51
|
Sritanaudomchai H, Ma H, Clepper L, Gokhale S, Bogan R, Hennebold J, Wolf D, Mitalipov S. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 2010; 25:1927-41. [PMID: 20522441 PMCID: PMC2907230 DOI: 10.1093/humrep/deq144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis raises complex issues regarding differential gene expression. METHODS AND RESULTS We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs. To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we conducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identification of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele. CONCLUSION Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel imprinted genes.
Collapse
|
52
|
Monkey hybrid stem cells develop cellular features of Huntington's disease. BMC Cell Biol 2010; 11:12. [PMID: 20132560 PMCID: PMC2833146 DOI: 10.1186/1471-2121-11-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 02/05/2010] [Indexed: 12/31/2022] Open
Abstract
Background Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research. Results To test this hypothesis, a pluripotent Huntington's disease monkey hybrid cell line (TrES1) was established from a tetraploid Huntington's disease monkey blastocyst generated by the fusion of transgenic Huntington's monkey skin fibroblast and a wild-type non-transgenic monkey oocyte. The TrES1 developed key Huntington's disease cellular pathological features that paralleled neural development. It expressed mutant huntingtin and stem cell markers, was capable of differentiating to neural cells, and developed teratoma in severely compromised immune deficient (SCID) mice. Interestingly, the expression of mutant htt, the accumulation of oligomeric mutant htt and the formation of intranuclear inclusions paralleled neural development in vitro , and even mutant htt was ubiquitously expressed. This suggests the development of Huntington's disease cellular features is influenced by neural developmental events. Conclusions Huntington's disease cellular features is influenced by neural developmental events. These results are the first to demonstrate that a pluripotent stem cell line is able to mimic Huntington's disease progression that parallels neural development, which could be a useful cell model for investigating the developmental impact on Huntington's disease pathogenesis.
Collapse
|
53
|
The evolution of heterochiasmy: the role of sexual selection and sperm competition in determining sex-specific recombination rates in eutherian mammals. Genet Res (Camb) 2010; 91:355-63. [PMID: 19922699 DOI: 10.1017/s0016672309990255] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Early karyotypic work revealed that female and male recombination rates in many species show pronounced differences, and this pattern of heterochiasmy has also been observed in modern linkage mapping studies. Several hypotheses to explain this phenomenon have been offered, ranging from strictly biological mechanisms related to the gametic differences between the sexes, to more evolutionary models based on sexually antagonistic selection. However, despite the long history of interest in heterochiasmy, empirical data has failed to support any theory or pattern consistently. Here I test two alternative evolutionary hypotheses regarding heterochiasmy across the eutherian mammals, and show that sexual dimorphism, but not sperm competition, is strongly correlated with recombination rate, suggesting that sexual antagonism is an important influence. However, the observed relationship between heterochiasmy and sexual dimorphism runs counter to theoretical predictions, with male recombination higher in species with high levels of sexual dimorphism. This may be the response to male-biased dispersal, which, rather than the static male fitness landscape envisioned in the models tested here, could radically shift optimal male fitness parameters among generations.
Collapse
|
54
|
Marques-Bonet T, Ryder OA, Eichler EE. Sequencing primate genomes: what have we learned? Annu Rev Genomics Hum Genet 2009; 10:355-86. [PMID: 19630567 DOI: 10.1146/annurev.genom.9.081307.164420] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We summarize the progress in whole-genome sequencing and analyses of primate genomes. These emerging genome datasets have broadened our understanding of primate genome evolution revealing unexpected and complex patterns of evolutionary change. This includes the characterization of genome structural variation, episodic changes in the repeat landscape, differences in gene expression, new models regarding speciation, and the ephemeral nature of the recombination landscape. The functional characterization of genomic differences important in primate speciation and adaptation remains a significant challenge. Limited access to biological materials, the lack of detailed phenotypic data and the endangered status of many critical primate species have significantly attenuated research into the genetic basis of primate evolution. Next-generation sequencing technologies promise to greatly expand the number of available primate genome sequences; however, such draft genome sequences will likely miss critical genetic differences within complex genomic regions unless dedicated efforts are put forward to understand the full spectrum of genetic variation.
Collapse
Affiliation(s)
- Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98105, USA.
| | | | | |
Collapse
|
55
|
Petit N, Barbadilla A. The efficiency of purifying selection in Mammals vs. Drosophila for metabolic genes. J Evol Biol 2009; 22:2118-24. [PMID: 19694896 DOI: 10.1111/j.1420-9101.2009.01814.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nearly neutral theory of molecular evolution states that the efficiency of natural selection depends on the effective population size. By using a wide range of multispecies data on nucleotide polymorphism, we have tried to ascertain whether there are any differences in the level of selective constraints of metabolic process genes between Mammals and Drosophila species. The results are consistent with a higher selective constraint in Drosophila than in Mammals, according to the expected under the nearly neutral model: purifying selection seems to be more efficient in species with a larger effective population size.
