51
|
Khurram SA, Bingle L, McCabe BM, Farthing PM, Whawell SA. The chemokine receptors CXCR1 and CXCR2 regulate oral cancer cell behaviour. J Oral Pathol Med 2014; 43:667-74. [PMID: 24965032 DOI: 10.1111/jop.12191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chemokines regulate physiological and pathological leucocyte trafficking, and chemokine receptors play a role in tumorigenesis. Expression of interleukin-8 (IL-8) receptors CXCR1 and CXCR2 has been shown in oral squamous cell carcinoma (OSCC) but remains poorly characterised. This aim of this study was to investigate CXCR1 and CXCR2 expression on normal oral keratinocytes (NOKs) and oral cancer cell lines (OCCL) and their relative response when exposed to IL-8 and growth-related oncogene-α (which selectively binds CXCR2). METHODS mRNA and protein expression was studied using RT-PCR, immunocytochemistry and flow cytometry. ELISAs were used to investigate ERK1/2 phosphorylation and MMP production, whereas a MTS-based assay was employed to study proliferation. Migration assays were carried out using modified Boyden chambers with a matrigel coating used for invasion assays. RESULTS mRNA expression of CXCR1 and CXCR2 was seen in both NOKs and OCCL with significantly higher protein expression in OCCL. Exposure to IL-8 and GROα increased intracellular ERK phosphorylation, proliferation, migration and invasion with OCCL showing a greater response than NOKs. These effects were mediated through CXCR1 and CXCR2 (for IL-8) and CXCR2 (for GROα) as receptor-blocking antibodies significantly inhibited the responses. IL-8 and GROα also increased MMP-9 release from NOKs and OCCL with significantly higher amounts released by OCCL. However, an increase in MMP-7 production was only seen in OCCL. CONCLUSIONS Functional CXCR1 and CXCR2 exist on normal and cancerous oral epithelial cells, and our data suggests a role for these receptors in oral cancer biology.
Collapse
Affiliation(s)
- Syed A Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | | | | | | | | |
Collapse
|
52
|
Qian Y, Wang Y, Li DS, Zhu YX, Lu ZW, Ji QH, Yang G. The chemokine receptor-CXCR2 plays a critical role in the invasion and metastases of oral squamous cell carcinoma in vitro and in vivo. J Oral Pathol Med 2014; 43:658-66. [PMID: 24953191 DOI: 10.1111/jop.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world with about 50% survival rate over 5 years. OSCC has a highly invasive potency and frequently metastasizes to the cervical lymph nodes, which is the principle reason leading to poor prognosis. CXCR2, the receptor of CXC chemokines, has been reported to be involved in invasion and metastasis in multiple types of malignancy. However, the accurate role of CXCR2 in OSCC has been little noticed. METHODS In this study, we determined the expression of CXCR2 in OSCC using immunohistochemical staining (IHC) and analyzed the association between the expression of CXCR2 and the biobehavior of OSCC. Then, we established stable OSCC cell lines with interference of CXCR2 and observed the effect of CXCR2 knockdown on cell proliferation, migration, invasion, and morphological changes in vitro and in vivo. RESULTS CXCR2 was positively expressed in 55.3% of OSCC patients and was statistically associated with the high cervical lymph node metastasis in OSCC. CXCR2 silencing markedly inhibited migration and invasion of OSCC cells in vitro and in vivo. Moreover, CXCR2 silencing led to morphological changes and decreased lamellipodial structures in OSCC cells. However, CXCR2 silencing showed no effect on proliferation of OSCC cells in vitro and in vivo. CONCLUSIONS CXCR2 plays a critical role in the invasion and metastases of OSCC. And it is probably by regulating actin cytoskeletal remodeling that CXCR2 takes part in the invasion and metastases of OSCC.
