51
|
Launay N, Tarze A, Vicart P, Lilienbaum A. Serine 59 phosphorylation of {alpha}B-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 2010; 285:37324-32. [PMID: 20841355 DOI: 10.1074/jbc.m110.124388] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small heat shock protein (sHSP) αB-crystallin is a new oncoprotein in breast carcinoma that predicts poor clinical outcome in breast cancer. However, although several reports have demonstrated that phosphorylation of sHSPs modify their structural and functional properties, the significance of αB-crystallin phosphorylation in cancer cells has not yet been investigated. In this study, we have characterized the phosphorylation status of αB-crystallin in breast epithelial carcinoma cells line MCF7 submitted to anti-cancer agents like vinblastine. We have showed that the main phosphorylation site of αB-crystallin in response to vinblastine is serine 59 and determined a correlation between this post-translational modification and higher apoptosis level. The overexpression of the serine 59 "pseudophosphorylated" mutant (S59E) induces a significant increase in the apoptosis level of vinblastine-treated MCF7 cells. In contrast, overexpression of wild-type αB-crystallin or "nonphosphorylatable" mutant (S59A) result in a resistance to this microtubule-depolymerizing agent, while inhibition of endogenous levels of αB-crystallin by expression of shRNA lowers it. Analyzing further the molecular mechanism of this phenomenon, we report for the first time that phosphorylated αB-crystallin preferentially interacts with Bcl-2, an anti-apoptotic protein, and this interaction prevents the translocation of Bcl-2 to mitochondria. Hence, this study identifies serine 59 phosphorylation as an important key in the down-regulation of αB-crystallin anti-apoptotic function in breast cancer and suggests new strategies to improve anti-cancer treatments.
Collapse
Affiliation(s)
- Nathalie Launay
- Unité de Biologie Fonctionnelle et Adaptative BFA EAC4413, Université Paris 7 Denis Diderot/CNRS, Laboratoire Stress et Pathologies du Cytosquelette, 4 rue Marie-Andrée Lagroua Weill-Hallé 75250 Paris Cedex 13, France
| | | | | | | |
Collapse
|
52
|
Menko AS, Andley UP. αA-Crystallin associates with α6 integrin receptor complexes and regulates cellular signaling. Exp Eye Res 2010; 91:640-51. [PMID: 20709056 DOI: 10.1016/j.exer.2010.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/20/2010] [Accepted: 08/05/2010] [Indexed: 12/22/2022]
Abstract
α-Crystallins are small heat-shock proteins important to lens transparency that provide the lens with its refractive properties. In their role as molecular chaperones, these crystallins also prevent protein aggregation, affect cytoskeletal remodeling, enhance resistance to cell stress, and provide lens cells with protection against apoptosis. While many of the functions assigned to αA-crystallin are attributable to its presence in the cytoplasm of lens cells, αA-crystallin also has been detected at the lens plasma membrane. However, how αA-crystallin becomes linked to the plasma membrane or what its functions are at this site has remained unknown. In this study, we examined the mechanisms by which αA-crystallin becomes associated with the lens membrane, focusing specifically on its interaction with membrane receptors, and the differentiation-specificity of these interactions. We also determined how the long-term absence of αA-crystallin alters receptor-linked signaling pathways. αA-crystallin association with membrane receptors was determined by co-immunoprecipitation analysis; its membrane localization was examined by confocal imaging; and the effect of αA-crystallin loss-of-function on the activation state of signaling molecules in pathways linked to membrane receptors was determined by immunoblot analysis. The results show that, in lens epithelial cells, plasma membrane αA-crystallin was primarily localized to apicolateral borders, reflecting the association of αA-crystallin with E-cadherin complexes. These studies also provide the first evidence that αA-crystallin maintained its association with the plasma membrane in lens cortical fiber cells, where it was localized to lateral interfaces, and further show that this association was mediated, in part, by αA-crystallin interaction with α6 integrin receptor complexes. We report that the absence of αA-crystallin led to constitutive activation of the stress kinases p38 and JNK, classical inducers of apoptotic cell death, and the loss of the phospho-Bad pro-survival signal, effects that were greatest in differentiating lens fiber cells. Concurrent with this, activation of FAK and ERK kinases was increased, demonstrating that these receptor-linked pathways also were dysregulated in the absence of αA-crystallin. These data link αA-crystallin plasma membrane association to its differentiation-state-specific interaction with E-cadherin and α6 integrin receptor complexes. The changes in cell signaling in αA-crystallin-null lenses suggest that dysregulation of receptor-linked cell-signaling pathways that accompany the failure of αA-crystallin to associate with membrane receptors may be responsible for the induction of apoptosis. The observed changes in lens cell signaling likely reflect long-term functional adaptations to the absence of the αA-crystallin chaperone/small heat-shock protein.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson School of Medicine, Philadelphia, PA 19107-6799, USA.
