51
|
Otto A, Patel K. Signalling and the control of skeletal muscle size. Exp Cell Res 2010; 316:3059-66. [DOI: 10.1016/j.yexcr.2010.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/12/2010] [Indexed: 11/26/2022]
|
52
|
Vinciguerra M, Hede M, Rosenthal N. Comments on Point:Counterpoint: IGF is/is not the major physiological regulator of muscle mass. IGF-1 is a major regulator of muscle mass during growth but not for adult myofiber hypertrophy. J Appl Physiol (1985) 2010; 108:1831. [PMID: 20527703 DOI: 10.1152/japplphysiol.00312.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
53
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
54
|
Normal fibroblasts promote myodifferentiation of myoblasts from sex-linked dwarf chicken via up-regulation of β1 integrin. Cell Biol Int 2010; 34:1119-27. [DOI: 10.1042/cbi20090351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
55
|
Six family genes control the proliferation and differentiation of muscle satellite cells. Exp Cell Res 2010; 316:2932-44. [DOI: 10.1016/j.yexcr.2010.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/19/2010] [Accepted: 08/03/2010] [Indexed: 12/23/2022]
|
56
|
Velloso CP, Harridge SDR. Insulin-like growth factor-I E peptides: implications for aging skeletal muscle. Scand J Med Sci Sports 2010; 20:20-7. [PMID: 19883387 DOI: 10.1111/j.1600-0838.2009.00997.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In skeletal muscle there is good evidence to suggest that locally produced insulin-like growth factor-1 (IGF-I), rather than circulating IGF-I, is important in regard to muscle mass maintenance, repair and hypertrophy. This "mature" IGF-I comprises exons 3 and 4 of the IGF-I gene, but during processing the full length gene (which contains six exons) is subject to a process of alternative splicing. As a result smaller peptides (E peptides) are believed to be cleaved from the mature IGF-I peptide during processing of the prohormone and the likelihood is that they have different biological roles. In human skeletal muscle three transcripts encoding for these splice variants (IGF-IEa, IGF-IEb and IGF-IEc, also known as MGF) can be identified. When studied at the mRNA level these three transcripts are known to be upregulated in the muscles of elderly people following high resistance exercise, albeit with different time courses. However, compared with mature IGF-I relatively little is known about the mechanism of action of the different E peptides.
Collapse
Affiliation(s)
- Cristina P Velloso
- Division of Applied Biomedical Research, King's College London, London, UK
| | | |
Collapse
|
57
|
Stewart CE, Pell JM. POINT: IGF IS THE MAJOR PHYSIOLOGICAL REGULATOR OF MUSCLE MASS. J Appl Physiol (1985) 2010; 108:1820-1; discussion 1823-4; author reply 1832. [DOI: 10.1152/japplphysiol.01246.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- C. E. Stewart
- Institute for Biomedical Research into Human Movement and Health Manchester, UK
| | - J. M. Pell
- The Babraham Institute Babraham Research Campus Babraham, Cambridge, UK
| |
Collapse
|
58
|
Heron-Milhavet L, Mamaeva D, LeRoith D, Lamb NJ, Fernandez A. Impaired muscle regeneration and myoblast differentiation in mice with a muscle-specific KO of IGF-IR. J Cell Physiol 2010; 225:1-6. [DOI: 10.1002/jcp.22218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
59
|
Goldspink G, Wessner B, Tschan H, Bachl N. Growth factors, muscle function, and doping. Endocrinol Metab Clin North Am 2010; 39:169-81, xi. [PMID: 20122457 DOI: 10.1016/j.ecl.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed.
Collapse
Affiliation(s)
- Geoffrey Goldspink
- Department of Surgery, University College Medical School, University of London, London, England, UK.
| | | | | | | |
Collapse
|
60
|
van Dijk-Ottens M, Vos IHC, Cornelissen PWA, de Bruin A, Everts ME. Thyroid hormone-induced cardiac mechano growth factor expression depends on beating activity. Endocrinology 2010; 151:830-8. [PMID: 20032059 DOI: 10.1210/en.2009-0520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechano growth factor (MGF), a splice variant of the IGF-I gene, was first discovered in mechanically overloaded skeletal muscle and was shown to play an important role in proliferation of muscle stem cells. Since then, the presence and effects of MGF have been demonstrated in other tissues. MGF has been shown to act neuroprotectively during brain ischemia, and pretreatment with MGF before myocardial infarction improves cardiac function. Because MGF plays a permissive role in exercise-induced skeletal muscle hypertrophy, we hypothesize that MGF is commonly involved in cardiac hypertrophy. To investigate the regulation of MGF expression in heart, mice were treated with thyroid hormone (T(3)) for 12 d to induce physiological cardiac hypertrophy. MGF mRNA expression was specifically increased in midregions of the septum and left ventricular wall. Interestingly, MGF expression strongly correlated with the increased or decreased beating frequency of hyperthyroid and hypothyroid hearts. To further investigate the mechanically dependent induction of MGF, neonatal rat cardiomyocytes were isolated and exposed to T(3). Upon T(3) treatment, cardiomyocytes increased both contractile activity measured as beats per minute and MGF as well as IGF-IEa mRNA expression. Importantly, when cardiomyocytes were contractile arrested by KCl, simultaneous exposure to T(3) prevented the up-regulation of MGF, whereas IGF-IEa was still induced. These studies demonstrated that MGF but not IGF-IEa expression is dependent on beating activity. These findings suggest that MGF is specifically stimulated by mechanical loading of the heart to mediate the hypertrophic response to thyroid hormone.
Collapse
Affiliation(s)
- Miriam van Dijk-Ottens
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.158, NL-3508 TD Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
61
|
Galluzzo P, Rastelli C, Bulzomi P, Acconcia F, Pallottini V, Marino M. 17β-Estradiol regulates the first steps of skeletal muscle cell differentiation via ER-α-mediated signals. Am J Physiol Cell Physiol 2009; 297:C1249-62. [DOI: 10.1152/ajpcell.00188.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (E2) mediates a wide variety of complex biological processes determining the growth and development of reproductive tract as well as nonreproductive tissues of male and female individuals. While E2 effects on the reproductive system, bone, and cardiovascular system are quite well established, less is known about how it affects the physiology of other tissues. Skeletal muscle is a tissue that is expected to be E2 responsive since both isoforms of estrogen receptor (ER-α and ER-β) are expressed. Significant sex-related differences have been described in skeletal muscle, although the role played by E2 and the mechanisms underlying it remain to be determined. Here, we demonstrate that E2 increases the glucose transporter type 4 translocation at membranes as well as the expression of well-known differentiation markers of myogenesis (i.e., myogenin and myosin heavy chain) in rat myoblast cells (L6). These E2-induced effects require rapid extranuclear signals and the presence of ER-α, whereas no contribution of IGF-I receptor has been observed. In particular, ER-α-dependent Akt activation participates in regulating the first step of myogenic differentiation. Moreover, both receptors mediate the E2-induced activation of p38, which, in turn, affects the expression of myogenin and myosin heavy chain. All together, these data indicate that E2 should be included in the list of skeletal muscle trophic factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Marino
- Department of Biology, University Roma Tre, Rome, Italy
| |
Collapse
|
62
|
Abstract
Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.
