51
|
|
52
|
Sokolova EA, Vodeneev VA, Deyev SM, Balalaeva IV. 3D in vitro models of tumors expressing EGFR family receptors: a potent tool for studying receptor biology and targeted drug development. Drug Discov Today 2018; 24:99-111. [PMID: 30205170 DOI: 10.1016/j.drudis.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
Carcinomas overexpressing EGFR family receptors are of high clinical importance, because the receptors have prognostic value and are used as molecular targets for anticancer therapy. Insufficient drug efficacy necessitates further in-depth research of the receptor biology and improvement in preclinical stages of drug evaluation. Here, we review the currently used advanced 3D in vitro models of tumors, including tumor spheroids, models in natural and synthetic matrices, tumor organoids and microfluidic-based models, as a potent tool for studying EGFR biology and targeted drug development. We are especially focused on factors that affect the biology of tumor cells, causing modification in the expression and basic phosphorylation of the receptors, crosstalk with other signaling pathways and switch between downstream cascades, resulting ultimately in the resistance to antitumor agents.
Collapse
Affiliation(s)
- Evgeniya A Sokolova
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia
| | - Vladimir A Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia
| | - Sergey M Deyev
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
53
|
A three-dimensional engineered heterogeneous tumor model for assessing cellular environment and response. Nat Protoc 2018; 13:1917-1957. [DOI: 10.1038/s41596-018-0022-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
54
|
A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions. Biomaterials 2018; 198:63-77. [PMID: 30098794 DOI: 10.1016/j.biomaterials.2018.07.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest forms of cancer. Despite many treatment options, prognosis of GBM remains dismal with a 5-year survival rate of 4.7%. Even then, tumors often recur after treatment. Tumor recurrence is hypothesized to be driven by glioma stem cell (GSC) populations which are highly tumorigenic, invasive, and resistant to several forms of therapy. GSCs are often concentrated around the tumor vasculature, referred to as the vascular niche, which are known to provide microenvironmental cues to maintain GSC stemness, promote invasion, and resistance to therapies. In this work, we developed a 3D organotypic microfluidic platform, integrated with hydrogel-based biomaterials, to mimic the GSC vascular niche and study the influence of endothelial cells (ECs) on patient-derived GSC behavior and identify signaling cues that mediate their invasion and phenotype. The established microvascular network enhanced GSC migration within a 3D hydrogel, promoted invasive morphology as well as maintained GSC proliferation rates and phenotype (Nestin, SOX2, CD44). Notably, we compared migration behavior to in vivo mice model and found similar invasive morphology suggesting that our microfluidic system could represent a physiologically relevant in vivo microenvironment. Moreover, we confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment by utilizing a CXCR4 antagonist (AMD3100), while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Our model presents a potential ex vivo platform for studying the interplay of GSCs with its surrounding microenvironment as well as development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in GSC regulatory mechanisms.
Collapse
|
55
|
Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomater 2018; 75:213-225. [PMID: 29879553 DOI: 10.1016/j.actbio.2018.06.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/17/2023]
Abstract
Extracellular matrix regulates hallmark features of cancer through biochemical and mechanical signals, although mechanistic understanding of these processes remains limited by lack of models that recreate physiology of tumors. To tissue-engineer models that recapitulate three-dimensional architecture and signaling in tumors, there is a pressing need for new materials permitting flexible control of mechanical and biophysical features. We developed a hybrid hydrogel system composed of collagen and alginate to model tumor environments in breast cancer and other malignancies. Material properties of the hydrogel, including stiffness, microstructure and porosimetry, encompass parameters present in normal organs and tumors. The hydrogel possesses a well-organized, homogenous microstructure with adjustable mechanical stiffness and excellent permeability. Upon embedding multicellular tumor spheroids, we constructed a 3D tumor invasion model showing follow-the-leader migration with fibroblasts leading invasion of cancer cells similar to in vivo. We also demonstrated effects of CXCL12-CXCR4 signaling, a pathway implicated in tumor progression and metastasis, in a dual-tumor spheroid invasion model in 3D hydrogels. These studies establish a new hydrogel platform with material properties that can be tuned to investigate effects of environmental conditions on tumor progression, which will advance future studies of cancer cell invasion and response to therapy. STATEMENT OF SIGNIFICANCE Our manuscript describes a novel design of hybrid hydrogel system composed of collagen and alginate modeling 3D tumor environments in breast cancer. The hydrogel possesses a well-organized, homogenous microstructure with adjustable mechanical stiffness. Upon embedding tumor spheroids, we successfully showed a 3D tumor invasion model showing follow-the-leader migration with fibroblasts leading invasion of cancer cells similar to in vivo. To the best of our knowledge, this is the first study showing two spheroids invade simultaneously and forming bridge-like connection and effects of chemical gradients in 3D hydrogel environment. This research provides a new model for tumor-stromal interactions in cancer cell migration and establishes a novel hydrogel system for analyzing physical and biochemical signals regulating cancer progression and response to therapy.