Collapse
Affiliation(s)
- N Petit
- Group of Genomic, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
56
|
Siddiqui RA, Sauermann U, Altmüller J, Fritzer E, Nothnagel M, Dalibor N, Fellay J, Kaup FJ, Stahl-Hennig C, Nürnberg P, Krawczak M, Platzer M. X chromosomal variation is associated with slow progression to AIDS in HIV-1-infected women. Am J Hum Genet 2009; 85:228-39. [PMID: 19679225 DOI: 10.1016/j.ajhg.2009.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/07/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022] Open
Abstract
AIDS has changed from a mostly male-specific health problem to one that predominantly affects females. Although sex differences in HIV-1 susceptibility are beyond doubt, the extent to which sex affects the onset and progression of AIDS has remained elusive. Here, we provide evidence for an influence of X chromosomal variation on the course of retroviral infection, both in HIV-1-infected patients and in the rhesus macaque model of AIDS. A two-stage, microsatellite-based GWAS of SIV-infected monkeys revealed MHC class I markers and a hitherto-unknown X chromosomal locus as being associated with a nominal score measuring progression to AIDS (Fisher's exact p < 10(-6)). The X chromosomal association was subsequently confirmed in HIV-1-infected patients with published SNP genotype data. SNP rs5968255, located at human Xq21.1 in a conserved sequence element near the RPS6KA6 and CYLC1 genes, was identified as a significant genetic determinant of disease progression in females (ANOVA p = 8.8 x 10(-5)), but not in males (p = 0.19). Heterozygous female carriers of the C allele showed significantly slower CD4 cell decline and a lower viral load at set point than TT homozygous females and than males. Inspection of HapMap revealed that the CT genotype is significantly more frequent among Asians than among Europeans or Africans. Our results suggest that, in addition to the individual innate and adaptive immunity status, sex-linked genetic variation impacts upon the rate of progression to AIDS. Elucidating the mechanisms underlying this sex-specific effect will promote the development of antiretroviral therapies with high efficacy in both sexes.
Collapse
|
57
|
Lewin HA, Larkin DM, Pontius J, O'Brien SJ. Every genome sequence needs a good map. Genome Res 2009; 19:1925-8. [PMID: 19596977 DOI: 10.1101/gr.094557.109] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Harris A Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
58
|
Kukekova AV, Vorobieva NV, Beklemisheva VR, Johnson JL, Temnykh SV, Yudkin DV, Trut LN, Andre C, Galibert F, Aguirre GD, Acland GM, Graphodatsky AS. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes. ACTA ACUST UNITED AC 2009; 100 Suppl 1:S42-53. [PMID: 19546120 DOI: 10.1093/jhered/esp037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.
Collapse
Affiliation(s)
- Anna V Kukekova
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Higashino A, Osada N, Suto Y, Hirata M, Kameoka Y, Takahashi I, Terao K. Development of an integrative database with 499 novel microsatellite markers for Macaca fascicularis. BMC Genet 2009; 10:24. [PMID: 19497132 PMCID: PMC2702342 DOI: 10.1186/1471-2156-10-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 06/05/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cynomolgus macaques (Macaca fascicularis) are a valuable resource for linkage studies of genetic disorders, but their microsatellite markers are not sufficient. In genetic studies, a prerequisite for mapping genes is development of a genome-wide set of microsatellite markers in target organisms. A whole genome sequence and its annotation also facilitate identification of markers for causative mutations. The aim of this study is to establish hundreds of microsatellite markers and to develop an integrative cynomolgus macaque genome database with a variety of datasets including marker and gene information that will be useful for further genetic analyses in this species. RESULTS We investigated the level of polymorphisms in cynomolgus monkeys for 671 microsatellite markers that are covered by our established Bacterial Artificial Chromosome (BAC) clones. Four hundred and ninety-nine (74.4%) of the markers were found to be polymorphic using standard PCR analysis. The average number of alleles and average expected heterozygosity at these polymorphic loci in ten cynomolgus macaques were 8.20 and 0.75, respectively. CONCLUSION BAC clones and novel microsatellite markers were assigned to the rhesus genome sequence and linked with our cynomolgus macaque cDNA database (QFbase). Our novel microsatellite marker set and genomic database will be valuable integrative resources in analyzing genetic disorders in cynomolgus macaques.
Collapse
Affiliation(s)
- Atsunori Higashino
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Naoki Osada
- Department of Biomedical Resources, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yumiko Suto
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, 2-1-67 Tatsumi, Koto-ku, Tokyo 135-8521, Japan
| | - Makoto Hirata
- Department of Biomedical Resources, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yosuke Kameoka
- Department of Biomedical Resources, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ichiro Takahashi
- Department of Biomedical Resources, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Keiji Terao
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| |
Collapse
|
60
|
Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet 2009; 5:e1000471. [PMID: 19424416 PMCID: PMC2669884 DOI: 10.1371/journal.pgen.1000471] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 04/07/2009] [Indexed: 11/19/2022] Open
Abstract
Selection acting on genomic functional elements can be detected by its indirect effects on population diversity at linked neutral sites. To illuminate the selective forces that shaped hominid evolution, we analyzed the genomic distributions of human polymorphisms and sequence differences among five primate species relative to the locations of conserved sequence features. Neutral sequence diversity in human and ancestral hominid populations is substantially reduced near such features, resulting in a surprisingly large genome average diversity reduction due to selection of 19-26% on the autosomes and 12-40% on the X chromosome. The overall trends are broadly consistent with "background selection" or hitchhiking in ancestral populations acting to remove deleterious variants. Average selection is much stronger on exonic (both protein-coding and untranslated) conserved features than non-exonic features. Long term selection, rather than complex speciation scenarios, explains the large intragenomic variation in human/chimpanzee divergence. Our analyses reveal a dominant role for selection in shaping genomic diversity and divergence patterns, clarify hominid evolution, and provide a baseline for investigating specific selective events.
Collapse
|
61
|
Hassold T, Hansen T, Hunt P, VandeVoort C. Cytological studies of recombination in rhesus males. Cytogenet Genome Res 2009; 124:132-8. [PMID: 19420925 DOI: 10.1159/000207519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2008] [Indexed: 01/04/2023] Open
Abstract
An immunofluorescence approach was used to directly examine meiotic recombination events in 483 pachytene spermatocytes from 11 male rhesus monkeys. Specifically, we examined the nuclear localization patterns of the DNA mismatch repair protein MLH1, known from analyses of other mammalian species to be a useful marker of meiotic cross-overs. Our results indicated that rhesus pachytene spermatocytes contain approximately 40 cross-overs per cell, corresponding to about one cross-over per chromosome. The chromosomal distribution of these exchanges was consistent with data from human and mouse males but, surprisingly, the overall number of foci was lower, and the number of 'exchangeless' bivalents higher, than reported for either humans or mice.