Collapse
Affiliation(s)
- Stephen D R Harridge
- Division of Applied Biomedical Research, School of Biomedical and Health Sciences, Shepherd's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.
| | | |
Collapse
|
63
|
NFAT isoforms control activity-dependent muscle fiber type specification. Proc Natl Acad Sci U S A 2009; 106:13335-40. [PMID: 19633193 DOI: 10.1073/pnas.0812911106] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are composed and maintained in response to activity is largely unknown. Here, we show that 4 nuclear factor of activated T cell (NFAT) family members act coordinately downstream of Cn in the specification of muscle fiber types. We analyzed the role of NFAT family members in vivo by transient transfection in skeletal muscle using a loss-of-function approach by RNAi. Our results show that, depending on the applied activity pattern, different combinations of NFAT family members translocate to the nucleus contributing to the transcription of fiber type specific genes. We provide evidence that the transcription of slow and fast myosin heavy chain (MyHC) genes uses different combinations of NFAT family members, ranging from MyHC-slow, which uses all 4 NFAT isoforms, to MyHC-2B, which only uses NFATc4. Our data contribute to the elucidation of the mechanisms whereby activity can modulate the phenotype and performance of skeletal muscle.
Collapse
|
64
|
Sakurai T, Ueda T, Kawai M, Tobita H, Miyakoshi J. Protective effects of insulin-like growth factor-I on the decrease in myogenic differentiation by ionizing radiation. Int J Radiat Biol 2009; 85:153-8. [PMID: 19280468 DOI: 10.1080/09553000802641177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim of the work is to evaluate the effects of insulin-like growth factor-1 (IGF-1) on the decrease in myotube formation induced by ionizing radiation. MATERIALS AND METHODS We induced C2C12 cells to a myogenic linage following X-ray irradiation at 2 and 4 Gy. Myogenic differentiation was estimated using immnocytochemical staining with anti-myosin antibody, and the anti-myosin antibody positive areas, the total number of nuclei, the number of nuclei included in multinucleated myotubes per field, and the myotube formation ratio were analyzed. RESULTS In the myogenic differentiation in the presence of IGF-1, the decrease in anti-myosin antibody positive areas, the nuclei included in myotubes, and the myotube formation ratio induced by X-ray irradiation at 2 Gy was restored to control levels. CONCLUSIONS The addition of IGF-1 protected against the decrease myotube formation induced by X-ray irradiation at 2 Gy. Since X-ray irradiation at 2 Gy is usually used for multi-fractionated irradiation in radiotherapy, our findings suggest that IGF-1 could be useful to protect against impairment of muscle repair induced by therapeutic dose radiation.
Collapse
Affiliation(s)
- Tomonori Sakurai
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University, 66-1 Hon-cho, Japan
| | | | | | | | | |
Collapse
|
65
|
Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 2009; 296:C1258-70. [PMID: 19357233 DOI: 10.1152/ajpcell.00105.2009] [Citation(s) in RCA: 541] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myostatin is a negative regulator of skeletal muscle size, previously shown to inhibit muscle cell differentiation. Myostatin requires both Smad2 and Smad3 downstream of the activin receptor II (ActRII)/activin receptor-like kinase (ALK) receptor complex. Other transforming growth factor-beta (TGF-beta)-like molecules can also block differentiation, including TGF-beta(1), growth differentiation factor 11 (GDF-11), activins, bone morphogenetic protein 2 (BMP-2) and BMP-7. Myostatin inhibits activation of the Akt/mammalian target of rapamycin (mTOR)/p70S6 protein synthesis pathway, which mediates both differentiation in myoblasts and hypertrophy in myotubes. Blockade of the Akt/mTOR pathway, using small interfering RNA to regulatory-associated protein of mTOR (RAPTOR), a component of TOR signaling complex 1 (TORC1), increases myostatin-induced phosphorylation of Smad2, establishing a myostatin signaling-amplification role for blockade of Akt. Blockade of RAPTOR also facilitates myostatin's inhibition of muscle differentiation. Inhibition of TORC2, via rapamycin-insensitive companion of mTOR (RICTOR), is sufficient to inhibit differentiation on its own. Furthermore, myostatin decreases the diameter of postdifferentiated myotubes. However, rather than causing upregulation of the E3 ubiquitin ligases muscle RING-finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), previously shown to mediate skeletal muscle atrophy, myostatin decreases expression of these atrophy markers in differentiated myotubes, as well as other genes normally upregulated during differentiation. These findings demonstrate that myostatin signaling acts by blocking genes induced during differentiation, even in a myotube, as opposed to activating the distinct "atrophy program." In vivo, inhibition of myostatin increases muscle creatine kinase activity, coincident with an increase in muscle size, demonstrating that this in vitro differentiation measure is also upregulated in vivo.
Collapse
|
66
|
Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman HP, Roelen BAJ. Isolation and characterization of porcine adult muscle-derived progenitor cells. J Cell Biochem 2009; 105:1228-39. [PMID: 18821573 DOI: 10.1002/jcb.21921] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report the isolation of progenitor cells from pig skeletal muscle tissue fragments. Muscle progenitor cells were stimulated to migrate from protease-digested tissue fragments and cultured in the presence of 5 ng/ml basic fibroblast growth factor. The cells showed a sustained long-term expansion capacity (>120 population doublings) while maintaining a normal karyotype. The proliferating progenitor cells expressed PAX3, DESMIN, SMOOTH MUSCLE ACTIN, VIMENTIN, CD31, NANOG and THY-1, while MYF5 and OCT3/4 were only expressed in the lower or higher cell passages. Myogenic differentiation of porcine progenitor cells was induced in a coculture system with murine C2C12 myoblasts resulting in the formation of myotubes. Further, the cells showed adipogenic and osteogenic lineage commitment when exposed to specific differentiation conditions. These observations were determined by Von Kossa and Oil-Red-O staining and confirmed by quantitative RT-PCR analysis. In conclusion, the porcine muscle-derived progenitor cells possess long-term expansion capacity and a multilineage differentiation capacity.