| | | |
Collapse
|
53
|
Dynamic subunit exchange and the regulation of microtubule assembly by the stress response protein human alphaB crystallin. PLoS One 2010; 5:e11795. [PMID: 20668689 PMCID: PMC2909917 DOI: 10.1371/journal.pone.0011795] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/19/2010] [Indexed: 11/19/2022] Open
Abstract
Background The small heat shock protein (sHSP), human αB crystallin, forms large, polydisperse complexes that modulate the tubulin-microtubule equilibrium using a dynamic mechanism that is poorly understood. The interactive sequences in αB crystallin for tubulin are surface exposed, and correspond to interactive sites for the formation of αB crystallin complexes. Methodology/Principal Findings There is sequence homology between tubulin and the interactive domains in the β8-strand of the core domain and the C-terminal extension of αB crystallin. This study investigated the hypothesis that the formation of tubulin and αB crystallin quaternary structures was regulated through common interactive domains that alter the dynamics of their assembly. Size exclusion chromatography (SEC), SDS-PAGE, microtubule assembly assays, aggregation assays, multiple sequence alignment, and molecular modeling characterized the dynamic response of tubulin assembly to increasing concentrations of αB crystallin. Low molar ratios of αB crystallin∶tubulin were favorable for microtubule assembly and high molar ratios of αB crystallin∶tubulin were unfavorable for microtubule assembly. Interactions between αB crystallin and unassembled tubulin were observed using SEC and SDS-PAGE. Conclusions/Significance Subunits of αB crystallin that exchange dynamically with the αB crystallin complex can interact with tubulin subunits to regulate the equilibrium between tubulin and microtubules.
Collapse
|
54
|
Molecular chaperone alphaB-crystallin is expressed in the human fetal telencephalon at midgestation by a subset of progenitor cells. J Neuropathol Exp Neurol 2010; 69:745-59. [PMID: 20535031 DOI: 10.1097/nen.0b013e3181e5f515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphab-crystallin (CRYAB) is a small heat shock protein with a chaperoning activity that is present in the postnatal healthy human brain in oligodendrocytes and in a few astrocytes. The involvement of CRYAB in cell differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis in various model systems has suggested that it might also play a role in the developing human brain. We analyzed the distribution and the levels of this molecular chaperone in healthy and polygenetically compromised (Down syndrome [DS]) human telencephalon at midgestation. We demonstrate that CRYAB is expressed in a temporospatial pattern by numerous radial glial cells and some early oligodendrocyte progenitors, including dividing cells, as well as a few astroglial cells in both healthy and DS fetal brains. We also found abundant phosphorylation of CRYAB at Ser-59, which mediates its antiapoptotic and cytoskeletal functions. There was only marginal phosphorylation at Ser-45.In contrast to our earlier study in young DS subjects, upregulation of phosphorylated CRYAB occurred rarely in DS fetuses. The distribution, the timing of appearance, and the results of colocalization studies suggest that CRYAB assists in the biological processes associated with developmental remodeling/differentiation and proliferation of select subpopulations of progenitor cells in human fetal brain at midgestation.