Collapse
Affiliation(s)
- Yong Qian
- Department of Head & Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | | | | | | | | | | | | |
Collapse
|
53
|
Khan S, Cameron S, Blaschke M, Moriconi F, Naz N, Amanzada A, Ramadori G, Malik IA. Differential gene expression of chemokines in KRAS and BRAF mutated colorectal cell lines: Role of cytokines. World J Gastroenterol 2014; 20:2979-2994. [PMID: 24659889 PMCID: PMC3960407 DOI: 10.3748/wjg.v20.i11.2979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/17/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study KRAS/BRAF mutations in colorectal-cancer (CRC) that influences the efficacy of treatment. To develop strategies for overcoming combination of treatment.
METHODS: Five colonic cell-lines were investigated: DLD-1 with KRAS (G13D) mutation, HT 29 and Colo 205 with BRAF (V600E) mutation as well as the wild type (Wt) cell-lines Caco2 and Colo-320. DLD-1 (KRAS), HT-29 (BRAF) and Caco2 (Wt) cell lines were treated with cytokines (TNFα 50 ng, IL-1β 1 ng and IFNγ 50 ng) and harvested at different time points (1-24 h). KRAS inhibition was performed by the siRNA-approach. Two colorectal cancer cells DLD-1 and Caco2 were used for KRAS inhibition. About 70% confluency were confirmed before transfection with small interferring RNA (siRNA) oligonucleotides. All the synthetic siRNA sequences were designed in our laboratory. Total RNA and protein was isolated from the cells for RT-PCR and Western blotting. Densitometry of the Western blotting was analyzed with the Image J software (NIH). Results are shown as mean ± SD.
RESULTS: RT-PCR analysis in non-stimulated cells showed a low basal expression of TNFα and IL-1β in the DLD-1 KRAS-mutated cell-line, compared to Caco2 wild type. No detection was found for IL-6 and IFNγ in any of the studied cell lines. In contrast, pro-angiogenic chemokines (CXCL1, CXCL8) showed a high constitutive expression in the mutated cell-lines DLD-1 (KRAS), HT-29 and Colo205 (BRAF), compared to wild type (Caco2). The anti-angiogenic chemokine (CXCL10) showed a high basal expression in wild-type, compared to mutated cell-lines. KRAS down-regulation by siRNA showed a significant decrease in CXCL1 and CXCL10 gene expression in the DLD-1 (KRAS) cell-line in comparison to wild type (Caco2) at 72 h after KRAS silencing. In contrast, the specific KRAS inhibition resulted in an up-regulation of CXCL1 and CXCL10. The results of our study show a higher expression of pro-angiogenic chemokines at basal level in mutated cell-lines, which was further increased by cytokine treatment.
CONCLUSION: To summarize, basal chemokine gene expression for pro-angiogenic chemokines was high in mutated as compared to wild type cell-lines. This reflects the likely existence of a different microenvironment in tumours consistent of wild type or mutated cells. This may help to rationalize the choice of molecular targets for suitable therapeutic investigation in clinical studies.
Collapse
|
54
|
Sasaki S, Baba T, Shinagawa K, Matsushima K, Mukaida N. Crucial involvement of the CCL3-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer 2014; 135:1297-306. [PMID: 24510316 DOI: 10.1002/ijc.28779] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022]
Abstract
Patients with inflammatory bowel diseases often develop colon carcinoma. Combined treatment of azoxymethane (AOM) and dextran sulfate sodium (DSS) recapitulates colitis-associated cancer in mice. AOM/DSS-induced tumor formation was reduced in CCL3- or its specific receptor, CCR5-deficient mice despite the presence of a massive infiltration of inflammatory cells. However, AOM/DSS-induced type I collagen-positive fibroblast accumulation in the colon was reduced in CCL3- or CCR5-deficient mice. This was associated with depressed expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is expressed mainly by fibroblasts. Moreover in vitro, CCL3 induced fibroblasts to proliferate and to enhance HB-EGF expression. Furthermore, CCR5 blockade reduced tumor formation together with reduced fibroblast accumulation and HB-EGF expression, even when administered after the development of multiple colon tumors. Thus, CCL3-CCR5-mediated fibroblast accumulation may be required, in addition to leukocyte infiltration, to induce full-blown colitis-associated carcinogenesis. Our studies shed light on a therapeutic potential of CCR5 antagonist for patients with colitis-associated cancer.