Collapse
Affiliation(s)
- T Hassold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | | | |
Collapse
|
62
|
|
63
|
Raveendran M, Tardif S, Ross CN, Austad SN, Harris RA, Milosavljevic A, Rogers J. Polymorphic microsatellite loci for the common marmoset (Callithrix jacchus) designed using a cost- and time-efficient method. Am J Primatol 2008; 70:906-10. [PMID: 18561252 DOI: 10.1002/ajp.20581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a cost- and time-efficient method for designing new microsatellite markers in any species with substantial genomic DNA sequence data available. Using this technique, we report 14 new polymorphic dinucleotide microsatellite loci isolated from the common marmoset. The relative yield of new polymorphisms was higher with less labor than described in previous marmoset studies. Of 20 loci initially evaluated, 14 were polymorphic and amplified reliably (70% success rate). The number of alleles ranged from 3 to 9 with heterozygosity varying from 0.48 to 0.83.
Collapse
Affiliation(s)
- M Raveendran
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA.
| | | | | | | | | | | | | |
Collapse
|
64
|
Refinement of macaque synteny arrangement with respect to the official rheMac2 macaque sequence assembly. Chromosome Res 2008; 16:977-85. [PMID: 18841486 DOI: 10.1007/s10577-008-1255-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
We have compared the synteny block organization of the official macaque genome sequence assembly (Jan. 2006; rheMac2) with an independent assembly that used a molecular cytogenetic approach. The mapping of four synteny segments, ranging in size from 4 Mb to 24 Mb, was found to be inconsistent between the two datasets. We specifically investigated these discrepancies by appropriate co-hybridization FISH experiments with validated reference probes located outside the area under study. We found that in the macaque rheMac2 release three synteny segments were wrongly mapped and one segment was incorrectly oriented.
Collapse
|
65
|
Münch C, Kirsch S, Fernandes AMG, Schempp W. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids. BMC Evol Biol 2008; 8:269. [PMID: 18831734 PMCID: PMC2566985 DOI: 10.1186/1471-2148-8-269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 10/02/2008] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Segmental duplications (SDs) are euchromatic portions of genomic DNA (> or = 1 kb) that occur at more than one site within the genome, and typically share a high level of sequence identity (>90%). Approximately 5% of the human genome is composed of such duplicated sequences. Here we report the detailed investigation of CHEK2 duplications. CHEK2 is a multiorgan cancer susceptibility gene encoding a cell cycle checkpoint kinase acting in the DNA-damage response signalling pathway. The continuous presence of the CHEK2 gene in all eukaryotes and its important role in maintaining genome stability prompted us to investigate the duplicative evolution and phylogeny of CHEK2 and its paralogs during anthropoid evolution. RESULTS To study CHEK2 duplicon evolution in anthropoids we applied a combination of comparative FISH and in silico analyses. Our comparative FISH results with a CHEK2 fosmid probe revealed the single-copy status of CHEK2 in New World monkeys, Old World monkeys and gibbons. Whereas a single CHEK2 duplication was detected in orangutan, a multi-site signal pattern indicated a burst of duplication in African great apes and human. Phylogenetic analysis of paralogous and ancestral CHEK2 sequences in human, chimpanzee and rhesus macaque confirmed this burst of duplication, which occurred after the radiation of orangutan and African great apes. In addition, we used inter-species quantitative PCR to determine CHEK2 copy numbers. An amplification of CHEK2 was detected in African great apes and the highest CHEK2 copy number of all analysed species was observed in the human genome. Furthermore, we detected variation in CHEK2 copy numbers within the analysed set of human samples. CONCLUSION Our detailed analysis revealed the highly dynamic nature of CHEK2 duplication during anthropoid evolution. We determined a burst of CHEK2 duplication after the radiation of orangutan and African great apes and identified the highest CHEK2 copy number in human. In conclusion, our analysis of CHEK2 duplicon evolution revealed that SDs contribute to inter-species variation. Furthermore, our qPCR analysis led us to presume CHEK2 copy number variation in human, and molecular diagnostics of the cancer susceptibility gene CHEK2 inside the duplicated region might be hampered by the individual-specific set of duplicons.
Collapse
Affiliation(s)
- Claudia Münch
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacher Str. 33, 79106 Freiburg, Germany
| | - Stefan Kirsch
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacher Str. 33, 79106 Freiburg, Germany
| | - António MG Fernandes
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacher Str. 33, 79106 Freiburg, Germany
| | - Werner Schempp
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacher Str. 33, 79106 Freiburg, Germany
| |
Collapse
|
66
|
A high-resolution radiation hybrid map of rhesus macaque chromosome 5 identifies rearrangements in the genome assembly. Genomics 2008; 92:210-8. [PMID: 18601997 DOI: 10.1016/j.ygeno.2008.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 11/21/2022]
Abstract
A 10,000-rad radiation hybrid (RH) cell panel of the rhesus macaque was generated to construct a comprehensive RH map of chromosome 5. The map represents 218 markers typed in 185 RH clones. The 4846-cR map has an average marker spacing of 798 kb. Alignments of the RH map to macaque and human genome sequences confirm a large inversion and reveal a previously unreported telomeric inversion. The macaque genome sequence indicates small translocations from the ancestral homolog of macaque chromosome 5 to macaque chromosomes 1 and 6. The RH map suggests that these are probably assembly artifacts. Unlike the genome sequence, the RH mapping data indicate the conservation of synteny between macaque chromosome 5 and human chromosome 4. This study shows that the 10,000-rad panel is appropriate for the generation of a high-resolution whole-genome RH map suitable for the verification of the rhesus genome assembly.