Collapse
|
55
|
A proteomic analysis of PKCε targets in astrocytes: implications for astrogliosis. Amino Acids 2010; 40:641-51. [PMID: 20640460 DOI: 10.1007/s00726-010-0691-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
Astrocytes are glial cells in the central nervous system (CNS) that play key roles in brain physiology, controlling processes, such as neurogenesis, brain energy metabolism and synaptic transmission. Recently, immune functions have also been demonstrated in astrocytes, influencing neuronal survival in the course of neuroinflammatory pathologies. In this regard, PKCepsilon (PKCε) is a protein kinase with an outstanding role in inflammation. Our previous findings indicating that PKCε regulates voltage-dependent calcium channels as well as morphological stellation imply that this kinase controls multiple signalling pathways within astrocytes, including those implicated in activation of immune functions. The present study applies proteomics to investigate new protein targets of PKCε in astrocytes. Primary astrocyte cultures infected with an adenovirus that expresses constitutively active PKCε were compared with infection controls. Two-dimensional gel electrophoresis clearly detected 549 spots in cultured astrocytes, and analysis of differential protein expression revealed 18 spots regulated by PKCε. Protein identification by mass spectrometry (nano-LC-ESI-MS/MS) showed that PKCε targets molecules with heterogeneous functions, including chaperones, cytoskeletal components and proteins implicated in metabolism and signalling. These results support the notion that PKCε is involved in astrocyte activation; also suggesting that multiple astrocyte-dependent processes are regulated by PKCε, including those associated to neuroinflammation.
Collapse
|
56
|
Zhu Y, Zhu J, Wan X, Zhu Y, Zhang T. Gene expression of sHsps, Hsp40 and Hsp60 families in normal and abnormal embryonic development of mouse forelimbs. Toxicol Lett 2010; 193:242-51. [DOI: 10.1016/j.toxlet.2010.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/25/2022]
|
57
|
Cherneva R, Petrov D, Georgiev O, Trifonova N. Clinical usefulness of α-crystallin antibodies in non-small cell lung cancer patients☆. Interact Cardiovasc Thorac Surg 2010; 10:14-7. [DOI: 10.1510/icvts.2009.213546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
58
|
Garcia-Arocena D, Yang JE, Brouwer JR, Tassone F, Iwahashi C, Berry-Kravis EM, Goetz CG, Sumis AM, Zhou L, Nguyen DV, Campos L, Howell E, Ludwig A, Greco C, Willemsen R, Hagerman RJ, Hagerman PJ. Fibroblast phenotype in male carriers of FMR1 premutation alleles. Hum Mol Genet 2009; 19:299-312. [PMID: 19864489 DOI: 10.1093/hmg/ddp497] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder among carriers of premutation expansions (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. The clinical features of FXTAS, as well as various forms of clinical involvement in carriers without FXTAS, are thought to arise through a direct toxic gain of function of high levels of FMR1 mRNA containing the expanded CGG repeat. Here we report a cellular endophenotype involving increased stress response (HSP27, HSP70 and CRYAB) and altered lamin A/C expression/organization in cultured skin fibroblasts from 11 male carriers of premutation alleles of the FMR1 gene, including six patients with FXTAS and five premutation carriers with no clinical evidence of FXTAS, compared with six controls. A similar abnormal cellular phenotype was found in CNS tissue from 10 patients with FXTAS. Finally, there is an analogous abnormal cellular distribution of lamin A/C isoforms in knock-in mice bearing the expanded CGG repeat in the murine Fmr1 gene. These alterations are evident even in mouse embryonic fibroblasts, raising the possibility that, in humans, the expanded-repeat mRNA triggers pathogenic mechanisms early in development, thus providing a molecular basis for the neurodevelopmental abnormalities observed in some children and clinical symptoms in some adults who are carriers of premutation FMR1 alleles. Cellular dysregulation in fibroblasts represents a novel and highly advantageous model for investigating disease pathogenesis in premutation carriers and for quantifying and monitoring disease progression. Fibroblast studies may also prove useful in screening and testing the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Dolores Garcia-Arocena