Collapse
Affiliation(s)
- Karlijn J Wilschut
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
67
|
Subramanian IV, Fernandes BCA, Robinson T, Koening J, Lapara KS, Ramakrishnan S. AAV-2-mediated expression of IGF-1 in skeletal myoblasts stimulates angiogenesis and cell survival. J Cardiovasc Transl Res 2008; 2:81-92. [PMID: 20559971 DOI: 10.1007/s12265-008-9063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/08/2008] [Indexed: 12/24/2022]
Abstract
The transplantation of skeletal myoblasts is being tested in various organ systems to facilitate tissue repair and regeneration. Previous studies have indicated that transplanted cells for varied reasons were not surviving in sufficient numbers following transplantation, thus negatively affecting overall therapeutic efficacy of the approach. We hypothesize that the genetic modification of myoblasts to express insulin-like growth factor 1 (IGF-1) locally may enhance the survival of transplanted cells by stimulating neo-vascularization, decreasing apoptosis, and promoting cell proliferation. Using an adeno-associated virus (adeno-associated virus type 2) vector system, the IGF-1 gene was introduced into canine skeletal myoblasts. As a negative control, myoblasts transduced with the green fluorescence protein (GFP) was used. Relative angiogenic response induced by IGF-1 myoblast was compared to VEGF165-induced neo-vascularization using Matrigel plugs under similar conditions. In vitro evaluation and characterization revealed that the secreted IGF-1 protein was biologically and functionally active in promoting endothelial cell proliferation, migration and assembly into vessel-like structures. Matrigel plugs containing the three test groups were implanted subcutaneously in nude mice (n = 5). After 3 weeks, analysis of explanted samples revealed an enhanced neo-vascularization with an average microvessel density per field for IGF-1 at 55.9 versus 33.4 for vascular endothelial growth factor and 24 for GFP. Additionally, apoptosis was significantly reduced (p <or= 0.02) and proliferative capacity of implanted cells significantly increased (p <or= 0.01) with the IGF-1-transduced myoblasts. We conclude that the genetic modification of skeletal myoblasts with the IGF-1 gene offers a potential means for enhanced cell survival following transplantation.
Collapse
Affiliation(s)
- Indira V Subramanian
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Growth hormone (GH) is widely used as a performance-enhancing drug. One of its best-characterized effects is increasing levels of circulating insulin-like growth factor I (IGF-I), which is primarily of hepatic origin. It also induces synthesis of IGF-I in most non-hepatic tissues. The effects of GH in promoting postnatal body growth are IGF-I dependent, but IGF-I-independent functions are beginning to be elucidated. Although benefits of GH administration have been reported for those who suffer from GH deficiency, there is currently very little evidence to support an anabolic role for supraphysiological levels of systemic GH or IGF-I in skeletal muscle of healthy individuals. There may be other performance-enhancing effects of GH. In contrast, the hypertrophic effects of muscle-specific IGF-I infusion are well documented in animal models and muscle cell culture systems. Studies examining the molecular responses to hypertrophic stimuli in animals and humans frequently cite upregulation of IGF-I messenger RNA or immunoreactivity. The circulatory/systemic (endocrine) and local (autocrine/paracrine) effects of GH and IGF-I may have distinct effects on muscle mass regulation.
Collapse
|
69
|
Hulmi JJ, Ahtiainen JP, Selänne H, Volek JS, Häkkinen K, Kovanen V, Mero AA. Androgen receptors and testosterone in men--effects of protein ingestion, resistance exercise and fiber type. J Steroid Biochem Mol Biol 2008; 110:130-7. [PMID: 18455389 DOI: 10.1016/j.jsbmb.2008.03.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/03/2007] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to examine the impact of protein ingestion on circulating testosterone and muscle androgen receptor (AR) as well as on insulin-like growth factor-I (MGF and IGF-IEa) responses to a resistance exercise (RE) bout in (57-72 year) men. Protein (15 g whey) (n=9) or placebo (n=9) was consumed before and after a RE bout (5 sets of 10 repetition maximums), and vastus lateralis muscle biopsies were taken pre, 1 and 48 h post-RE. The protein ingestion blunted the RE-induced increase in serum free and total testosterone while the RE bout significantly increased muscle AR mRNA levels in older men (P<0.05). However, protein ingestion did not significantly affect AR mRNA or protein expression, or MGF and IGF-IEa mRNA expression at 1 and 48 h post-RE. Immunohistochemical staining of muscle cross-sections was done with antibodies specific to AR and MyHC I and II and showed that there seems to be within or near the type-I muscle fibers a greater staining of ARs than within or near the type-II fibres. In conclusion, the protein ingestion hinders RE-induced increase in serum testosterone in older men but may not significantly affect muscle AR, MGF or IGF-IEa gene expression. Furthermore, the present study shows that even older men are able to increase muscle AR mRNA expression in response to a RE bout.
Collapse
Affiliation(s)
- Juha J Hulmi
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
70
|
O'Connor RS, Steeds CM, Wiseman RW, Pavlath GK. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion. J Physiol 2008; 586:2841-53. [PMID: 18420707 DOI: 10.1113/jphysiol.2008.151027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myoblast fusion is essential for muscle development, postnatal growth and muscle repair after injury. Recent studies have demonstrated roles for actin polymerization during myoblast fusion. Dynamic cytoskeletal assemblies directing cell-cell contact, membrane coalescence and ultimately fusion require substantial cellular energy demands. Various energy generating systems exist in cells but the partitioning of energy sources during myoblast fusion is unknown. Here, we demonstrate a novel role for phosphocreatine (PCr) as a spatiotemporal energy buffer during primary mouse myoblast fusion with nascent myotubes. Creatine treatment enhanced cell fusion in a creatine kinase (CK)-dependent manner suggesting that ATP-consuming reactions are replenished through the PCr/CK system. Furthermore, selective inhibition of actin polymerization prevented myonuclear addition following creatine treatment. As myotube formation is dependent on cytoskeletal reorganization, our findings suggest that PCr hydrolysis is coupled to actin dynamics during myoblast fusion. We conclude that myoblast fusion is a high-energy process, and can be enhanced by PCr buffering of energy demands during actin cytoskeletal rearrangements in myoblast fusion. These findings implicate roles for PCr as a high-energy phosphate buffer in the fusion of multiple cell types including sperm/oocyte, trophoblasts and macrophages. Furthermore, our results suggest the observed beneficial effects of oral creatine supplementation in humans may result in part from enhanced myoblast fusion.
