNA expression to knock down OCT4 in an in vitro model for SSCs ("germline stem" [GS] cells). Expression of promyelocytic leukemia zinc-finger (PLZF), a factor known to be required for SSC self-renewal, was not affected by OCT4 knockdown, suggesting that OCT4 does not function upstream of PLZF. In addition to developing a method to test specific gene function in GS cells, we demonstrate that retinoic acid (RA) triggers GS cells to shift to a differentiated, premeiotic state lacking OCT4 and PLZF expression and colonization activity. Our data support a model in which OCT4 and PLZF maintain SSCs in an undifferentiated state and RA triggers spermatogonial differentiation through the direct or indirect downregulation of OCT4 and PLZF. The current study has important implications for the future use of GS cells as an in vitro model for spermatogonial stem cell biology or as a source of embryonic stem-like cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Christina Tenenhaus Dann
- Departments of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Baumann C, Schmidtmann A, Muegge K, De La Fuente R. Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia. BMC Mol Biol 2008; 9:29. [PMID: 18366812 PMCID: PMC2275742 DOI: 10.1186/1471-2199-9-29] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 03/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation. Results Our results demonstrate that histone H3 tri-methylated at lysine 9 (H3K9me3), a hallmark of constitutive heterochromatin, as well as the chromatin remodeling protein ATRX remained associated with pericentric heterochromatin regions in spite of their extensive hypo-methylation. This suggests that in neonatal spermatogonia, chromosomal 5-methyl cytosine patterns are regulated independently of changes in histone methylation, potentially reflecting a crucial mechanism to maintain pericentric heterochromatin silencing. Furthermore, chromatin immunoprecipitation and fluorescence in situ hybridization, revealed that ATRX as well as H3K9me3 associate with Y chromosome-specific DNA sequences and decorate both arms of the Y chromosome, suggesting a possible role in heterochromatinization and the predominant transcriptional quiescence of this chromosome during spermatogenesis. Conclusion These results are consistent with a role for histone modifications and chromatin remodeling proteins such as ATRX in maintaining transcriptional repression at constitutive heterochromatin domains in the absence of 5-methyl cytosine and provide evidence suggesting that the establishment and/or maintenance of repressive histone and chromatin modifications at pericentric heterochromatin following genome-wide epigenetic reprogramming in the germ line may precede the establishment of chromosomal 5-methyl cytosine patterns as a genomic silencing strategy in neonatal spermatogonia.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348, USA.
| | | | | | | |
Collapse
|
64
|
Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008; 9:129-40. [PMID: 18197165 DOI: 10.1038/nrg2295] [Citation(s) in RCA: 630] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.
Collapse
|
65
|
Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 2007; 14:1008-16. [PMID: 17984963 DOI: 10.1038/nsmb1337] [Citation(s) in RCA: 487] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent modifications of histones are central to the regulation of chromatin dynamics, and, therefore, many biological processes involving chromatin, such as replication, repair, transcription and genome stability, are regulated by chromatin and its modifications. In this review, we discuss the biochemical, molecular and genetic properties of the enzymatic machinery involved in four different types of histone modification: acetylation, ubiquitination, phosphorylation and methylation. We also discuss how perturbation of the activity of this enzymatic machinery can cause developmental defects and disease.