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Grey AC, Schey KL. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci 2009; 50:4319-29. [PMID: 19387068 DOI: 10.1167/iovs.09-3522] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To develop a protocol for MALDI (matrix-assisted laser desorption ionization) imaging mass spectrometry for mapping the distributions of alpha-crystallin and its modified forms in human lens tissue as a function of lens age and cataract. METHODS Frozen human lenses were cryosectioned equatorially and axially into 20-mum-thick sections, and the sections were mounted onto conductive glass slides by methanol soft-landing. An ethanol washing procedure facilitated uniform matrix crystal formation by a two-step matrix deposition procedure to produce high-quality mass spectral data. Molecular images of modified and unmodified alpha-crystallin subunits were obtained from mass spectral data acquired in 100-mum steps across normal and cataractous lens sections. Proteins extracted from the lens sections were digested with endoproteinase Glu-C and subjected to mass spectrometric analysis for identification of modifications. RESULTS Intact alpha-crystallin signals were detected primarily in the outer cortical fiber cells in lenses up to 29 years of age. Multiple truncation products were observed for alpha-crystallin that increased in abundance, both with distance into the lens and with lens age. Phosphorylated alphaB-crystallin forms were most abundant in the cortical region of older lenses. In axial sections, no significant anterior-posterior pole variation was observed. A previously unreported alphaA-crystallin mutation was detected in an age-matched cataractous human lens. CONCLUSIONS A method has been developed to spatially map the age-related changes of human lens alpha-crystallin by MALDI imaging mass spectrometry including a novel L52F alphaA-crystallin mutation in a cataractous lens. Application of this spatially resolved proteomic technique to lens biology enhances the understanding of alpha-crystallin protein processing in aging and diseased human lenses.
Collapse
Affiliation(s)
- Angus C Grey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232-8575, USA
| | | |
Collapse
|
60
|
Palminiello S, Jarząbek K, Kaur K, Walus M, Rabe A, Albertini G, Golabek AA, Kida E. Upregulation of phosphorylated alphaB-crystallin in the brain of children and young adults with Down syndrome. Brain Res 2009; 1268:162-173. [PMID: 19272359 DOI: 10.1016/j.brainres.2009.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 11/25/2022]
Abstract
Our previous proteomic studies disclosed upregulation of alphaB-crystallin, a small heat shock protein, in the brain tissue of Ts65Dn mice, a mouse model for Down syndrome (DS). To validate data obtained in model animals, we studied at present the levels and distribution of total alphaB-crystallin and its forms phosphorylated at Ser-45 and Ser-59 in the brain tissues of DS subjects and age-matched controls at 4 months to 23 years of age. On immunoblots from frontal cortex and white matter, alphaB-crystallin and its form phosphorylated at Ser-59 were detectable already in infants, whereas alphaB-crystallin phosphorylated at Ser-45 appeared in small amounts in older children. Although the levels of total alphaB-crystallin were modestly increased in DS subjects, the amounts of both phosphorylated forms were much higher (up to approximately 550%) in the group of older children and young adults with DS than in age-matched controls. Immunoreactivity to alphaB-crystallin occurred not only in a subset of oligodendrocytes and some subpial and perivascular astrocytes, which was reported earlier, but also in GFAP-positive astrocytes accumulating at the sites of ependymal injury as well as some GFAP/platelet-derived growth factor receptor alpha-positive cells in both DS and control brains, which is a novel observation. Given that the chaperone and anti-apoptotic activities of alphaB-crystallin are phosphorylation-dependent, we propose that enhanced phosphorylation of alphaB-crystallin in the brains of young DS subjects might reflect a cytoprotective mechanism mobilized in response to stress conditions induced or augmented by the effect of genes encoded by the triplicated chromosome 21.