Collapse
Affiliation(s)
- Soichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology, Tokyo, Japan
| | | | | | | | | |
Collapse
|
55
|
Hamano R, Baba T, Sasaki S, Tomaru U, Ishizu A, Kawano M, Yamagishi M, Mukaida N. Ag and IL-2 immune complexes efficiently expand Ag-specific Treg cells that migrate in response to chemokines and reduce localized immune responses. Eur J Immunol 2014; 44:1005-15. [DOI: 10.1002/eji.201343434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Ryoko Hamano
- Division of Rheumatology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| | - Utano Tomaru
- Department of Pathology/Pathophysiology; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Akihiro Ishizu
- Faculty of Health Science; Hokkaido University; Sapporo Hokkaido Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Masakazu Yamagishi
- Division of Cardiology; Department of Internal Medicine; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation; Cancer Research Institute; Kanazawa University; Kanazawa Ishikawa Japan
| |
Collapse
|
56
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|
57
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
58
|
Fu S, Dong L, Sun W, Xu Y, Gao L, Miao Y. Stromal-epithelial crosstalk provides a suitable microenvironment for the progression of ovarian cancer cells in vitro. Cancer Invest 2013; 31:616-24. [PMID: 24147897 PMCID: PMC3887600 DOI: 10.3109/07357907.2013.849723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment plays an important role in the progression of cancer. This study focused on carcinoma-associated fibroblasts (CAFs) and stromal–epithelial interaction between CAFs and epithelial ovarian carcinoma (EOC) cells. We isolated and established primary cultures of CAFs and co-cultured CAFs and EOC cells in vitro. The co-culture conditioned medium (CC-CM) was harvested and its influence on EOC cells was examined. Cytokine, chemokine, and growth factor levels were screened using a biotin label-based human antibody array system. We found that the stromal–epithelial crosstalk provided a suitable microenvironment for the progression of ovarian cancer cells in vitro.
Collapse
Affiliation(s)
- Shilong Fu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,1
| | | | | | | | | | | |
Collapse
|
59
|
Eferl R. CCL2 at the crossroad of cancer metastasis. JAKSTAT 2013; 2:e23816. [PMID: 24058811 PMCID: PMC3710324 DOI: 10.4161/jkst.23816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/21/2022] Open
Abstract
Primary tumors can affect organ functions, either mechanically when they grow to a considerable size or via production of hormones. However, mortality of cancer patients is in most cases due to formation of secondary growths.(1) (,) (2) Consequently, various drugs are currently employed in clinical trials to impair specific steps of cancer metastasis such as mesenchymal or amoeboid cell migration, intravasation and/or colonization.(2) From the clinical point of view, targeting late metastatic processes such as extravasation or colonization might be required for cancer patients that bear already dormant micrometastases in their capillaries which have left behind earlier metastatic steps. Development of such drugs needs characterization of molecular targets implicated in distinct steps of cancer metastasis.
Collapse
Affiliation(s)
- Robert Eferl
- Institute for Cancer Research (ICR) & Comprehensive Cancer Center (CCC); Medical University of Vienna; Vienna, Austria
| |
Collapse
|
60
|
Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol 2013; 4:159. [PMID: 23847541 PMCID: PMC3701799 DOI: 10.3389/fphys.2013.00159] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence attests to the important roles of both macrophages and chemokines in angiogenesis. Tumor-associated macrophages or TAMS constitute the major fraction of tumor-infiltrating leukocytes and are recruited by a number of chemoattractants that are produced by the tumor and tumor-associated stroma. This heterogeneous cell population is activated by a variety of stimuli and becomes polarized to result in functionally different phenotypes regarding tumor progression. As opposed to classically activated or M1 macrophages that exhibit anti-tumor functions, most TAMS are considered to be of the alternatively activated or M2 phenotype, and express multiple cytokines, proteases, and chemokines that promote tumor angiogenesis. Chemokines also have disparate effects on angiogenesis regulation, as several members of the CXC and CC chemokine families are potent inducers of angiogenesis, while a subset of CXC chemokines are angiostatic. This review summarizes the current literature regarding the roles and modes of action of macrophage-derived chemokines as mediators of angiogenesis.