Collapse
|
67
|
Kawamoto Y, Kawamoto S, Matsubayashi K, Nozawa K, Watanabe T, Stanley MA, Perwitasari-Farajallah D. Genetic diversity of longtail macaques (Macaca fascicularis) on the island of Mauritius: an assessment of nuclear and mitochondrial DNA polymorphisms. J Med Primatol 2008; 37:45-54. [PMID: 18199072 DOI: 10.1111/j.1600-0684.2007.00225.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individuals from an introduced population of longtail macaques on Mauritius have been extensively used in recent research. This population has low MHC gene diversity, and is thus regarded as a valuable resource for research. METHODS We investigated the genetic diversity of this population using multiple molecular markers located in mitochondrial DNA and microsatellite DNA loci on the autosomes and the Y chromosome. We tested samples from 82 individuals taken from seven study sites. RESULTS AND CONCLUSIONS We found this population to be panmictic, with a low degree of genetic variability. On the basis of an mtDNA phylogeny, we inferred that these macaques' ancestors originated from Java in Asia. Weak gametic disequilibrium was observed, suggesting decay of non-random associations between genomic genes at the time of founding. The results suggest that macaques bred in Mauritius are valuable as model animals for biomedical research because of their genetic homogeneity.
Collapse
Affiliation(s)
- Y Kawamoto
- Primate Research Institute, Kyoto University, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
68
|
Satkoski JA, Malhi R, Kanthaswamy S, Tito R, Malladi V, Smith D. Pyrosequencing as a method for SNP identification in the rhesus macaque (Macaca mulatta). BMC Genomics 2008; 9:256. [PMID: 18510772 PMCID: PMC2443142 DOI: 10.1186/1471-2164-9-256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/29/2008] [Indexed: 11/29/2022] Open
Abstract
Background Rhesus macaques (Macaca mulatta) are the primate most used for biomedical research, but phenotypic differences between Indian-origin and Chinese rhesus macaques have encouraged genetic methods for identifying genetic differences between these two populations. The completion of the rhesus genome has led to the identification of many single nucleotide polymorphisms (SNPs) in this species. These single nucleotide polymorphisms have many advantages over the short tandem repeat (STR) loci currently used to assay genetic variation. However, the number of currently identified polymorphisms is too small for whole genome analysis or studies of quantitative trait loci. To that end, we tested a combination of methods to identify large numbers of high-confidence SNPs, and screen those with high minor allele frequencies (MAF). Results By testing our previously reported single nucleotide polymorphisms, we identified a subset of high-confidence, high-MAF polymorphisms. Resequencing revealed a large number of regionally specific SNPs not identified through a single pyrosequencing run. By resequencing a pooled sample of four individuals, we reliably identified loci with a MAF of at least 12.5%. Finally, we found that when applied to a larger, geographically variable sample of rhesus, a large proportion of our loci were variable in both populations, and very few loci were ancestry informative. Despite this fact, the SNP loci were more effective at discriminating Indian and Chinese rhesus than STR loci. Conclusion Pyrosequencing and pooled resequencing are viable methods for the identification of high-MAF SNP loci in rhesus macaques. These SNP loci are appropriate for screening both the inter- and intra-population genetic variation.
Collapse
Affiliation(s)
- Jessica A Satkoski
- Department of Anthropology, University of California-Davis, One Shields Avenue, Davis, CA, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Kirsch S, Münch C, Jiang Z, Cheng Z, Chen L, Batz C, Eichler EE, Schempp W. Evolutionary dynamics of segmental duplications from human Y-chromosomal euchromatin/heterochromatin transition regions. Genome Res 2008; 18:1030-42. [PMID: 18445620 DOI: 10.1101/gr.076711.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human chromosomal regions enriched in segmental duplications are subject to extensive genomic reorganization. Such regions are particularly informative for illuminating the evolutionary history of a given chromosome. We have analyzed 866 kb of Y-chromosomal non-palindromic segmental duplications delineating four euchromatin/heterochromatin transition regions (Yp11.2/Yp11.1, Yq11.1/Yq11.21, Yq11.23/Yq12, and Yq12/PAR2). Several computational methods were applied to decipher the segmental duplication architecture and identify the ancestral origin of the 41 different duplicons. Combining computational and comparative FISH analysis, we reconstruct the evolutionary history of these regions. Our analysis indicates a continuous process of transposition of duplicated sequences onto the evolving higher primate Y chromosome, providing unique insights into the development of species-specific Y-chromosomal and autosomal duplicons. Phylogenetic sequence comparisons show that duplicons of the human Yp11.2/Yp11.1 region were already present in the macaque-human ancestor as multiple paralogs located predominantly in subtelomeric regions. In contrast, duplicons from the Yq11.1/Yq11.21, Yq11.23/Yq12, and Yq12/PAR2 regions show no evidence of duplication in rhesus macaque, but map to the pericentromeric regions in chimpanzee and human. This suggests an evolutionary shift in the direction of duplicative transposition events from subtelomeric in Old World monkeys to pericentromeric in the human/ape lineage. Extensive chromosomal relocation of autosomal-duplicated sequences from euchromatin/heterochromatin transition regions to interstitial regions as demonstrated on the pygmy chimpanzee Y chromosome support a model in which substantial reorganization and amplification of duplicated sequences may contribute to speciation.
Collapse
Affiliation(s)
- Stefan Kirsch
- Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
70
|
|
71
|
Bullaughey K, Przeworski M, Coop G. No effect of recombination on the efficacy of natural selection in primates. Genome Res 2008; 18:544-54. [PMID: 18199888 DOI: 10.1101/gr.071548.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Population genetic theory suggests that natural selection should be less effective in regions of low recombination, potentially leading to differences in rates of adaptation among recombination environments. To date, this prediction has mainly been tested in Drosophila, with somewhat conflicting results. We investigated the association between human recombination rates and adaptation in primates, by considering rates of protein evolution (measured by d(N)/d(S)) between human, chimpanzee, and rhesus macaque. We found no correlation between either broad- or fine-scale rates of recombination and rates of protein evolution, once GC content is taken into account. Moreover, genes in regions of very low recombination, which are expected to show the most pronounced reduction in the efficacy of selection, do not evolve at a different rate than other genes. Thus, there is no evidence for differences in the efficacy of selection across recombinational environments. An interesting implication is that indirect selection for recombination modifiers has probably been a weak force in primate evolution.