Collapse
Affiliation(s)
- Sonia Palminiello
- Child Developmental Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Katarzyna Jarząbek
- Child Developmental Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Kulbir Kaur
- Child Developmental Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Marius Walus
- New York State Institute for Basic Research in Developmental Disabilities, Department of Developmental Neurobiology, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Ausma Rabe
- New York State Institute for Basic Research in Developmental Disabilities, Department of Developmental Neurobiology, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Giorgio Albertini
- Child Developmental Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Adam A Golabek
- New York State Institute for Basic Research in Developmental Disabilities, Department of Developmental Neurobiology, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Elizabeth Kida
- New York State Institute for Basic Research in Developmental Disabilities, Department of Developmental Neurobiology, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
61
|
Tang Q, Liu YF, Zhu XJ, Li YH, Zhu J, Zhang JP, Feng ZQ, Guan XH. Expression and prognostic significance of the alpha B-crystallin gene in human hepatocellular carcinoma. Hum Pathol 2008; 40:300-5. [PMID: 18992912 DOI: 10.1016/j.humpath.2008.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 08/23/2008] [Accepted: 09/04/2008] [Indexed: 02/04/2023]
Abstract
The aim of this study was to characterize expression of the alpha B-crystallin gene in human hepatocellular carcinomas, to investigate the relationship between expression of this gene and the prognosis of human hepatocellular carcinoma. Real-time polymerase chain reaction, reverse transcriptase-polymerase chain reaction and immunohistochemistry were used to characterize expression of the alpha B-crystallin gene in human hepatocellular carcinoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of human hepatocellular carcinoma. We characterized alpha B-crystallin gene expression in human hepatocellular carcinoma. Statistical analysis of hepatocellular carcinoma patients showed that patients expressing alpha B-crystallin have different survival rates relative to those not expressing this gene (P = .041). After 18 months, the survival rate of patients expressing alpha B-crystallin declined, but survival in the alpha B-crystallin-negative group remained stable. COX multi-factor analysis showed that alpha B-crystallin (P = .007) and venous invasion (P = .037) were independent prognosis factors for hepatocellular carcinoma. Expression of the alpha B-crystallin gene, which is related with the transferability and invasive capacity of hepatocellular carcinoma cells, can be used as a prognostic indicator in human hepatocellular carcinomas. It may also be involved in the malignant transformation of hepatocytes.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory of Antibody Technique, Ministry of Health, Nanjing Medical University, Nanjing 210029, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Björkdahl C, Sjögren MJ, Zhou X, Concha H, Avila J, Winblad B, Pei JJ. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res 2008; 86:1343-52. [PMID: 18061943 DOI: 10.1002/jnr.21589] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The heat-shock proteins (HSPs) Hsp27 and alphaB-crystallin are up-regulated in Alzheimer's disease (AD), but the extent of this and the consequences are still largely unknown. The HSPs are involved in protein degradation and protection against protein aggregation, and they interact with several cytoskeletal components such as microtubules (MT) and neurofilaments (NF). AD pathology includes aggregated proteins (tau, NF), decreased protein degradation, and cytoskeletal disruption. It is thus of interest to investigate more closely the possible roles of the HSPs in AD pathology. The expressions of Hsp27 and alphaB-crystallin in AD brain samples were significantly increased (by approximately 20% and approximately 30%, respectively) and correlated significantly with phosphorylated tau and NF proteins. To investigate the consequences of increased HSP levels on tau and NF regulation, N2a cells were transfected with Hsp27 or alphaB-crystallin constructs, and overexpression of the HSPs was confirmed in the cells. Increased tau phosphorylation at the Ser262 site in the N2a cells was regulated by Hsp27 overexpression (possibly through p70S6k), whereas the overexpression of alphaB-crystallin resulted in decreased levels of phosphorylated tau, NF, and GSK-3beta. It was also shown that overexpression of HSPs causes an increase in the percentage of cells present in the G(1) phase. The results presented suggest that a cellular defense against dysregulated proteins, in the form of Hsp27 and alphaB-crystallin, might contribute to the cell cycle reentry seen in AD cells. Furthermore, Hsp27 might also be involved in AD pathology by aggravating MT disruption by tau phosphorylation.