Collapse
Affiliation(s)
- Roddy S O'Connor
- Emory University, Department of Pharmacology, 1510 Clifton Rd, Room 5027, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
71
|
Marshall A, Salerno MS, Thomas M, Davies T, Berry C, Dyer K, Bracegirdle J, Watson T, Dziadek M, Kambadur R, Bower R, Sharma M. Mighty is a novel promyogenic factor in skeletal myogenesis. Exp Cell Res 2008; 314:1013-29. [PMID: 18255059 DOI: 10.1016/j.yexcr.2008.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/27/2007] [Accepted: 01/06/2008] [Indexed: 11/25/2022]
Abstract
Genetic analysis has revealed an important function in myogenesis for Myostatin, a member of the TGF-beta superfamily. However, the cascade of genes that responds to Myostatin signalling to regulate myogenesis is not well understood. Thus, a suppressive subtraction hybridization to identify such genes was undertaken and here we report the cloning and characterization of a novel gene, Mighty. Mighty is expressed in a variety of different tissues but appears to be specifically regulated by Myostatin in skeletal muscle. Overexpression of Mighty in C2C12 cells results in early withdrawal of myoblasts from the cell cycle, enhanced and accelerated differentiation and hypertrophy of myotubes. Most importantly, Mighty overexpression leads to increased and earlier expression of MyoD and increased secretion of another known differentiation inducing factor, IGF-II. Furthermore, viral expression of Mighty in mdx mice resulted in an increase in the number of larger healthy muscle fibers. Given its role in myogenesis, we propose that Mighty is a critical promyogenic factor which plays a key role in the signalling pathway downstream of Myostatin.
Collapse
Affiliation(s)
- Amy Marshall
- Functional Muscle Genomics, AgResearch, Hamilton, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
73
|
Quinn LS, Anderson BG, Plymate SR. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling. Am J Physiol Endocrinol Metab 2007; 293:E1538-51. [PMID: 17940216 DOI: 10.1152/ajpendo.00160.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like growth factors (IGF-I and IGF-II), working through the type 1 IGF receptor (IGF-1R), are key mediators of skeletal muscle fiber growth and hypertrophy. These processes are largely dependent on stimulation of proliferation and differentiation of muscle precursor cells, termed myoblasts. It has not been rigorously determined whether the IGFs can also mediate skeletal muscle hypertrophy in a myoblast-independent fashion. Similarly, although the phosphatidylinositol 3-kinase (PI3K) and calcineurin signaling pathways have been implicated in skeletal muscle hypertrophy, these pathways are also involved in skeletal myoblast differentiation. To determine whether the IGFs can stimulate skeletal muscle hypertrophy in a myoblast-independent fashion, we developed and validated a retroviral expression vector that mediated overexpression of the human IGF-1R in rat L6 skeletal myotubes (immature muscle fibers), but not in myoblasts. L6 myotubes transduced with this vector accumulated significantly higher amounts of myofibrillar proteins, in a ligand- and receptor-dependent manner, than controls and demonstrated significantly increased rates of protein synthesis. Stimulation of myotube hypertrophy was independent of myoblast contributions, inasmuch as these cultures did not exhibit increased levels of myoblast proliferation or differentiation. Experiments with PI3K and calcineurin inhibitors indicated that myoblast-independent myotube hypertrophy was mediated by PI3K, but not calcineurin, signaling. This study demonstrates that IGF can mediate skeletal muscle hypertrophy in a myoblast-independent fashion and suggests that muscle-specific overexpression of the IGF-1R or stimulation of its signaling pathways could be used to develop strategies to ameliorate muscle wasting without stimulating proliferative pathways leading to carcinogenesis or other pathological sequelae.
Collapse
Affiliation(s)
- Lebris S Quinn
- Department of Gerontology, University of Washington, Seattle, WA 98493, USA.
| | | | | |
Collapse
|
74
|
Abstract
Age-related muscle wasting and increased frailty is a major socioeconomic as well as a major medical problem. In our quest to extend the quality of life it is important to increase the strength of elderly people sufficiently so they can carry out everyday tasks and prevent them falling and breaking bones that are brittle because of osteoporosis. Muscles generate the mechanical strain that contributes to the maintenance of other musculoskeletal tissues and a vicious cycle is established when the muscles start to produce less force resulting in more bone loss and weakening of tendons. Another aspect that is less well appreciated is that muscle acts as a dynamic, metabolic store. In a traumatic situation, muscle provides amino acids to aid tissue repair processes and maintaining acid-base balance. At the present time there are strategies in addition to exercise for preventing age-related muscle wasting and these are briefly reviewed. Here, more attention is paid to the role of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and the discovery of mechano-growth factor (MGF). This is derived from the IGF-1 gene by alternative splicing and in the young is responsible for increasing contractile strength in response to exercise by activating the muscle satellite (stem) cells that kick-start local muscle repair and induce hypertrophy. Recent studies including gene transfer of this part of the IGF-1 gene and unique MGF peptides offer the prospect of treating muscle wasting during the aging process as well as muscle cachexia associated with many diseases.
Collapse
Affiliation(s)
- Geoffrey Goldspink
- Molecular Tissue Repair Unit, Department of Surgery, Royal Free and University College Medical School, University of London, London, UK.