Collapse
Affiliation(s)
- Kevin Bullaughey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
72
|
Dighe V, Clepper L, Pedersen D, Byrne J, Ferguson B, Gokhale S, Penedo MCT, Wolf D, Mitalipov S. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 2008; 26:756-66. [PMID: 18192229 DOI: 10.1634/stemcells.2007-0869] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monoparental parthenotes represent a potential source of histocompatible stem cells that should be isogenic with the oocyte donor and therefore suitable for use in cell or tissue replacement therapy. We generated five rhesus monkey parthenogenetic embryonic stem cell (PESC) lines with stable, diploid female karyotypes that were morphologically indistinguishable from biparental controls, expressed key pluripotent markers, and generated cell derivatives representative of all three germ layers following in vivo and in vitro differentiation. Interestingly, high levels of heterozygosity were observed at the majority of loci that were polymorphic in the oocyte donors. Some PESC lines were also heterozygous in the major histocompatibility complex region, carrying haplotypes identical to those of the egg donor females. Expression analysis revealed transcripts from some imprinted genes that are normally expressed from only the paternal allele. These results indicate that limitations accompanying the potential use of PESC-derived phenotypes in regenerative medicine, including aberrant genomic imprinting and high levels of homozygosity, are cell line-dependent and not always present. PESC lines were derived in high enough yields to be practicable, and their derivatives are suitable for autologous transplantation into oocyte donors or could be used to establish a bank of histocompatible cell lines for a broad spectrum of patients.
Collapse
Affiliation(s)
- Vikas Dighe
- Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Street SL, Kyes RC, Grant R, Ferguson B. Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. BMC Genomics 2007; 8:480. [PMID: 18166133 PMCID: PMC2248198 DOI: 10.1186/1471-2164-8-480] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 12/31/2007] [Indexed: 11/17/2022] Open
Abstract
Background Macaca fascicularis (cynomolgus or longtail macaques) is the most commonly used non-human primate in biomedical research. Little is known about the genomic variation in cynomolgus macaques or how the sequence variants compare to those of the well-studied related species, Macaca mulatta (rhesus macaque). Previously we identified single nucleotide polymorphisms (SNPs) in portions of 94 rhesus macaque genes and reported that Indian and Chinese rhesus had largely different SNPs. Here we identify SNPs from some of the same genomic regions of cynomolgus macaques (from Indochina, Indonesia, Mauritius and the Philippines) and compare them to the SNPs found in rhesus. Results We sequenced a portion of 10 genes in 20 cynomolgus macaques. We identified 69 SNPs in these regions, compared with 71 SNPs found in the same genomic regions of 20 Indian and Chinese rhesus macaques. Thirty six (52%) of the M. fascicularis SNPs were overlapping in both species. The majority (70%) of the SNPs found in both Chinese and Indian rhesus macaque populations were also present in M. fascicularis. Of the SNPs previously found in a single rhesus population, 38% (Indian) and 44% (Chinese) were also identified in cynomolgus macaques. In an alternative approach, we genotyped 100 cynomolgus DNAs using a rhesus macaque SNP array representing 53 genes and found that 51% (29/57) of the rhesus SNPs were present in M. fascicularis. Comparisons of SNP profiles from cynomolgus macaques imported from breeding centers in China (where M. fascicularis are not native) showed they were similar to those from Indochina. Conclusion This study demonstrates a surprisingly high conservation of SNPs between M. fascicularis and M. mulatta, suggesting that the relationship of these two species is closer than that suggested by morphological and mitochondrial DNA analysis alone. These findings indicate that SNP discovery efforts in either species will generate useful resources for both macaque species. Identification of SNPs that are unique to regional populations of cynomolgus macaques indicates that location-specific SNPs could be used to distinguish monkeys of uncertain origin. As an example, cynomolgus macaques obtained from 2 different breeding centers in China were shown to have Indochinese ancestry.
Collapse
Affiliation(s)
- Summer L Street
- Genetics Research and Informatics Program, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
74
|
Wilson ME, Kinkead B. Gene-environment interactions, not neonatal growth hormone deficiency, time puberty in female rhesus monkeys. Biol Reprod 2007; 78:736-43. [PMID: 18160679 DOI: 10.1095/biolreprod.107.065953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The factors that influence the timing of puberty and the onset of adult fertility are poorly understood. While focus on the juvenile period has provided insights into how growth-related cues affect pubertal timing, growth velocity during infancy that is sustained into the juvenile period may be important. On the other hand, social factors, specifically exposure to psychosocial stressors, can delay sexual maturation, possibly by altering growth velocities during development. Using female rhesus monkeys, the present study used a prospective analysis to determine how neonatal growth hormone (GH) inhibition with a sandostatin analog or suppression of the pituitary-gonadal axis with a GnRH analog affected growth and sexual maturation. A separate retrospective analysis was done assessing the effects of social dominance status during development on pubertal timing. Because a specific polymorphism in the gene encoding the serotonin (5HT) reuptake transporter increases vulnerability to psychosocial stressors, females were also genotyped and were then classified as socially dominant, having both alleles for the long promoter variant or having at least one allele for the short promoter variant, or as socially subordinate, having the long variant or having the short variant. Neonatal treatments were not balanced for social status or genotype, so analyses were performed separately. Although the neonatal treatments reduced GH secretion postnatally and through the juvenile period, neither growth nor sexual maturation was affected. In contrast, the retrospective analysis showed sexual maturation was delayed significantly in subordinate females carrying at least one allele of the short promoter variant in the gene encoding the 5HT reuptake transporter, and this delay was associated with reduced GH and leptin secretion during the juvenile phase but not with differences in growth velocities from birth. These data suggest that decreased neonatal GH secretion does not adversely affect sexual maturation, but that polymorphisms in the gene encoding the 5HT transporter modulate the adverse consequences of social subordination on the timing of puberty in female rhesus monkeys.