Collapse
|
56
|
Pérez-Treviño P, la Cerda HHD, Pérez-Treviño J, Fajardo-Ramírez OR, García N, Altamirano J. 3D Imaging Detection of HER2 Based in the Use of Novel Affibody-Quantum Dots Probes and Ratiometric Analysis. Transl Oncol 2018; 11:672-685. [PMID: 29627705 PMCID: PMC6053773 DOI: 10.1016/j.tranon.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with breast cancer (BC) overexpressing HER2 (HER2+) are selected for Trastuzumab treatment, which blocks HER2 and improves cancer prognosis. However, HER2+ diagnosis, by the gold standard, immunohistochemistry, could lead to errors, associated to: a) variability in sample manipulation (thin 2D sections), b) use of subjective algorithms, and c) heterogeneity of HER2 expression within the tissue. Therefore, we explored HER2 3D detection by multiplexed imaging of Affibody-Quantum Dots conjugates (Aff-QD), ratiometric analysis (RMAFI) and thresholding, using BC multicellular tumor spheroids (BC-MTS) (~120 μm of diameter) as 3D model of BC. HER2+, HER2- and hybrid HER2+/- BC-MTS (mimicking heterogeneous tissue) were incubated simultaneously with two Aff-QD probes (anti-HER2 and negative control (NC), respectively, (1:1)). Confocal XY sections were recorded along the Z distance, and processed by automatized RMAFI (anti-HER2 Aff-QD/ NC). Quantifying the NC fluorescence allowed to predict the fraction of non-specific accumulation of the anti-HER2 probe within the thick sample, and resolve the specific HER2 level. HER2 was detected up to 30μm within intact BC-MTS, however, permeabilization improved detection up to 70μm. Specific HER2 signal was objectively quantified, and HER2 3D-density of 9.2, 48.3 and 30.8% were obtained in HER2-, HER2+ and hybrid HER2+/- permeabilized BC-MTS, respectively. Therefore, by combining the multiplexing capacity of Aff-QD probes and RMAFI, we overcame the challenge of non-specific probe accumulation in 3D samples with minimal processing, yielding a fast, specific spatial HER2 detection and objective quantification.
Collapse
Affiliation(s)
- Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | | | - Jorge Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | - Oscar Raúl Fajardo-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina, Av. Morones Prieto No. 3000 Pte., Monterrey, NL, Mexico, 64710.