| |
Collapse
|
75
|
Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M. Creatine enhances differentiation of myogenic C2C12cells by activating both p38 and Akt/PKB pathways. Am J Physiol Cell Physiol 2007; 293:C1263-71. [PMID: 17652429 DOI: 10.1152/ajpcell.00162.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In myogenic C2C12cells, 5 mM creatine increased the incorporation of labeled [35S]methionine into sarcoplasmic (+20%, P < 0.05) and myofibrillar proteins (+50%, P < 0.01). Creatine also promoted the fusion of myoblasts assessed by an increased number of nuclei incorporated within myotubes (+40%, P < 0.001). Expression of myosin heavy chain type II (+1,300%, P < 0.001), troponin T (+65%, P < 0.01), and titin (+40%, P < 0.05) was enhanced by creatine. Mannitol, taurine, and β-alanine did not mimic the effect of creatine, ruling out an osmolarity-dependent mechanism. The addition of rapamycin, the inhibitor of mammalian target of rapamycin/70-kDa ribosomal S6 protein kinase (mTOR/p70s6k) pathway, and SB 202190, the inhibitor of p38, completely blocked differentiation in control cells, and creatine did not reverse this inhibition, suggesting that the mTOR/p70s6kand p38 pathways could be potentially involved in the effect induced by creatine on differentiation. Creatine upregulated phosphorylation of protein kinase B (Akt/PKB; +60%, P < 0.001), glycogen synthase kinase-3 (+70%, P < 0.001), and p70s6k(+50%, P < 0.001). Creatine also affected the phosphorylation state of p38 (−50% at 24 h and +70% at 96 h, P < 0.05) as well as the nuclear content of its downstream targets myocyte enhancer factor-2 (−55% at 48 h and +170% at 96 h, P < 0.05) and MyoD (+60%, P < 0.01). In conclusion, this study points out the involvement of the p38 and the Akt/PKB-p70s6kpathways in the enhanced differentiation induced by creatine in C2C12cells.
Collapse
Affiliation(s)
- Louise Deldicque
- Department of Physical Education and Rehabilitation, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
76
|
Mills P, Dominique JC, Lafrenière JF, Bouchentouf M, Tremblay JP. A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success. Am J Transplant 2007; 7:2247-59. [PMID: 17845560 DOI: 10.1111/j.1600-6143.2007.01927.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myogenic precursor cell (MPC) transplantation is a good strategy to introduce dystrophin expression in muscles of Duchenne muscular dystrophy (DMD) patients. Insulin-like growth factor (IGF-1) promotes MPC activities, such as survival, proliferation, migration and differentiation, which could enhance the success of their transplantation. Alternative splicing of the IGF-1 mRNA produces different muscle isoforms. The mechano growth factor (MGF) is an isoform, especially expressed after a mechanical stress. A 24 amino acids peptide corresponding to the C-terminal part of the MGF E domain (MGF-Ct24E peptide) was synthesized. This peptide had been shown to enhance the proliferation and delay the terminal differentiation of C(2)C(12) myoblasts. The present study showed that the MGF-Ct24E peptide improved human MPC transplantation by modulating their proliferation and differentiation. Indeed, intramuscular or systemic delivery of this synthetic peptide significantly promoted engraftment of human MPCs in mice. In vitro experiments demonstrated that the MGF-Ct24E peptide enhanced MPC proliferation by a different mechanism than the binding to the IGF-1 receptor. Moreover, MGF-Ct24E peptide delayed human MPC differentiation while having no outcome on survival. Those combined effects are probably responsible for the enhanced transplantation success. Thus, the MGF-Ct24E peptide is an interesting agent to increase MPC transplantation success in DMD patients.
Collapse
Affiliation(s)
- P Mills
- Unité de recherche en Génétique humaine, Centre Hospitalier de l'Université Laval, Ste-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
77
|
Coffey VG, Hawley JA. The molecular bases of training adaptation. SPORTS MEDICINE (AUCKLAND, N.Z.) 2007. [PMID: 17722947 DOI: 10.2165/00007256-200737090-00001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
78
|
Abstract
Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.
Collapse
Affiliation(s)
- Stephen D R Harridge
- Division of Applied Biomedical Research, School of Biomedical & Health Sciences, King's College London, 4.14 Shepherd's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
79
|
Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, Di Santo JP, Butler-Browne GS, Wright WE. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 2007; 6:515-23. [PMID: 17559502 DOI: 10.1111/j.1474-9726.2007.00306.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cultured human myoblasts fail to immortalize following the introduction of telomerase. The availability of an immortalization protocol for normal human myoblasts would allow one to isolate cellular models from various neuromuscular diseases, thus opening the possibility to develop and test novel therapeutic strategies. The parameters limiting the efficacy of myoblast transfer therapy (MTT) could be assessed in such models. Finally, the presence of an unlimited number of cell divisions, and thus the ability to clone cells after experimental manipulations, reduces the risks of insertional mutagenesis by many orders of magnitude. This opportunity for genetic modification provides an approach for creating a universal donor that has been altered to be more therapeutically useful than its normal counterpart. It can be engineered to function under conditions of chronic damage (which are very different than the massive regeneration conditions that recapitulate normal development), and to overcome the biological problems such as cell death and failure to proliferate and migrate that limit current MTT strategies. We describe here the production and characterization of a human myogenic cell line, LHCN-M2, that has overcome replicative aging due to the expression of telomerase and cyclin-dependent kinase 4. We demonstrate that it functions as well as young myoblasts in xenotransplant experiments in immunocompromized mice under conditions of regeneration following muscle damage.