Collapse
Affiliation(s)
- Mark E Wilson
- Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
75
|
Cram DS, Song B, Trounson AO. Genotyping of Rhesus SCNT pluripotent stem cell lines. Nature 2007; 450:E12-4. [PMID: 18004280 DOI: 10.1038/nature06456] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/06/2007] [Indexed: 11/09/2022]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes has emerged as a technique that can be used to derive mouse embryonic stem cell lines with defined genotypes. In this issue Byrne et al. report the derivation of two SCNT Rhesus macaca male stem cell lines designated CRES-1 and CRES-2. Molecular studies detailed in their paper provides supporting evidence that the chromosome complement of CRES-1 and CRES-2 was genetically identical to the male cell donor nucleus and that the mitochondrial DNA originated from different recipient oocytes. In this validation paper, we independently confirm that both stem cell lines were indeed derived by SCNT.
Collapse
Affiliation(s)
- David S Cram
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
76
|
Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME. Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 2007; 93:807-19. [PMID: 18190935 DOI: 10.1016/j.physbeh.2007.11.042] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/27/2007] [Accepted: 11/26/2007] [Indexed: 02/05/2023]
Abstract
Individuals vary substantially in their vulnerability to physical and psychosocial stressors. The causes of such variation in susceptibility to stress are poorly understood, but are thought to relate in part to genetic factors. The present study evaluated the extent to which polymorphisms in the gene encoding the serotonin reuptake transporter (5HTTLPR or SERT) modulated physiologic responses to the imposition of psychosocial stress (social reorganization and subordinate social status) in female rhesus monkeys. Forty females, drawn from the middle ranking genealogies of several large social groups, were reorganized into eight groups containing 5 monkeys each; four groups were comprised entirely of animals homogeneous for the long promoter variant in the SERT gene (l/l), while the other four groups had monkeys with at least one allele of the short promoter variant (l/s or s/s). Females were sequentially introduced into these new groups in random order and dominance ranks were established within several days. During the ensuing 6 weeks, dominant monkeys exhibited elevated rates of aggression while subordinates displayed high rates of submission. Notably, females with the s-variant SERT genotype, collapsed across social status positions, exhibited the highest overall rates of both aggression and submission. Although neither social status nor SERT genotype influenced morning cortisol concentrations, glucocorticoid negative feedback was reduced significantly in subordinate compared to dominant females irrespective of genotype. All animals lost weight and abdominal fat across the experiment. However, decreases were greatest in subordinates, regardless of genotype, and least in dominant females with the l/l genotype. Serum concentrations of insulin, glucose, and ghrelin decreased significantly during the group formation process, effects that were independent of genotype or social status. In contrast, social status and genotype interacted to influence changes in serum concentrations of leptin and triiodothyronine (T3), as dominant, l/l females had the highest levels while subordinate s-variant females had the lowest levels. The order in which a female was introduced to her group generally predicted her eventual social rank. However, rank was additionally predicted by pre-experimental T3 and abdominal fat values, but only in the l/l animals. While these findings must be replicated with a larger sample size, the data suggest that the s-variant SERT genotype confers increased vulnerability to the adverse effects of psychosocial stress associated with subordinate status while the l/l genotype benefits the most from the absence of stress conferred by dominant social status. These findings suggest that genetic factors modify the responses of monkeys to social subordination and perhaps other psychosocial stressors.
Collapse
Affiliation(s)
- Holly Jarrell
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University, USA
| | | | | | | | | | | |
Collapse
|
77
|
Rogers J, Shelton SE, Shelledy W, Garcia R, Kalin NH. Genetic influences on behavioral inhibition and anxiety in juvenile rhesus macaques. GENES BRAIN AND BEHAVIOR 2007; 7:463-9. [PMID: 18045243 DOI: 10.1111/j.1601-183x.2007.00381.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In humans and other animals, behavioral responses to threatening stimuli are an important component of temperament. Among children, extreme behavioral inhibition elicited by novel situations or strangers predicts the subsequent development of anxiety disorders and depression. Genetic differences among children are known to affect risk of developing behavioral inhibition and anxiety, but a more detailed understanding of genetic influences on susceptibility is needed. Nonhuman primates provide valuable models for studying the mechanisms underlying human behavior. Individual differences in threat-induced behavioral inhibition (freezing behavior) in young rhesus monkeys are stable over time and reflect individual levels of anxiety. This study used the well-established human intruder paradigm to elicit threat-induced freezing behavior and other behavioral responses in 285 young pedigreed rhesus monkeys. We examined the overall influence of quantitative genetic variation and tested the specific effect of the serotonin transporter promoter repeat polymorphism. Quantitative genetic analyses indicated that the residual heritability of freezing duration (behavioral inhibition) is h(2) = 0.384 (P = 0.012) and of 'orienting to the intruder' (vigilance) is h(2) = 0.908 (P = 0.00001). Duration of locomotion and hostility and frequency of cooing were not significantly heritable. The serotonin transporter polymorphism showed no significant effect on either freezing or orienting to the intruder. Our results suggest that this species could be used for detailed studies of genetic mechanisms influencing extreme behavioral inhibition, including the identification of specific genes that are involved in predisposing individuals to such behavior.