| |
Collapse
|
57
|
Nagaraju S, Truong D, Mouneimne G, Nikkhah M. Microfluidic Tumor-Vascular Model to Study Breast Cancer Cell Invasion and Intravasation. Adv Healthc Mater 2018; 7:e1701257. [PMID: 29334196 DOI: 10.1002/adhm.201701257] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Cancer is a major leading cause of disease-related death in the world. The severe impact of cancer can be attributed to poor understanding of the mechanisms involved in earliest steps of the metastatic cascade, specifically invasion into the surrounding stroma and intravasation into the blood capillaries. However, conducting integrated biological studies of invasion and intravasation have been challenging, within in vivo models and traditional in vitro assay, due to difficulties in establishing a precise tumor microenvironment. To that end, in this work, a novel 3D microfluidic platform comprised of concentric three-layer cell-laden hydrogels for simultaneous investigation of breast cancer cell invasion and intravasation as well as vasculature maturation influenced by tumor-vascular crosstalk is developed. It was demonstrated that the presence of spontaneously formed vasculature enhance MDA-MB-231 invasion into the 3D stroma. Following invasion, cancer cells are visualized intravasating into the outer vasculature. Additionally, invading cancer cells significantly reduce vessel diameter while increasing permeability, consistent with previous in vivo studies. Major signaling cytokines involved in tumor-vascular crosstalk that govern cancer cell invasion and intravasation are further identified. Taken together, this platform will enable unique insights of critical biological events within the metastatic cascade, with significant potential for developing efficient cancer therapeutics.
Collapse
Affiliation(s)
- Supriya Nagaraju
- School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA
| | - Danh Truong
- School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Arizona State University Tempe AZ 85287 USA
| |
Collapse
|
58
|
Rodenhizer D, Dean T, D'Arcangelo E, McGuigan AP. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery? Adv Healthc Mater 2018; 7:e1701174. [PMID: 29350495 DOI: 10.1002/adhm.201701174] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Cancer prognosis remains a lottery dependent on cancer type, disease stage at diagnosis, and personal genetics. While investment in research is at an all-time high, new drugs are more likely to fail in clinical trials today than in the 1970s. In this review, a summary of current survival statistics in North America is provided, followed by an overview of the modern drug discovery process, classes of models used throughout different stages, and challenges associated with drug development efficiency are highlighted. Then, an overview of the cancer hallmarks that drive clinical progression is provided, and the range of available clinical therapies within the context of these hallmarks is categorized. Specifically, it is found that historically, the development of therapies is limited to a subset of possible targets. This provides evidence for the opportunities offered by novel disease-relevant in vitro models that enable identification of novel targets that facilitate interactions between the tumor cells and their surrounding microenvironment. Next, an overview of the models currently reported in literature is provided, and the cancer biology they have been used to explore is highlighted. Finally, four priority areas are suggested for the field to accelerate adoption of in vitro tumour models for cancer drug discovery.
Collapse
Affiliation(s)
- Darren Rodenhizer
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Teresa Dean
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry & Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| |
Collapse
|
59
|
A TRACER 3D Co-Culture tumour model for head and neck cancer. Biomaterials 2018; 164:54-69. [PMID: 29490260 DOI: 10.1016/j.biomaterials.2018.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment and have been shown to play an important role in the progression of cancer. To probe these tumour-stroma interactions, we incorporated CAFs derived from head and neck cancer patients and squamous carcinoma cells of the hypopharynx (FaDu) into the Tissue Roll for the Analysis of Cellular Environment and Response (TRACER) platform to establish a co-culture platform that simulates the CAF-tumour microenvironmental interactions in head and neck tumours. TRACER culture involves infiltrating cells into a thin fibrous scaffold and then rolling the resulting biocomposite around a mandrel to generate a 3D and layered structure. Patterning the fibrous scaffold biocomposite during fabrication enables control over the specific location of different cell populations in the rolled configuration. Here, we optimized the seeding densities and configurations of the CAF and FaDu cell tissue sections to enable a robust 3D co-culture system under normoxic conditions. Co-culture of CAFs with FaDu cells produced negligible effects on radiation resistance, but did produce increases in proliferation rate and invasive cell migration at 24 and 48 h of culture. Our study provides the basis for use of our in vitro co-culture TRACER model to investigate the tumour-stroma interactions, and to bridge the translational gap between preclinical and clinical studies.