Collapse
|
66
|
Godmann M, Auger V, Ferraroni-Aguiar V, Di Sauro A, Sette C, Behr R, Kimmins S. Dynamic Regulation of Histone H3 Methylation at Lysine 4 in Mammalian Spermatogenesis1. Biol Reprod 2007; 77:754-64. [PMID: 17634443 DOI: 10.1095/biolreprod.107.062265] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Spermatogenesis is a highly complex cell differentiation process that is governed by unique transcriptional regulation and massive chromatin alterations, which are required for meiosis and postmeiotic maturation. The underlying mechanisms involve alterations to the epigenetic layer, including histone modifications and incorporation of testis-specific nuclear proteins, such as histone variants and protamines. Histones can undergo methylation, acetylation, and phosphorylation among other modifications at their N-terminus, and these modifications can signal changes in chromatin structure. We have identified the temporal and spatial distributions of histone H3 mono-, di-, and trimethylation at lysine 4 (K4), and the lysine-specific histone demethylase AOF2 (amine oxidase flavin-containing domain 2, previously known as LSD1) during mammalian spermatogenesis. Our results reveal tightly regulated distributions of H3-K4 methylation and AOF2, and that H3-K4 methylation is very similar between the mouse and the marmoset. The AOF2 protein levels were found to be higher in the testes than in the somatic tissues. The distribution of AOF2 matched the cell- and stage-specific patterns of H3-K4 methylation. Interaction studies revealed unique epigenetic regulatory complexes associated with H3-K4 methylation in the testis, including the association of AOF2 and methyl-CpG-binding domain protein 2 (MBD2a/b) in a complex with histone deacetylase 1 (HDAC1). These studies enhance our understanding of epigenetic modifications and their roles in chromatin organization during male germ cell differentiation in both normal and pathologic states.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Montreal, Quebec, Canada H9X 3V9
| | | | | | | | | | | | | |
Collapse
|
67
|
Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007; 450:119-23. [DOI: 10.1038/nature06236] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/05/2007] [Indexed: 01/01/2023]
|
68
|
Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, Dolci S. Repression of kit expression by Plzf in germ cells. Mol Cell Biol 2007; 27:6770-81. [PMID: 17664282 PMCID: PMC2099235 DOI: 10.1128/mcb.00479-07] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Male mice lacking expression of Plzf, a DNA sequence-specific transcriptional repressor, show progressive germ cell depletion due to exhaustion of the spermatogonial stem cell population. This is likely due to the deregulated expression of genes controlling the switch between spermatogonial self-renewal and differentiation. Here we show that Plzf directly represses the transcription of kit, a hallmark of spermatogonial differentiation. Plzf represses both endogenous kit expression and expression of a reporter gene under the control of the kit promoter region. A discrete sequence of the kit promoter, required for Plzf-mediated kit transcriptional repression, is bound by Plzf both in vivo and in vitro. A 3-bp mutation in this Plzf binding site abolishes the responsiveness of the kit promoter to Plzf repression. A significant increase in kit expression is also found in the undifferentiated spermatogonia isolated from Plzf(-/-) mice. Thus, we suggest that one mechanism by which Plzf maintains the pool of spermatogonial stem cells is through a direct repression of kit expression.
Collapse
Affiliation(s)
- Doria Filipponi
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Via Montpellier 1, Ed E Nord, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
69
|
Tachibana M, Nozaki M, Takeda N, Shinkai Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 2007; 26:3346-59. [PMID: 17599069 PMCID: PMC1933398 DOI: 10.1038/sj.emboj.7601767] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 05/29/2007] [Indexed: 02/06/2023] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation is a crucial epigenetic mark of heterochromatin formation and transcriptional silencing. G9a is a major mammalian H3K9 methyltransferase at euchromatin and is essential for mouse embryogenesis. Here we describe the roles of G9a in germ cell development. Mutant mice in which G9a is specifically inactivated in the germ-lineage displayed sterility due to a drastic loss of mature gametes. G9a-deficient germ cells exhibited perturbation of synchronous synapsis in meiotic prophase. Importantly, mono- and di-methylation of H3K9 (H3K9me1 and 2) in G9a-deficient germ cells were significantly reduced and G9a-regulated genes were overexpressed during meiosis, suggesting that G9a-mediated epigenetic gene silencing is crucial for proper meiotic prophase progression. Finally, we show that H3K9me1 and 2 are dynamically and sex-differentially regulated during the meiotic prophase. This genetic and biochemical evidence strongly suggests that a specific set of H3K9 methyltransferase(s) and demethylase(s) coordinately regulate gametogenesis.
Collapse
Affiliation(s)
- Makoto Tachibana
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan. Tel.: +81 75 751 3991; Fax: +81 75 751-3991; E-mail:
| | - Masami Nozaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naoki Takeda
- Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Yoichi Shinkai
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan. Tel.: +81 75 751 3991; Fax: +81 75 751-3991; E-mail:
| |
Collapse
|
70
|
Abstract
Oocytes and sperm are some of the most differentiated cells in our bodies, yet they generate all cell types after fertilization. Accumulating evidence suggests that this extraordinary potential is conferred to germ cells from the time of their formation during embryogenesis. In this Review, we describe common themes emerging from the study of germ cells in vertebrates and invertebrates. Transcriptional repression, chromatin remodeling, and an emphasis on posttranscriptional gene regulation preserve the totipotent genome of germ cells through generations.
Collapse
Affiliation(s)
- Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|