Collapse
Affiliation(s)
- Chun-Hong Zhu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. ACTA ACUST UNITED AC 2007; 78:333-44. [PMID: 17315245 DOI: 10.1002/bdrc.20083] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article deals with a novel, simple, integrated approach to cell signaling involving basic biochemical principles, and their relationship to reproductive toxicity. Initially, an overview of the biological aspects is presented. According to the hypothetical approach, cell signaling entails interaction of redox chains, involving initiation, propagation, and termination. The messengers are mainly radicals and electrons that are generated during electron transfer (ET) and hydrogen atom abstraction reactions. Termination and initiation processes in the chain occur at relay sites occupied by redox functionalities, including quinones, metal complexes, and imines, as well as redox amino acids. Conduits for the messengers, comprising species with nonbonding electrons, are omnipresent. Details are provided for the various electron transfer processes. In relation to the varying rates of cell communication, rationale is based on electrons and size of radicals. Another fit is similarly seen in inspection of endogenous precursors of reactive oxygen species (ROS); namely, proteins bearing redox moieties, lipid oxidation products, and carbohydrate radicals. A hypothesis is advanced in which electromagnetic fields associated with mobile radicals and electrons play a role. Although radicals have previously been investigated as messengers, the area occupies a minor part of the research, and it has not attracted broad consensus as an important component. For the first time, an integrated framework is presented composed of radicals, electrons, relays, conduits, and electrical fields. The approach is in keeping with the vast majority of experimental observations. Cell signaling also plays an important role in reproductive toxicity. The main classes that cause birth defects, including ROS, radiation, metal compounds, medicinals, abused drugs, and miscellaneous substances, are known to participate in the signaling process. A unifying basis exists, in that both signaling and reproductive toxicity are characterized by the electron transfer-reactive oxygen species-oxidative stress (ET-ROS-OS) scheme. This article also incorporates representative examples of the extensive investigations dealing with various medical implications. There is considerable literature pointing to a role for cell communication in a wide variety of illnesses.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
81
|
Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007; 113:461-87. [PMID: 17258813 DOI: 10.1016/j.pharmthera.2006.11.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness are common in many disease states and conditions including aging, cancer cachexia, sepsis, denervation, disuse, inactivity, burns, HIV-acquired immunodeficiency syndrome (AIDS), chronic kidney or heart failure, unloading/microgravity, and muscular dystrophies. Although the maintenance of muscle mass is generally regarded as a simple balance between protein synthesis and protein degradation, these mechanisms are not strictly independent, but in fact they are coordinated by a number of different and sometimes complementary signaling pathways. Clearer details are now emerging about these different molecular pathways and the extent to which these pathways contribute to the etiology of various muscle wasting disorders. Therapeutic strategies for attenuating muscle wasting and improving muscle function vary in efficacy. Exercise and nutritional interventions have merit for slowing the rate of muscle atrophy in some muscle wasting conditions, but in most cases they cannot halt or reverse the wasting process. Hormonal and/or other drug strategies that can target key steps in the molecular pathways that regulate protein synthesis and protein degradation are needed. This review describes the signaling pathways that maintain muscle mass and provides an overview of some of the major conditions where muscle wasting and weakness are indicated. The review provides details on some therapeutic strategies that could potentially attenuate muscle atrophy, promote muscle growth, and ultimately improve muscle function. The emphasis is on therapies that can increase muscle mass and improve functional outcomes that will ultimately lead to improvement in the quality of life for affected patients.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
82
|
Jacquemin V, Butler-Browne GS, Furling D, Mouly V. IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J Cell Sci 2007; 120:670-81. [PMID: 17264150 DOI: 10.1242/jcs.03371] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) has been shown to induce skeletal muscle hypertrophy, to prevent the loss of muscle mass with ageing and to improve the muscle phenotype of dystrophic mice. We previously developed a model of IGF-1-induced hypertrophy of human myotubes, in which hypertrophy was not only characterized by an increase in myotube size and myosin content but also by an increased recruitment of reserve cells for fusion. Here, we describe a new mechanism of IGF-1-induced hypertrophy by demonstrating that IGF-1 signals exclusively to myotubes but not to reserve cells, leading, under the control of the transcription factor NFATc2, to the secretion of IL-13 that will secondly recruit reserve cells for differentiation and fusion. In addition, we show that IGF-1 also signals to myotubes to stimulate protein metabolism via Akt by (1) activating the mTOR-p70S6K-S6 pathway and inhibiting GSK-3β, both involved in the control of protein translation, and (2) inhibiting the Foxo1–atrogin-1 protein degradation pathway.
Collapse
|
83
|
Shavlakadze T, Grounds M. Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 2006; 28:994-1009. [PMID: 16998828 DOI: 10.1002/bies.20479] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extreme loss of skeletal muscle mass (atrophy) occurs in human muscles that are not used. In striking contrast, skeletal muscles do not rapidly waste away in hibernating mammals such as bears, or aestivating frogs, subjected to many months of inactivity and starvation. What factors regulate skeletal muscle mass and what mechanisms protect against muscle atrophy in some species? Severe atrophy also occurs with ageing and there is much clinical interest in reducing such loss of muscle mass and strength (sarcopenia). In the meat industry, a key aim is optimizing the control of skeletal muscle growth and meat quality. The impaired response of muscle to insulin resulting in diabetes, that is a consequence of the metabolic impact of increasing obesity and fat deposition in humans, is also of increasing clinical concern. Intensive research in these fields, combined with mouse models, is reviewed with respect to the molecular control of muscle growth (myogenesis) and atrophy/hypertrophy and fat deposition (adipogenesis) in skeletal muscle, with a focus on IGF-1/insulin signaling.
Collapse
Affiliation(s)
- Thea Shavlakadze
- School of Anatomy and Human Biology, The University of Western Australia, 6009, Western Australia.
| | | |
Collapse
|
84
|
Nakajima N, Takahashi T, Kitamura R, Isodono K, Asada S, Ueyama T, Matsubara H, Oh H. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun 2006; 350:1006-12. [PMID: 17045567 DOI: 10.1016/j.bbrc.2006.09.153] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs emerging as important post-transcriptional gene regulators. In this study, we examined the role of miR-1, an miRNA specifically expressed in cardiac and skeletal muscle tissue, on the myogenic, osteoblastic, and adipogenic differentiation of C2C12 cells. Upon induction of myogenic differentiation, miR-1 was robustly expressed. Retrovirus-mediated overexpression of miR-1 markedly enhanced expression of muscle creatine kinase, sarcomeric myosin, and alpha-actinin, while the effects on myogenin and MyoD expression were modest. Formation of myotubes was significantly augmented in miR-1-overexpressing cells, indicating miR-1 expression enhanced not only myogenic differentiation but also maturation into myotubes. In contrast, osteoblastic and adipogenic differentiation was not affected by forced expression of miR-1. Thus, the muscle-specific miRNA, miR-1, plays important roles in controlling myogenic differentiation and maturation in lineage-committed cells, rather than functioning in fate determination.
Collapse
Affiliation(s)
- Norio Nakajima
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Sotiropoulos A, Renou L, Schmitt A, Melki J, Li Z, Daegelen D, Tuil D. New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 2006; 26:6664-74. [PMID: 16914747 PMCID: PMC1592825 DOI: 10.1128/mcb.00138-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Cell Nucleus/metabolism
- Cell Size
- Gene Expression Regulation
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Integrases/genetics
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Organ Size
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regeneration
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Serum Response Factor/deficiency
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
Collapse
Affiliation(s)
- Claude Charvet
- Institut Cochin, Faculté de Médecine Cochin Port Royal, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Schertzer JD, Lynch GS. Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther 2006; 13:1657-64. [PMID: 16871234 DOI: 10.1038/sj.gt.3302817] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developing methodologies to enhance skeletal muscle regeneration and hasten the restoration of muscle function has important implications for minimizing disability after injury and for treating muscle diseases such as Duchenne muscular dystrophy. Although delivery of various growth factors, such as insulin-like growth factor-I (IGF-I), have proved successful in promoting skeletal muscle regeneration after injury, no study has compared the efficacy of different delivery methods directly. We compared the efficacy of systemic delivery of recombinant IGF-I protein via mini-osmotic pump (approximately 1.5 mg/kg/day) with a single electrotransfer-assisted plasmid-based gene transfer, to hasten functional repair of mouse tibialis anterior muscles after myotoxic injury. The relative efficacy of each method was assessed at 7, 21 and 28 days post-injury. Our findings indicate that IGF-I hastened functional recovery, regardless of the route of IGF-I administration. However, gene transfer of IGF-I was superior to systemic protein administration because in the regenerating muscle, this delivery method increased IGF-I levels, activated intracellular signals (Akt phosphorylation), induced a greater magnitude of myofiber hypertrophy and hastened functional recovery at an earlier time point (14 days) after injury than did protein administration (21 days). Thus, the relative efficacy of different modes of delivery is an important consideration when assessing the therapeutic potential of various proteins for treating muscle injuries and skeletal muscle diseases.