Collapse
Affiliation(s)
- Jennifer L Owen
- Department of Infectious Diseases and Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida Gainesville, FL, USA
| | | |
Collapse
|
61
|
Kuo JH, Chen YP, Liu JS, Dubrac A, Quemener C, Prats H, Bikfalvi A, Wu WG, Sue SC. Alternative C-terminal helix orientation alters chemokine function: structure of the anti-angiogenic chemokine, CXCL4L1. J Biol Chem 2013; 288:13522-33. [PMID: 23536183 DOI: 10.1074/jbc.m113.455329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND CXCL4L1 is a highly potent anti-angiogenic and anti-tumor chemokine, and its structural information is unknown. RESULTS CXCL4L1 x-ray structure is determined, and it reveals a previously unrecognized chemokine structure adopting a novel C-terminal helix conformation. CONCLUSION The alternative helix conformation enhances the anti-angiogenic activity of CXCL4L1 by reducing the glycosaminoglycan binding ability. SIGNIFICANCE Chemokine C-terminal helix orientation is critical in regulating their functions. Chemokines, a subfamily of cytokines, are small, secreted proteins that mediate a variety of biological processes. Various chemokines adopt remarkable conserved tertiary structure comprising an anti-parallel β-sheet core domain followed by a C-terminal helix that packs onto the β-sheet. The conserved structural feature has been considered critical for chemokine function, including binding to cell surface receptor. The recently isolated variant, CXCL4L1, is a homologue of CXCL4 chemokine (or platelet factor 4) with potent anti-angiogenic activity and differed only in three amino acid residues of P58L, K66E, and L67H. In this study we show by x-ray structural determination that CXCL4L1 adopts a previously unrecognized structure at its C terminus. The orientation of the C-terminal helix protrudes into the aqueous space to expose the entire helix. The alternative helix orientation modifies the overall chemokine shape and surface properties. The L67H mutation is mainly responsible for the swing-out effect of the helix, whereas mutations of P58L and K66E only act secondarily. This is the first observation that reports an open conformation of the C-terminal helix in a chemokine. This change leads to a decrease of its glycosaminoglycan binding properties and to an enhancement of its anti-angiogenic and anti-tumor effects. This unique structure is recent in evolution and has allowed CXCL4L1 to gain novel functional properties.
Collapse
Affiliation(s)
- Je-Hung Kuo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Cavallaro S. CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci 2013; 14:1713-27. [PMID: 23322021 PMCID: PMC3565343 DOI: 10.3390/ijms14011713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 01/02/2023] Open
Abstract
Lung cancer represents the leading cause of cancer-related mortality throughout the world. Patients die of local progression, disseminated disease, or both. At least one third of the people with lung cancer develop brain metastases at some point during their disease, even often before the diagnosis of lung cancer is made. The high rate of brain metastasis makes lung cancer the most common type of tumor to spread to the brain. It is critical to understand the biologic basis of brain metastases to develop novel diagnostic and therapeutic approaches. This review will focus on the emerging data supporting the involvement of the chemokine CXCL12 and its receptor CXCR4 in the brain metastatic evolution of non-small-cell lung cancer (NSCLC) and the pharmacological tools that may be used to interfere with this signaling axis.