Collapse
Affiliation(s)
- J Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research and Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| | | | | | | | | |
Collapse
|
78
|
Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 2007; 450:497-502. [PMID: 18004281 DOI: 10.1038/nature06357] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/09/2007] [Indexed: 01/12/2023]
Abstract
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Collapse
|
79
|
Freimer NB, Service SK, Ophoff RA, Jasinska AJ, McKee K, Villeneuve A, Belisle A, Bailey JN, Breidenthal SE, Jorgensen MJ, Mann JJ, Cantor RM, Dewar K, Fairbanks LA. A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species. Proc Natl Acad Sci U S A 2007; 104:15811-6. [PMID: 17884980 PMCID: PMC1987389 DOI: 10.1073/pnas.0707640104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Indexed: 12/20/2022] Open
Abstract
Non-human primates (NHP) provide crucial research models. Their strong similarities to humans make them particularly valuable for understanding complex behavioral traits and brain structure and function. We report here the genetic mapping of an NHP nervous system biologic trait, the cerebrospinal fluid (CSF) concentration of the dopamine metabolite homovanillic acid (HVA), in an extended inbred vervet monkey (Chlorocebus aethiops sabaeus) pedigree. CSF HVA is an index of CNS dopamine activity, which is hypothesized to contribute substantially to behavioral variations in NHP and humans. For quantitative trait locus (QTL) mapping, we carried out a two-stage procedure. We first scanned the genome using a first-generation genetic map of short tandem repeat markers. Subsequently, using >100 SNPs within the most promising region identified by the genome scan, we mapped a QTL for CSF HVA at a genome-wide level of significance (peak logarithm of odds score >4) to a narrow well delineated interval (<10 Mb). The SNP discovery exploited conserved segments between human and rhesus macaque reference genome sequences. Our findings demonstrate the potential of using existing primate reference genome sequences for designing high-resolution genetic analyses applicable across a wide range of NHP species, including the many for which full genome sequences are not yet available. Leveraging genomic information from sequenced to nonsequenced species should enable the utilization of the full range of NHP diversity in behavior and disease susceptibility to determine the genetic basis of specific biological and behavioral traits.
Collapse
Affiliation(s)
- Nelson B Freimer
- Center for Neurobehavioral Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kawamoto Y, Tomari KI, Kawai S, Kawamoto S. Genetics of the Shimokita macaque population suggest an ancient bottleneck. Primates 2007; 49:32-40. [PMID: 17646922 DOI: 10.1007/s10329-007-0057-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
The macaque population of the Shimokita Peninsula represents the northernmost distribution of this species and is isolated from other populations in the Tohoku region of Japan. A previous protein-based study revealed a high level of genetic variability in this population and considerable differentiation from other populations. In order to reassess the genetic features of the Shimokita macaques, we examined 11 autosomal microsatellite loci and three Y chromosomal microsatellite loci. We observed considerable differentiation from other Japanese populations of macaques, but in contrast to the previous results, we observed significantly lower genetic variability in this population. There was a weak indication of a population bottleneck, suggesting a decay over time from an excess of heterozygotes that might be expected in the initial stages of a bottleneck. This may indicate that an ancient bottleneck occurred during the warm period after the last glacial period rather than a recent bottleneck due to hunting in modern times. The frequencies of private alleles were exceptionally high in the Shimokita population, suggesting that the difference in variability as determined in various studies was due to accidental sampling of marker loci with low power to resolve genetic variations in the protein-based studies. The assessments of interpopulation differentiation as determined using autosomal and Y chromosomal markers were highly correlated, and using both types of markers the Shimokita population was found to be the most differentiated of the study populations, probably due to infrequent gene flow with surrounding populations.
Collapse
Affiliation(s)
- Yoshi Kawamoto
- Population Genetics Section, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, 484-8506, Japan,
| | | | | | | |
Collapse
|
81
|
Jasinska AJ, Service S, Levinson M, Slaten E, Lee O, Sobel E, Fairbanks LA, Bailey JN, Jorgensen MJ, Breidenthal SE, Dewar K, Hudson TJ, Palmour R, Freimer NB, Ophoff RA. A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus). Mamm Genome 2007; 18:347-60. [PMID: 17629771 DOI: 10.1007/s00335-007-9026-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/30/2022]
Abstract
The spectacular progress in genomics increasingly highlights the importance of comparative biology in biomedical research. In particular, nonhuman primates, as model systems, provide a crucial intermediate between humans and mice. The close similarities between humans and other primates are stimulating primate studies in virtually every area of biomedical research, including development, anatomy, physiology, immunology, and behavior. The vervet monkey (Chlorocebus aethiops sabaeus) is an important model for studying human diseases and complex traits, especially behavior. We have developed a vervet genetic linkage map to enable mapping complex traits in this model organism and facilitate comparative genomic analysis between vervet and other primates. Here we report construction of an initial genetic map built with about 360 human orthologous short tandem repeats (STRs) that were genotyped in 434 members of an extended vervet pedigree. The map includes 226 markers mapped in a unique order with a resolution of 9.8 Kosambi centimorgans (cM) in the vervet monkey genome, and with a total length (including all 360 markers) of 2726 cM. At least one complex and 11 simple rearrangements in marker order distinguish vervet chromosomes from human homologs. While inversions and insertions can explain a similar number of changes in marker order between vervet and rhesus homologs, mostly inversions are observed when vervet chromosome organization is compared to that in human and chimpanzee. Our results support the notion that large inversions played a less prominent role in the evolution within the group of the Old World monkeys compared to the human and chimpanzee lineages.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Cardone MF, Lomiento M, Teti MG, Misceo D, Roberto R, Capozzi O, D'Addabbo P, Ventura M, Rocchi M, Archidiacono N. Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini. Genomics 2007; 90:35-43. [PMID: 17490852 DOI: 10.1016/j.ygeno.2007.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/14/2007] [Accepted: 01/18/2007] [Indexed: 11/30/2022]
Abstract
Panels of BAC clones used in FISH experiments allow a detailed definition of chromosomal marker arrangement and orientation during evolution. This approach has disclosed the centromere repositioning phenomenon, consisting in the activation of a novel, fully functional centromere in an ectopic location, concomitant with the inactivation of the old centromere. In this study, appropriate panels of BAC clones were used to track the chromosome 11 evolutionary history in primates and nonprimate boreoeutherian mammals. Chromosome 11 synteny was found to be highly conserved in both primate and boreoeutherian mammalian ancestors. Amazingly, we detected four centromere repositioning events in primates (in Old World monkeys, in gibbons, in orangutans, and in the Homo-Pan-Gorilla (H-P-G) clade ancestor), and one in Equidae. Both H-P-G and Lar gibbon novel centromeres were flanked by large duplicons with high sequence similarity. Outgroup species analysis revealed that this duplicon was absent in phylogenetically more distant primates. The chromosome 11 ancestral centromere was probably located near the HSA11q telomere. The domain of this inactivated centromere, in humans, is almost devoid of segmental duplications. An inversion occurred in chromosome 11 in the common ancestor of H-P-G. A large duplicon, again absent in outgroup species, was found located adjacent to the inversion breakpoints. In Hominoidea, almost all the five largest duplicons of this chromosome appeared involved in significant evolutionary architectural changes.