Collapse
Affiliation(s)
- J D Schertzer
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Grattan Street, Victoria 3010, Australia
| | | |
Collapse
|
87
|
Boneva N, Frenkian-Cuvelier M, Bidault J, Brenner T, Berrih-Aknin S. Major pathogenic effects of anti-MuSK antibodies in myasthenia gravis. J Neuroimmunol 2006; 177:119-31. [PMID: 16857268 DOI: 10.1016/j.jneuroim.2006.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 05/17/2006] [Accepted: 05/23/2006] [Indexed: 12/19/2022]
Abstract
MG with anti-MuSK antibodies (MuSK+) is often characterized with muscle atrophy and excellent response to plasma exchanges. To elucidate some MuSK+ MG features, we analyzed the functional effects of anti-MuSK Abs in human TE 671 muscle cells. We found that some MuSK+ sera induced a striking inhibition of proliferation, accompanied by: 1) cell cycle arrest, 2) atrogin-1 overexpression, 3) AChR subunits, rapsyn, Rho A and cdc42 downregulation. These effects correlated to disease severity and to anti-MuSK Abs titer and vanished following PE. Altogether, these results indicate that anti-MuSK Abs could be pathogenic by contributing to the muscle atrophy in MuSK+ MG patients.
Collapse
Affiliation(s)
- Neli Boneva
- CNRS-UMR 8162, IPSC, Université Paris XI, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
| | | | | | | | | |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW Satellite cells are required for muscle regeneration to occur properly. An understanding of the mechanisms that increase their number is important for potential therapeutic use in a variety of muscle disorders. RECENT FINDINGS This article reviews the state of knowledge regarding mechanisms and factors involved in regulating the satellite cell population. An overview of the soluble factors intrinsic to the regulation of the activation, proliferation and differentiation of satellite cells is presented. We also highlight our current knowledge of satellite cell specification that provides a potential basis for increasing satellite cell numbers by manipulating different cell types. Finally, summarizing our current knowledge of satellite cell self-renewal offers insight for possible avenues to increase the supply of satellite cells. SUMMARY Multiple approaches for increasing the number and activity of satellite cells will lead to treatments for muscular diseases. For example, in muscular dystrophy the exhaustion of satellite cells is the principal cause of death.
Collapse
Affiliation(s)
- Anthony Scimè
- Molecular Medicine Program, Ottawa Health Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight advances in the field of skeletal muscle regeneration that have been made in the last year. RECENT FINDINGS Studies have increased our understanding of the activation of satellite cells within their niche on the muscle fibre, the contribution of satellite cell-derived muscle precursor cells to skeletal muscle regeneration and the reduction of satellite cell function in old muscle. Although other stem cells, either bone marrow derived or present within skeletal muscle or other tissues, do contribute to muscle regeneration, recent studies have highlighted that this is at best minimal compared with the ability of satellite cells to regenerate skeletal muscle. The effect of the host muscle environment has been shown to have a profound effect on skeletal muscle regeneration. Age and denervation have a detrimental effect and certain types of muscle injury a positive effect. Work continues on the effect of growth factors on muscle cell lines in vitro and muscle regeneration in vivo. SUMMARY Recent work has focused on the contribution of satellite-cell derived muscle precursor cells and other stem cells to skeletal muscle regeneration. The muscle environment has a profound effect on the regenerative capacity of resident and implanted cells. Muscle regeneration may be optimized by using the best stem cell population and by modifying the host muscle environment.
Collapse
Affiliation(s)
- Janine Ehrhardt
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, London, UK
| | | |
Collapse
|
90
|
Tsujimura T, Kinoshita M, Abe M. Response of rabbit skeletal muscle to tibial lengthening. J Orthop Sci 2006; 11:185-90. [PMID: 16568392 DOI: 10.1007/s00776-005-0991-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/22/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND Experimental and clinical studies have provided knowledge regarding osteogenesis during limb lengthening. However, response of skeletal muscle to limb lengthening is not fully understood, especially as concerns histogenesis. We studied the morphological response of rabbit skeletal muscle to limb lengthening. In this study, we investigated proliferation of satellite cells, responsible for generation of new myonuclei, during limb lengthening. METHODS Tibialis anterior muscles of young and adult rabbits were subjected to lengthening at a rate of 0.5 mm twice per day for 20 days. After lengthening, muscle wet weight was measured to assess skeletal muscle growth, then proliferating cell nuclear antigen was measured. Immunostaining was performed to analyze proliferating cells in the proximal, middle, and distal portions of the muscle belly and the musculotendinous junction. RESULTS Muscle wet weight increased significantly after lengthening both in adult (0.4 g) and young (0.1 g) rabbits. Satellite cells showed proliferation in response to lengthening. In adult rabbits, satellite cell proliferation increased along the entire lengthened muscle to a similar degree (from 7.1% in the middle portion to 8.6% in the musculotendinous junction). In young rabbits, proliferation was greater in the musculotendinous junction (4.8%) than that in other muscle portions (2.3% in the middle and distal portions, and 2.4% in the proximal portion). In adult rabbits, the rate of increase in satellite cell proliferation was 1780% in the middle portion to 2860% in the musculotendinous junction, whereas the rate was between 210% in the middle portion and 290% in the distal portion in young rabbit. The rate of increase in cell proliferation by lengthening was higher in adult muscle than that in young muscles as well as satellite cell proliferation. CONCLUSION These findings indicate that limb lengthening promotes muscle growth in both young and adult rabbits.