Collapse
|
60
|
Lee JH, Kim SK, Khawar IA, Jeong SY, Chung S, Kuh HJ. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:4. [PMID: 29329547 PMCID: PMC5767067 DOI: 10.1186/s13046-017-0654-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs), a major component of the tumor microenvironment in pancreatic cancer, play roles in cancer progression as well as drug resistance. Culturing various cells in microfluidic (microchannel) devices has proven to be a useful in studying cellular interactions and drug sensitivity. Here we present a microchannel plate-based co-culture model that integrates tumor spheroids with PSCs in a three-dimensional (3D) collagen matrix to mimic the tumor microenvironment in vivo by recapitulating epithelial-mesenchymal transition and chemoresistance. METHODS A 7-channel microchannel plate was prepared using poly-dimethylsiloxane (PDMS) via soft lithography. PANC-1, a human pancreatic cancer cell line, and PSCs, each within a designated channel of the microchannel plate, were cultured embedded in type I collagen. Expression of EMT-related markers and factors was analyzed using immunofluorescent staining or Proteome analysis. Changes in viability following exposure to gemcitabine and paclitaxel were measured using Live/Dead assay. RESULTS PANC-1 cells formed 3D tumor spheroids within 5 days and the number of spheroids increased when co-cultured with PSCs. Culture conditions were optimized for PANC-1 cells and PSCs, and their appropriate interaction was confirmed by reciprocal activation shown as increased cell motility. PSCs under co-culture showed an increased expression of α-SMA. Expression of EMT-related markers, such as vimentin and TGF-β, was higher in co-cultured PANC-1 spheroids compared to that in mono-cultured spheroids; as was the expression of many other EMT-related factors including TIMP1 and IL-8. Following gemcitabine exposure, no significant changes in survival were observed. When paclitaxel was combined with gemcitabine, a growth inhibitory advantage was prominent in tumor spheroids, which was accompanied by significant cytotoxicity in PSCs. CONCLUSIONS We demonstrated that cancer cells grown as tumor spheroids in a 3D collagen matrix and PSCs co-cultured in sub-millimeter proximity participate in mutual interactions that induce EMT and drug resistance in a microchannel plate. Microfluidic co-culture of pancreatic tumor spheroids with PSCs may serve as a useful model for studying EMT and drug resistance in a clinically relevant manner.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seul-Ki Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Iftikhar Ali Khawar
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su-Yeong Jeong
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-ku, Seoul, 06591, Republic of Korea.
| |
Collapse
|
61
|
Dondajewska E, Juzwa W, Mackiewicz A, Dams-Kozlowska H. Heterotypic breast cancer model based on a silk fibroin scaffold to study the tumor microenvironment. Oncotarget 2018; 9:4935-4950. [PMID: 29435153 PMCID: PMC5797024 DOI: 10.18632/oncotarget.23574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
An intensive investigation of the development of in vitro models to study tumor biology has led to the generation of various three-dimensional (3D) culture methods that better mimic in vivo conditions. The tumor microenvironment (TME) is shaped by direct interactions among cancer cells, cancer-associated cells and the extracellular matrix (ECM). Recognizing the need to incorporate both tissue dimensionality and the heterogeneity of cells, we have developed a 3D breast cancer model. NIH3T3 fibroblasts and EMT6 breast cancer cell lines were seeded in various ratios onto a silk fibroin scaffold. The porosity of the silk scaffold was optimized to facilitate the growth of cancer cells. EMT6 and NIH3T3 cells were modified to express GFP and turboFP635, respectively, which enabled the direct analysis of the cell morphology and colonization of the scaffold and for the separation of the cells after their co-culture. Use of 3D mono-culture and 3D co-culture methods resulted in the modification of cell morphology and in a significant increase in ECM production. These culture methods also induced cellular changes related to EMT (epithelial-mesenchymal transition) and CAF (cancer-associated fibroblast) markers. The presented model is an easy to manufacture, well-characterized tool that can be used to study processes of the TME.