Collapse
Affiliation(s)
- Cecilia Björkdahl
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, KI-Alzheimer's Disease Research Center, Novum, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
64
|
Aggeli IKS, Beis I, Gaitanaki C. Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38-MAPK and calcium signalling pathways in H9c2 cells. Cell Signal 2008; 20:1292-302. [PMID: 18420382 DOI: 10.1016/j.cellsig.2008.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 12/14/2022]
Abstract
We investigated the response of alphaB-crystallin to oxidative stress and calpain inhibition in an attempt to elucidate the signalling pathways mediating its phosphorylation. Given the high expression levels of alphaB-crystallin in cardiac muscle one can evaluate the significance of its participation in preservation of homeostasis under adverse conditions. H9c2 cardiac myoblasts were used as our experimental model since their response reflects the signal transduction pathways activated by stress conditions in the myocardium. Thus, in H9c2 cells treated with H2O2 the mechanism regulating alphaB-crystallin phosphorylation was found to involve p38-MAPK/MSK1 as well as intracellular free calcium levels. Our immunocytochemical experiments demonstrated phosphorylated alphaB-crystallin to be co-localized with tubulin, potentially preserving cytoskeletal architecture under these interventions. In H9c2 cells treated with calpain inhibitors (ALLN, ALLM) alphaB-crystallin exhibited a p38-MAPK- and [Ca 2+](i)-dependent phosphorylation pattern since the latter was ablated in the presence of the selective p38-MAPK inhibitor SB203580 and calcium chelator BAPTA-AM. Calpain activity repression ultimately led to apoptosis confirmed by PARP fragmentation and chromatin condensation. However, the apoptotic pathway activated by ALLM and ALLN differed, underlying the diverse transduction mechanisms stimulated. In addition to this, an anti-apoptotic role for phospho-alphaB-crystallin was verified by confirmation of its interaction with pro-caspase 3, hindering its cleavage and subsequent activation. Collectively, our findings underline alphaB-crystallin crucial role as a participant of cardiac cells early response to stressful stimuli compromising their survival.
Collapse
Affiliation(s)
- Ioanna-Katerina S Aggeli
- Department of Animal and Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis Ilissia, 157 84 Athens, Greece
| | | | | |
Collapse
|
65
|
Maddala R, Reneker LW, Pendurthi B, Rao PV. Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival. Dev Biol 2008; 315:217-31. [PMID: 18234179 DOI: 10.1016/j.ydbio.2007.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/06/2023]
Abstract
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (Rho GDI alpha), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of delta-crystallin enhancer and alpha A-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine Rho GDI alpha disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the Rho GDI alpha Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
66
|
Kim YH, Choi MY, Kim YS, Han JM, Lee JH, Park CH, Kang SS, Choi WS, Cho GJ. Protein kinase C delta regulates anti-apoptotic alphaB-crystallin in the retina of type 2 diabetes. Neurobiol Dis 2007; 28:293-303. [PMID: 17904375 DOI: 10.1016/j.nbd.2007.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 07/06/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022] Open
Abstract
We investigated the relationship between phosphorylation of alphaB-crystallin (alphaBC) and retinal apoptosis in type 2 diabetes. The retinas of male Otsuka Long-Evans Tokushima fatty (OLETF) rats at 24 and 35 weeks were used as an animal model for type 2 diabetes and sex- and age-matched Long-Evans Tokushima Otsuka (LETO) rats were used as controls. In the retinas of 35-week OLETF rats, the interaction between alphaBC and protein kinase C delta (PKC delta) among the PKC isozymes, alphaBC phosphorylation at Ser45 (S45p-alphaBC), TUNEL-positive apoptotic ganglion cells, several apoptotic signs, and co-localization of S45p-alphaBC and TUNEL significantly increased as compared with other groups while the alphaBC-Bax interaction greatly decreased. These changes were abolished by rottlerin treatment, a highly specific PKC delta inhibitor. These results suggest that PKC delta is involved in regulation of anti-apoptotic function of alphaBC in the retina of type 2 diabetes.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Gyeongsang National University, Jinju, Chilam-dong 92, Jinju, Gyeongnam 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ghosh JG, Houck SA, Clark JI. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly. PLoS One 2007; 2:e498. [PMID: 17551579 PMCID: PMC1876262 DOI: 10.1371/journal.pone.0000498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/12/2007] [Indexed: 11/18/2022] Open