Collapse
Affiliation(s)
- Sebastiano Cavallaro
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami, 18, Catania 95125, Italy.
| |
Collapse
|
63
|
Desai S, Kumar A, Laskar S, Pandey B. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine 2013; 61:54-62. [DOI: 10.1016/j.cyto.2012.08.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/08/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
64
|
Vernon PJ, Loux TJ, Schapiro NE, Kang R, Muthuswamy R, Kalinski P, Tang D, Lotze MT, Zeh HJ. The receptor for advanced glycation end products promotes pancreatic carcinogenesis and accumulation of myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2012; 190:1372-9. [PMID: 23269246 DOI: 10.4049/jimmunol.1201151] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has an aggressive natural history and is resistant to therapy. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor for many damage-associated molecular pattern molecules. RAGE is overexpressed in both human and murine models of PDA as well as most advanced epithelial neoplasms. The immunosuppressive nature of the PDA microenvironment is facilitated, in part, by the accumulation of regulatory immune cell infiltrates such as myeloid-derived suppressor cells (MDSCs). To study the role of RAGE expression in the setting of mutant Ras-promoted pancreatic carcinogenesis (KC), a triple-transgenic model of spontaneous murine PDA in a RAGE-null background (KCR) was generated. KCR mice had markedly delayed pancreatic carcinogenesis and a significant diminution of MDSCs compared with KC mice at comparable time points postweaning. Although RAGE was not required for the development or suppressor activity of MDSCs, its absence was associated with temporally limited pancreatic neoplasia and altered phenotype and function of the myeloid cells. In lieu of MDSCs, KCR animals at comparable time points exhibited mature CD11b(+)Gr1(-)F4/80(+) cells that were not immunosuppressive in vitro. KCR mice also maintained a significantly less suppressive milieu evidenced by marked decreases in CCL22 in relation to CXCL10 and diminished serum levels of IL-6.
Collapse
Affiliation(s)
- Philip J Vernon
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Shang K, Bai YP, Wang C, Wang Z, Gu HY, Du X, Zhou XY, Zheng CL, Chi YY, Mukaida N, Li YY. Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One 2012; 7:e51848. [PMID: 23272179 PMCID: PMC3525572 DOI: 10.1371/journal.pone.0051848] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/07/2012] [Indexed: 12/18/2022] Open
Abstract
Ulcerative colitis (UC) is a major form of chronic inflammation that can frequently progress to colon cancer. Several studies have demonstrated massive infiltration of neutrophils and macrophages into the lamina propria and submucosa in the progression of UC-associated colon carcinogenesis. Macrophages contribute to the development of colitis-associated colon cancer (CAC). However, the role of neutrophils is not well understood. To better understand the involvement of tumor-associated neutrophils (TANs) in the regulation of CAC, we used a mouse CAC model produced by administering azoxymethane (AOM), followed by repeated dextran sulfate sodium (DSS) ingestion. This causes severe colonic inflammation and subsequent development of multiple tumors in mice colon. We observed that colorectal mucosal inflammation became increasingly severe with AOM and DSS treatment. Macrophages infiltrated the lamina propria and submucosa, together with a marked increase in neutrophil infiltration. The chemokine CXCL2 increased in the lamina propria and submucosal regions of the colons of the treated mice, together with the infiltration of neutrophils expressing CXCR2, a specific receptor for CXCL2. This process was followed by neoplastic transformation. After AOM and DSS treatment, the mice showed enhanced production of metalloproteinase (MMP)-9 and neutrophil elastase (NE), accompanied by excessive vessel generation and cell proliferation. Moreover, CXCL2 promoted neutrophil recruitment and induced neutrophils to express MMP-9 and NE in vitro. Furthermore, administration of neutrophil-neutralizing antibodies after the last DSS cycle markedly reduced the number and size of tumors and decreased the expression of CXCR2, CXCL2, MMP-9, and NE. These observations indicate a crucial role for TANs in the initiation and progression of CAC and suggest that the CXCL2-CXCR2 axis might be useful in reducing the risk of UC-associated colon cancer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antigens, Ly/immunology
- Cell Proliferation
- Cell Transformation, Neoplastic/immunology
- Chemokine CXCL2/genetics
- Chemokine CXCL2/metabolism
- Chronic Disease
- Colitis/complications
- Colitis/immunology
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/immunology
- Colonic Neoplasms/etiology
- Colonic Neoplasms/pathology