Collapse
Affiliation(s)
- Ewelina Dondajewska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan 60-806, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan 60-806, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan 61-866, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan 60-806, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan 61-866, Poland
| |
Collapse
|
62
|
Chen PC, Lee WY, Ling HH, Cheng CH, Chen KC, Lin CW. Activation of fibroblasts by nicotine promotes the epithelial-mesenchymal transition and motility of breast cancer cells. J Cell Physiol 2018; 233:4972-4980. [DOI: 10.1002/jcp.26334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Pin-Cyuan Chen
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Wen-Ying Lee
- Department of Cytopathology; Chi Mei Medical Center; Tainan Taiwan
- Department of Pathology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Hsiang-Hsi Ling
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
- Center for Cell Therapy and Regeneration Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
63
|
Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system. Biomaterials 2017; 155:124-134. [PMID: 29175081 DOI: 10.1016/j.biomaterials.2017.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 01/22/2023]
Abstract
Interactions between lung epithelium and interstitial fibroblasts are increasingly recognized as playing a major role in the progression of several lung pathologies, including cancer. Three-dimensional in vitro co-culture systems offer tissue-relevant platforms to study the signaling interplay between diseased and healthy cell types. Such systems provide a controlled environment in which to probe the mechanisms involved in epithelial-mesenchymal crosstalk. To recapitulate the native alveolar tissue architecture, we employed a cyst templating technique to culture alveolar epithelial cells on photodegradable microspheres and subsequently encapsulated the cell-laden spheres within poly (ethylene glycol) (PEG) hydrogels containing dispersed pulmonary fibroblasts. A fibroblast cell line (CCL-210) was co-cultured with either healthy mouse alveolar epithelial primary cells or a cancerous alveolar epithelial cell line (A549) to probe the influence of tumor-stromal interactions on proliferation, migration, and matrix remodeling. In 3D co-culture, cancerous epithelial cells and fibroblasts had higher proliferation rates. When examining fibroblast motility, the fibroblasts migrated faster when co-cultured with cancerous A549 cells. Finally, a fluorescent peptide reporter for matrix metalloproteinase (MMP) activity revealed increased MMP activity when A549s and fibroblasts were co-cultured. When MMP activity was inhibited or when cells were cultured in gels with a non-degradable crosslinker, fibroblast migration was dramatically suppressed, and the increase in cancer cell proliferation in co-culture was abrogated. Together, this evidence supports the idea that there is an exchange between the alveolar epithelium and surrounding fibroblasts during cancer progression that depends on MMP activity and points to potential signaling routes that merit further investigation to determine targets for cancer treatment.
Collapse
|
64
|
Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts. J Transl Med 2017; 97:1321-1331. [PMID: 28846077 DOI: 10.1038/labinvest.2017.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/15/2023] Open
Abstract
Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.
Collapse
|
65
|
Millard M, Yakavets I, Zorin V, Kulmukhamedova A, Marchal S, Bezdetnaya L. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int J Nanomedicine 2017; 12:7993-8007. [PMID: 29184400 PMCID: PMC5673046 DOI: 10.2147/ijn.s146927] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increasing number of publications on the subject shows that nanomedicine is an attractive field for investigations aiming to considerably improve anticancer chemotherapy. Based on selective tumor targeting while sparing healthy tissue, carrier-mediated drug delivery has been expected to provide significant benefits to patients. However, despite reduced systemic toxicity, most nanodrugs approved for clinical use have been less effective than previously anticipated. The gap between experimental results and clinical outcomes demonstrates the necessity to perform comprehensive drug screening by using powerful preclinical models. In this context, in vitro three-dimensional models can provide key information on drug behavior inside the tumor tissue. The multicellular tumor spheroid (MCTS) model closely mimics a small avascular tumor with the presence of proliferative cells surrounding quiescent cells and a necrotic core. Oxygen, pH and nutrient gradients are similar to those of solid tumor. Furthermore, extracellular matrix (ECM) components and stromal cells can be embedded in the most sophisticated spheroid design. All these elements together with the physicochemical properties of nanoparticles (NPs) play a key role in drug transport, and therefore, the MCTS model is appropriate to assess the ability of NP to penetrate the tumor tissue. This review presents recent developments in MCTS models for a better comprehension of the interactions between NPs and tumor components that affect tumor drug delivery. MCTS is particularly suitable for the high-throughput screening of new nanodrugs.