Abstract
Background Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood. Methodology Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human αB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human αB crystallin. Principal Findings The interactive sequence 113FISREFHR120 exposed on the surface of αB crystallin decreased microtubule assembly by ∼45%. In contrast, the interactive sequences, 131LTITSSLSSDGV142 and 156ERTIPITRE164, corresponding to the β8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by ∼34–45%. The αB crystallin peptides, 113FISREFHR120 and 156ERTIPITRE164, inhibited microtubule disassembly by ∼26–36%, and the peptides 113FISREFHR120 and 131LTITSSLSSDGV142 decreased the thermal aggregation of tubulin by ∼42–44%. The 131LTITSSLSSDGV142 and 156ERTIPITRE164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulin↔microtubule dynamics. Mutagenesis of these interactive sequences in wt human αB crystallin confirmed the effects of the αB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by αB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at αB crystallin to tubulin molar ratios between 1∶4 and 2∶1, while molar ratios >2∶1 inhibited microtubule assembly. Conclusions and Significance Interactive sequences on the surface of human αB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of αB crystallin to tubulin. These are the first experimental results in support of the functional importance of the dynamic subunit model of small heat shock proteins.
Collapse
Affiliation(s)
- Joy G. Ghosh
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Scott A. Houck
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - John I. Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
68
|
Ghosh JG, Houck SA, Clark JI. Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Int J Biochem Cell Biol 2007; 39:1804-15. [PMID: 17590381 PMCID: PMC2743261 DOI: 10.1016/j.biocel.2007.04.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/03/2007] [Accepted: 04/13/2007] [Indexed: 01/29/2023]
Abstract
Molecular chaperones including the small heat shock proteins, alphaB crystallin and sHSP27 participate in the assembly, disassembly, and reorganization of the cytoskeleton during cell development and differentiation. While alphaB crystallin and sHSP27 stabilize and modulate filament assembly and re-organization, the sequences and structural domains mediating interactions between these proteins and filaments are unknown. It is important to define these interactive domains in order to understand differential interactions between chaperones and stable or unfolding filaments and their function in the cellular stress response. Protein pin arrays identified sequences in human alphaB crystallin that selectively interacted with native or partially unfolded filament proteins desmin, glial-fibrillary acidic protein, and actin. Circular dichroism spectroscopy determined differences in the structure of these filaments at 23 and 45 degrees C. Seven alphaB crystallin sequences had stronger interactions with desmin and six sequences had stronger interactions with glial-fibrillary acidic protein at 23 degrees C than at 45 degrees C. The alphaB crystallin sequences (33)LESDLFPTSTSLSPFYLRPPSFLR(56) and (129)DPLTITSSLSSDGV(145) had the strongest interactions with actin at 23 degrees C, while (57)APSWFDTG(64), (111)HGFISREF(118), (145)VNGPRKQVSG(154), and (155)PERTIPITREEK(165) had the strongest interactions with actin at 45 degrees C. The actin interactive sequences of alphaB crystallin overlapped with previously identified alphaB crystallin chaperone sequences and were synthesized to evaluate their effect on the assembly and aggregation of actin. Full-length alphaB crystallin and the core domain chaperone sequence (131)LTITSSLSSDGV(143) promoted actin polymerization at 37 degrees C and inhibited depolymerization and aggregation at 50 degrees C. The results support the hypothesis that interactive domains in alphaB crystallin have multiple functions in stabilizing the cytoskeleton and protecting cytosolic proteins from unfolding.