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Leukocyte Elastase/genetics
- Leukocyte Elastase/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Neovascularization, Pathologic
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
Collapse
Affiliation(s)
- Kun Shang
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Pan Bai
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Wang
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Yu Gu
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Du
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chun-Lei Zheng
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Yun Chi
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Microenvironment Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ying-Yi Li
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Division of Molecular Bioregulation, Cancer Microenvironment Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
66
|
Guillemot E, Karimdjee-Soilihi B, Pradelli E, Benchetrit M, Goguet-Surmenian E, Millet MA, Larbret F, Michiels JF, Birnbaum D, Alemanno P, Schmid-Antomarchi H, Schmid-Alliana A. CXCR7 receptors facilitate the progression of colon carcinoma within lung not within liver. Br J Cancer 2012; 107:1944-9. [PMID: 23169289 PMCID: PMC3516689 DOI: 10.1038/bjc.2012.503] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Chemokine-receptor pairs have a critical role in determining the metastatic progression of tumours. Our hypothesis was that disruption of CXCR7/CXCR7 ligands axis could lead to a decrease in CRC metastases. Methods: Primary tumours and metastatic tissues from patients with CRC were tested for the expression of CXCR7 and its ligands. Relevance of CXCR7/CXCR7 ligands for CRC metastasis was then investigated in mice using small pharmacological CXCR7 antagonists and CRC cell lines of human and murine origins, which – injected into mice – enable the development of lung and liver metastases. Results: Following injection of CRC cells, mice treated daily with CXCR7 antagonists exhibited a significant reduction in lung metastases. However, CXCR7 antagonists failed to reduce the extent of liver metastasis. Moreover, there were subtle differences in the expression of CXCR7 and its ligands between lung and liver metastases. Conclusion: Our study suggests that the activation of CXCR7 on tumour blood vessels by its ligands may facilitate the progression of CRC within lung but not within liver. Moreover, we provide evidence that targeting the CXCR7 axis may be beneficial to limit metastasis from colon cancer within the lungs.
Collapse
Affiliation(s)
- E Guillemot
- Université de Nice Sophia-Antipolis, UFR Sciences, Nice 06108, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Rainczuk A, Rao J, Gathercole J, Stephens AN. The emerging role of CXC chemokines in epithelial ovarian cancer. Reproduction 2012; 144:303-17. [PMID: 22771929 DOI: 10.1530/rep-12-0153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, chemokines have generated intense investigations due to their involvement in both physiological and pathological processes of inflammation, particularly in ovarian biology. The physiological process of ovulation in the normal ovary involves various chemokines that mediate the healing of the ruptured endometrium. It is now being reported that many of these chemokines are also associated with the cancer of the ovary. Chronic inflammation underlies the progression of ovarian cancer; therefore, it raises the possibility that chemokines are involved in the inflammatory process and mediate immune responses that may favour or inhibit tumour progression. Ovarian cancer is a gynaecological cancer responsible for highest rate of mortality in women. Although there have been several investigations and advances in surgery and chemotherapy, the survival rate for this disease remains low. This is mainly because of a lack of specific symptoms and biomarkers for detection. In this review, we have discussed the emerging role of the CXC chemokines in epithelial ovarian cancer (EOC). The CXC group of chemokines is gaining importance in the field of ovarian cancer for being angiostatic and angiogenic in function. While there have been several studies on the angiogenesis function, emerging research shows that ELR(-) CXC chemokines, CXCL9 and CXCL10, are angiostatic. Importantly, the angiostatic chemokines can inhibit the progression of EOC. Given that there are currently no biomarkers or specific therapeutic targets for the disease, these chemokines are emerging as promising targets for therapy.
Collapse
Affiliation(s)
- Adam Rainczuk
- Prince Henry's Institute, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
68
|
Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012; 3:213. [PMID: 22723782 PMCID: PMC3379724 DOI: 10.3389/fphys.2012.00213] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|