Collapse
Affiliation(s)
- Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratory of Biophysics and Biotechnology
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology.,International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus
| | - Aigul Kulmukhamedova
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Radiology, Medical Company Sunkar, Almaty, Kazakhstan
| | - Sophie Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
66
|
Jung HR, Kang HM, Ryu JW, Kim DS, Noh KH, Kim ES, Lee HJ, Chung KS, Cho HS, Kim NS, Im DS, Lim JH, Jung CR. Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo. Sci Rep 2017; 7:10499. [PMID: 28874716 PMCID: PMC5585316 DOI: 10.1038/s41598-017-10828-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial–mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.
Collapse
Affiliation(s)
- Hong-Ryul Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Eun-Su Kim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Ho-Joon Lee
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Nam-Soon Kim
- Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.,Genome Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Dong-Soo Im
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea.
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology(KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea. .,Department of Functional Genomics, Korea university of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.
| |
Collapse
|
67
|
Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 2017; 45:229-236. [PMID: 28202677 DOI: 10.1042/bst20160387] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/13/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are major components of the surrounding stroma of carcinomas that emerge in the tumor microenvironment as a result of signals derived from the cancer cells. Biochemical cross-talk between cancer cells and CAFs as well as mechanical remodeling of the stromal extracellular matrix (ECM) by CAFs are important contributors to tumor cell migration and invasion, which are critical for cancer progression from a primary tumor to metastatic disease. In this review, we discuss key paracrine signaling pathways between CAFs and cancer cells that promote cancer cell migration and invasion. In addition, we discuss physical changes that CAFs exert on the stromal ECM to facilitate migration and invasion of cancer cells.
Collapse
|
68
|
Verjans ET, Doijen J, Luyten W, Landuyt B, Schoofs L. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? J Cell Physiol 2017; 233:2993-3003. [PMID: 28618001 DOI: 10.1002/jcp.26052] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
Abstract
High attrition of new oncology drug candidates in clinical trials is partially caused by the poor predictive capacity of artificial monolayer cell culture assays early in drug discovery. Monolayer assays do not take the natural three-dimensional (3D) microenvironment of cells into account. As a result, false positive compounds often enter clinical trials, leading to high dropout rates and a waste of time and money. Over the past 2 decades, tissue engineers and cell biologists have developed a broad range of 3D in vitro culturing tools that better represent in vivo cell biology. These tools preserve the 3D architecture of cells and can be used to predict toxicity of and resistance against antitumor agents. Recent progress in tissue engineering further improves 3D models by taking into account the tumor microenvironment, which is important for metastatic progression and vascularization. However, the widespread implementation of 3D cell cultures into cell-based research programs has been limited by various factors, including their cost and reproducibility. In addition, different 3D cell culture techniques often produce spheroids of different size and shape, which can strongly influence drug efficacy and toxicity. Hence, it is imperative to morphometrically characterize multicellular spheroids to avoid generalizations among different spheroid types. Standardized 3D culturing procedures could further reduce data variability and enhance biological relevance. Here, we critically evaluate the benefits and challenges inherent to growing cells in 3D, along with an overview of the techniques used to form spheroids. This is done with a specific focus on antitumor drug screening.