Collapse
Affiliation(s)
- Joy G. Ghosh
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| | - Scott A. Houck
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| | - John I. Clark
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
- Department of Ophthalmology, University of Washington, Seattle, WA 98195-7420
| |
Collapse
|
69
|
Arrigo AP, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C, Vicart P. Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 2007; 581:3665-74. [PMID: 17467701 DOI: 10.1016/j.febslet.2007.04.033] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/11/2007] [Accepted: 04/15/2007] [Indexed: 12/11/2022]
Abstract
Hsp27 and alphaB-crystallin are molecular chaperones that are constitutively expressed in several mammalian cells, particularly in pathological conditions. These proteins share functions as diverse as protection against toxicity mediated by aberrantly folded proteins or oxidative-inflammation conditions. In addition, these proteins share anti-apoptotic properties and are tumorigenic when expressed in cancer cells. This review summarizes the current knowledge about Hsp27 and alphaB-crystallin and the implications, either positive or deleterious, of these proteins in pathologies such as neurodegenerative diseases, myopathies, asthma, cataracts and cancers. Approaches towards therapeutic strategies aimed at modulating the expression and/or the activities of Hsp27 and alphaB-crystallin are presented.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress, Chaperons et Mort Cellulaire, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, Bat. Gregor Mendel, 16 Rue Dubois, F-69622, Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Singh BN, Rao KS, Ramakrishna T, Rangaraj N, Rao CM. Association of αB-Crystallin, a Small Heat Shock Protein, with Actin: Role in Modulating Actin Filament Dynamics in Vivo. J Mol Biol 2007; 366:756-67. [PMID: 17196975 DOI: 10.1016/j.jmb.2006.12.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 01/25/2023]
Abstract
Disruption of cytoskeletal assembly is one of the early effects of any stress that can ultimately lead to cell death. Stabilization of cytoskeletal assembly, therefore, is a critical event that regulates cell survival under stress. alphaB-crystallin, a small heat shock protein, has been shown to associate with cytoskeletal proteins under normal and stress conditions. Earlier reports suggest that alphaB-crystallin could prevent stress-induced aggregation of actin in vitro. However, the molecular mechanisms by which alphaB-crystallin stabilizes actin filaments in vivo are not known. Using the H9C2 rat cardiomyoblast cell line as a model system, we show that upon heat stress, alphaB-crystallin preferentially partitions from the soluble cytosolic fraction to the insoluble cytoskeletal protein-rich fraction. Confocal microscopic analysis shows that alphaB-crystallin associates with actin filaments during heat stress and the extent of association increases with time. Further, immunoprecipitation experiments show that alphaB-crystallin interacts directly with actin. Treatment of heat-stressed H9C2 cells with the actin depolymerzing agent, cytochalasin B, failed to disorganize actin. We show that this association of alphaB-crystallin with actin is dependent on its phosphorylation status, as treatment of cells with MAPK inhibitors SB202190 or PD98059 results in abrogation of this association. Our results indicate that alphaB-crystallin regulates actin filament dynamics in vivo and protects cells from stress-induced death. Further, our studies suggest that the association of alphaB-crystallin with actin helps maintenance of pinocytosis, a physiological function essential for survival of cells.
Collapse
|