Collapse
Affiliation(s)
- Tomoyuki Tsujimura
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| | | | | |
Collapse
|
91
|
van der Velden JLJ, Langen RCJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW, Schols AMWJ. Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. Am J Physiol Cell Physiol 2006; 290:C453-62. [PMID: 16162663 DOI: 10.1152/ajpcell.00068.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy is a prominent and disabling feature of chronic wasting diseases. Prevention or reversal of muscle atrophy by administration of skeletal muscle growth (hypertrophy)-stimulating agents such as insulin-like growth factor I (IGF-I) could be an important therapeutic strategy in these diseases. To elucidate the IGF-I signal transduction responsible for muscle formation (myogenesis) during muscle growth and regeneration, we applied IGF-I to differentiating C2C12myoblasts and evaluated the effects on phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β) signaling and myogenesis. IGF-I caused phosphorylation and inactivation of GSK-3β activity via signaling through the PI3K/Akt pathway. We assessed whether pharmacological inhibition of GSK-3β with lithium chloride (LiCl) was sufficient to stimulate myogenesis. Addition of IGF-I or LiCl stimulated myogenesis, evidenced by increased myotube formation, muscle creatine kinase (MCK) activity, and troponin I (TnI) promoter transactivation during differentiation. Moreover, mRNAs encoding MyoD, Myf-5, myogenin, TnI-slow, TnI-fast, MCK, and myoglobin were upregulated in myoblasts differentiated in the presence of IGF-I or LiCl. Importantly, blockade of GSK-3β inhibition abrogated IGF-I- but not LiCl-dependent stimulation of myogenic mRNA accumulation, suggesting that the promyogenic effects of IGF-I require GSK-3β inactivation and revealing an important negative regulatory role for GSK-3β in myogenesis. Therefore, this study identifies GSK-3β as a potential target for pharmacological stimulation of muscle growth.
Collapse
|
92
|
Sacco A, Doyonnas R, LaBarge MA, Hammer MM, Kraft P, Blau HM. IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. ACTA ACUST UNITED AC 2006; 171:483-92. [PMID: 16275752 PMCID: PMC2171272 DOI: 10.1083/jcb.200506123] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle damage has been shown to enhance the contribution of bone marrow-derived cells (BMDCs) to regenerating skeletal muscle. One responsible cell type involved in this process is a hematopoietic stem cell derivative, the myelomonocytic precursor (MMC). However, the molecular components responsible for this injury-related response remain largely unknown. In this paper, we show that delivery of insulin-like growth factor I (IGF-I) to adult skeletal muscle by three different methods-plasmid electroporation, injection of genetically engineered myoblasts, and recombinant protein injection-increases the integration of BMDCs up to fourfold. To investigate the underlying mechanism, we developed an in vitro fusion assay in which co-cultures of MMCs and myotubes were exposed to IGF-I. The number of fusion events was substantially augmented by IGF-I, independent of its effect on cell survival. These results provide novel evidence that a single factor, IGF-I, is sufficient to enhance the fusion of bone marrow derivatives with adult skeletal muscle.
Collapse
Affiliation(s)
- Alessandra Sacco
- Department of Molecular Pharmacology, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
93
|
Kitzmann M, Bonnieu A, Duret C, Vernus B, Barro M, Laoudj-Chenivesse D, Verdi JM, Carnac G. Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J Cell Physiol 2006; 208:538-48. [PMID: 16741964 DOI: 10.1002/jcp.20688] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During muscle differentiation, a population of quiescent undifferentiated myoblasts (reserve cells) emerges among mature muscle cells. However, the molecular mechanisms underlying such cell segregation and the characterization of this subpopulation of myoblasts remain to be determined. Notch is known to control the behavior and fate of murine muscle stem cells. In this study, we examined the role of Notch in myoblast segregation. We showed that inhibition of Notch activity by either overexpressing Numb or by using a pharmacological gamma-secretase inhibitor (DAPT) enhanced differentiation of murine and human myoblasts. This effect was not restricted to in vitro culture systems since DAPT-treated zebrafish embryos also showed increased differentiation. Using C2.7 myoblasts as a model, we showed that inhibition of Notch induced myotube hypertrophy by recruiting reserve cells that do not normally fuse. We further showed that endogenous Notch-signaling components were differentially expressed and activated in reserve cells with respect to Notch 1 and CD34 expression. We identified CD34 negative reserve cells as the subpopulation of myoblasts recruited to fuse into myotubes during differentiation in response to Notch inhibition. Therefore, we showed here that the activation of Notch 1 is important to maintain a subpopulation of CD34 negative reserve cells in an undifferentiated state.
Collapse
Affiliation(s)
- Magali Kitzmann
- Adult stem cells and facioscapulohumeral dystrophy," CNRS FRE2593, 1919 route de Mende, 34293 Montpellier 5, France
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Mouly V, Aamiri A, Bigot A, Cooper RN, Di Donna S, Furling D, Gidaro T, Jacquemin V, Mamchaoui K, Negroni E, Périé S, Renault V, Silva-Barbosa SD, Butler-Browne GS. The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. ACTA ACUST UNITED AC 2005; 184:3-15. [PMID: 15847639 DOI: 10.1111/j.1365-201x.2005.01417.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regenerative capacity of skeletal muscle will depend on the number of available satellite cells and their proliferative capacity. We have measured both parameters in ageing, and have shown that although the proliferative capacity of satellite cells is decreasing during muscle growth, it then stabilizes in the adult, whereas the number of satellite cells decreases during ageing. We have also developed a model to evaluate the regenerative capacity of human satellite cells by implantation into regenerating muscles of immunodeficient mice. Using telomere measurements, we have shown that the proliferative capacity of satellite cells is dramatically decreased in muscle dystrophies, thus hampering the possibilities of autologous cell therapy. Immortalization by telomerase was unsuccessful, and we currently investigate the factors involved in cell cycle exits in human myoblasts. We have also observed that insulin-like growth factor-1 (IGF-1), a factor known to provoke hypertrophy, does not increase the proliferative potential of satellite cells, which suggests that hypertrophy is provoked by increasing the number of satellite cells engaged in differentiation, thus possibly decreasing the compartment of reserve cells. We conclude that autologous cell therapy can be applied to specific targets when there is a source of satellite cells which is not yet exhausted. This is the case of Oculo-Pharyngeal Muscular Dystrophy (OPMD), a late onset muscular dystrophy, and we participate to a clinical trial using autologous satellite cells isolated from muscles spared by the disease.
Collapse
Affiliation(s)
- V Mouly
- CNRS UMR 7000-faculté de Médecine Pitié-Salpétrière, Cytosquelette et Développement, 105 bd de l'Hôpital, 75634 Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|