Collapse
Affiliation(s)
- Eddy-Tim Verjans
- Department of Biology, Division of Neurobiology and Animal Physiology, KU Leuven, Leuven, Belgium
| | - Jordi Doijen
- Department of Biology, Division of Neurobiology and Animal Physiology, KU Leuven, Leuven, Belgium
| | - Walter Luyten
- Department of Biology, Division of Neurobiology and Animal Physiology, KU Leuven, Leuven, Belgium
| | - Bart Landuyt
- Department of Biology, Division of Neurobiology and Animal Physiology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Biology, Division of Neurobiology and Animal Physiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
69
|
Bower R, Green VL, Kuvshinova E, Kuvshinov D, Karsai L, Crank ST, Stafford ND, Greenman J. Maintenance of head and neck tumor on-chip: gateway to personalized treatment? Future Sci OA 2017; 3:FSO174. [PMID: 28670466 PMCID: PMC5481812 DOI: 10.4155/fsoa-2016-0089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
AIM Head and neck squamous cell carcinomas (HNSCC) are solid tumors with low overall survival (40-60%). In a move toward personalized medicine, maintenance of tumor biopsies in microfluidic tissue culture devices is being developed. METHODOLOGY/RESULTS HNSCC (n = 15) was dissected (5-10 mg) and either analyzed immediately or cultured in a microfluidic device (37°C) for 48 h. No difference was observed in morphology between pre- and postculture specimens. Dissociated samples were analyzed using trypan blue exclusion (viability), propidium iodide flow cytometry (death) and MTS assay (proliferation) with no significant difference observed highlighting tissue maintenance. Computational fluid dynamics showed laminar flow within the system. CONCLUSION The microfluidic culture system successfully maintained HNSCC for 48 h, the culture system will allow testing of different treatment modalities with response monitoring.
Collapse
Affiliation(s)
- Ruth Bower
- School of Life Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Victoria L Green
- School of Life Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Elena Kuvshinova
- Department of Chemical & Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Dmitriy Kuvshinov
- School of Engineering & Computer Science, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Laszlo Karsai
- Department of Cellular Pathology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Stephen T Crank
- Department of Oral & Maxillofacial Surgery, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Nicholas D Stafford
- Castle Hill Hospital, University of Hull, Daisy Building, Cottingham, HU16 5JQ, UK
| | - John Greenman
- School of Life Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
70
|
Lin M, Duan B, Hu J, Yu H, Sheng H, Gao H, Huang J. Decreased expression of miR-193a-3p is associated with poor prognosis in colorectal cancer. Oncol Lett 2017; 14:1061-1067. [PMID: 28693274 PMCID: PMC5494605 DOI: 10.3892/ol.2017.6266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an early and key process in the metastatic cascade during the progression of colorectal cancer (CRC). The aim of the present study was to identify deregulated EMT-related microRNAs (miRNAs/miRs) of CRC and assess the effect of differentially expressed miRNAs on the prognosis of patients with CRC. Genome-wide expression profiling of miRNAs was assessed in 3 EMT-negative and 3 EMT-positive CRC tissues. Differentially expressed miRNA was further validated in 90 pairs of CRC and corresponding paracarcinoma tissues using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 6 miRNAs (miR-10a-5p miR-204-3p, miR-1224-3p, miR-193a-3p, miR-365a-3p and miR-3678-3p) were identified to be differentially expressed between different EMT statuses of CRC tissues. Following validation using RT-qPCR, 3 miRNAs (miR-10a-5p, miR-365a-3p and miR-193a-3p) were selected for subsequent studies. The expression levels of miR-10a-5p, miR-193a-3p and miR-365a-3p were markedly increased compared with levels in corresponding paracarcinoma tissues. Survival analyses revealed that down-regulation of miR-193a-3p was associated with worse prognosis of patients with CRC, particularly in female and older patients. The results of the present study indicate that miR-193a-3p may be an EMT-related biomarker and serve as a novel prognostic factor for CRC.
Collapse
Affiliation(s)
- Maosong Lin
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Bensong Duan
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jiangfeng Hu
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Haihui Sheng
- CMC Biobank and Translational Medicine Institute, Taizhou, Jiangsu 225312, P.R. China.,National Engineering Center for Biochip at Shanghai, Shanghai 201203, P.R. China
| | - Hengjun Gao
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China.,CMC Biobank and Translational Medicine Institute, Taizhou, Jiangsu 225312, P.R. China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
71
|
Tajima S, Tabata Y. Preparation of EpH4 and 3T3L1 cells aggregates incorporating gelatin hydrogel microspheres for a cell condition improvement. Regen Ther 2017; 6:90-99. [PMID: 30271843 PMCID: PMC6134911 DOI: 10.1016/j.reth.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare three dimensional (3D) of mouse mammary epithelial EpH4 and mouse preadipocyte 3T3L1 cells in the presence of gelatin hydrogel microspheres (GM) and evaluate the effect of GM presence on the survival and functions of cells in the 3D cell aggregates. Gelatin was dehydrothermally crosslinked at 140 °C for 48 h in a water-in-oil emulsion state to obtain the GM with average diameters of 50 and 200 μm, followed by treatment with fibronectin (FN). EpH4 and/or 3T3L1 cells were cultured with or without the FN-treated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to allow the cells to form their aggregates. On the other hand, EpH4 cells were precultured with the FN-treated GM, and then continued to culture with 3T3L1 cells in the same condition described above. The EpH4 cells attached onto the GM in the cell number dependent manner, irrespective of their size. When 3T3L1 cells were incubated with the original and GM-preincubated EpH4 cells in the presence of both the FN-treated GM, the number of alive cells in the aggregates was significantly high compared with that for the absence of FN-treated GM. In addition, higher β-casein expression level of EpH4 cells in EpH4/3T3L1 cells aggregates in the presence of FN-treated GM was observed than that of cells in the absence of FN-treated GM. Laminin secretion was also promoted for the cells aggregates cultured with FN-treated GM. It is concluded that the presence of FN-treated GM in the EpH4/3T3L1 cells aggregates gave a better condition to cells, resulting in an enhanced generation of β-casein from EpH4 cells in the aggregates.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
72
|
Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, Prime S. Cancer-associated fibroblasts regulate keratinocyte cell–cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 2016; 38:76-85. [DOI: 10.1093/carcin/bgw113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/11/2016] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
|
73
|
Liu C, Yao S, Li X, Wang F, Jiang Y. iRGD-mediated core-shell nanoparticles loading carmustine and O 6-benzylguanine for glioma therapy. J Drug Target 2016; 25:235-246. [PMID: 27646474 DOI: 10.1080/1061186x.2016.1238091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
iRGD (internalizing RGD) with high affinity to αν integrins was reported to enhance tumor penetrability by binding to neuropilin-1 (NRP-1). Based on our previous study, chitosan surface-modified poly (lactide-co-glycolides) nanoparticles (PLGA/CS NPs), loaded with carmustine (BCNU) and its sensitizer (O6-benzylguanine, BG) showed stronger anti-tumor effect than free drugs. In present study, PLGA/CS NPs (NPs) with core-shell structure were prepared and modified with iRGD or mPEG. F98, C6 or U87 cell lines with different receptors levels were selected for in vitro and in vivo studies. After administration of iRGD-mediated NPs, including iRGD-modified NPs (iRGD-NPs) and co-administration of iRGD and NPs (iRGD + NPs), their effects on glioma were compared with NPs. iRGD-NPs showed stronger cytotoxicity and cellular uptake than other groups. iRGD-NPs and iRGD + NPs displayed deeper tumor penetration and stronger anti-invasion effect on three dimensional (3D) glioma spheroids than NPs. On F98 glioma-bearing mice model, iRGD-mediated NPs showed enhanced crossing BBB ability and brain tumor accumulation levels. Correspondingly, the median survival time of iRGD + NPs, iRGD-NPs and NPs groups were 58, 49 and 34.5 days, respectively. Present studies supported the iRGD-mediated strategy to improve the efficacy of antitumor drug delivery system. Importantly, co-administration of iRGD may be a greater way over the conjugation of iRGD.
Collapse
Affiliation(s)
- Chang Liu
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Sen Yao
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Xuqian Li
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Feng Wang
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Yanyan Jiang
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| |
Collapse
|
74
|
Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. PLoS One 2016; 11:e0159013. [PMID: 27391808 PMCID: PMC4938568 DOI: 10.1371/journal.pone.0159013] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022] Open
Abstract
Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a ‘more clinically relevant’ tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation.
Collapse
Affiliation(s)
- Su-Yeong Jeong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|