Collapse
|
83
|
Harris RA, Rogers J, Milosavljevic A. Human-specific changes of genome structure detected by genomic triangulation. Science 2007; 316:235-7. [PMID: 17431168 DOI: 10.1126/science.1139477] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Knowledge of the rhesus macaque genome sequence enables reconstruction of the ancestral state of the human genome before the divergence of chimpanzees. However, the draft quality of nonhuman primate genome assemblies challenges the ability of current methods to detect insertions, deletions, and copy-number variations between humans, chimpanzees, and rhesus macaques and hinders the identification of evolutionary changes between these species. Because of the abundance of segmental duplications, genome comparisons require the integration of genomic assemblies and data from large-insert clones, linkage maps, and radiation hybrid maps. With genomic triangulation, an integrative method that reconstructs ancestral states and the structural evolution of genomes, we identified 130 human-specific breakpoints in genome structure due to rearrangements at an intermediate scale (10 kilobases to 4 megabases), including 64 insertions affecting 58 genes. Comparison with a human structural polymorphism database indicates that many of the rearrangements are polymorphic.
Collapse
Affiliation(s)
- R A Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
84
|
Hernandez RD, Hubisz MJ, Wheeler DA, Smith DG, Ferguson B, Rogers J, Nazareth L, Indap A, Bourquin T, McPherson J, Muzny D, Gibbs R, Nielsen R, Bustamante CD. Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. Science 2007; 316:240-3. [PMID: 17431170 DOI: 10.1126/science.1140462] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To understand the demographic history of rhesus macaques (Macaca mulatta) and document the extent of linkage disequilibrium (LD) in the genome, we partially resequenced five Encyclopedia of DNA Elements regions in 9 Chinese and 38 captive-born Indian rhesus macaques. Population genetic analyses of the 1467 single-nucleotide polymorphisms discovered suggest that the two populations separated about 162,000 years ago, with the Chinese population tripling in size since then and the Indian population eventually shrinking by a factor of four. Using coalescent simulations, we confirmed that these inferred demographic events explain a much faster decay of LD in Chinese (r(2) approximately 0.15 at 10 kilobases) versus Indian (r(2) approximately 0.52 at 10 kilobases) macaque populations.
Collapse
Affiliation(s)
- Ryan D Hernandez
- Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, Dinh HH, Dugan-Rocha S, Fulton LA, Gabisi RA, Garner TT, Godfrey J, Hawes AC, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Kirkness EF, Cree A, Fowler RG, Lee S, Lewis LR, Li Z, Liu YS, Moore SM, Muzny D, Nazareth LV, Ngo DN, Okwuonu GO, Pai G, Parker D, Paul HA, Pfannkoch C, Pohl CS, Rogers YH, Ruiz SJ, Sabo A, Santibanez J, Schneider BW, Smith SM, Sodergren E, Svatek AF, Utterback TR, Vattathil S, Warren W, White CS, Chinwalla AT, Feng Y, Halpern AL, Hillier LW, Huang X, Minx P, Nelson JO, Pepin KH, Qin X, Sutton GG, Venter E, Walenz BP, Wallis JW, Worley KC, Yang SP, Jones SM, Marra MA, Rocchi M, Schein JE, Baertsch R, Clarke L, Csürös M, Glasscock J, Harris RA, Havlak P, Jackson AR, Jiang H, Liu Y, Messina DN, Shen Y, Song HXZ, Wylie T, Zhang L, Birney E, Han K, Konkel MK, Lee J, Smit AFA, Ullmer B, Wang H, Xing J, Burhans R, Cheng Z, Karro JE, Ma J, Raney B, She X, Cox MJ, Demuth JP, Dumas LJ, Han SG, Hopkins J, Karimpour-Fard A, Kim YH, Pollack JR, Vinar T, Addo-Quaye C, Degenhardt J, Denby A, Hubisz MJ, Indap A, Kosiol C, Lahn BT, Lawson HA, Marklein A, Nielsen R, Vallender EJ, Clark AG, Ferguson B, Hernandez RD, Hirani K, Kehrer-Sawatzki H, Kolb J, Patil S, Pu LL, Ren Y, Smith DG, Wheeler DA, Schenck I, Ball EV, Chen R, Cooper DN, Giardine B, Hsu F, Kent WJ, Lesk A, Nelson DL, O'brien WE, Prüfer K, Stenson PD, Wallace JC, Ke H, Liu XM, Wang P, Xiang AP, Yang F, Barber GP, Haussler D, Karolchik D, Kern AD, Kuhn RM, Smith KE, Zwieg AS. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007; 316:222-34. [PMID: 17431167 DOI: 10.1126/science.1139247] [Citation(s) in RCA: 1002] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
Collapse
|
86
|
Kukekova AV, Trut LN, Oskina IN, Johnson JL, Temnykh SV, Kharlamova AV, Shepeleva DV, Gulievich RG, Shikhevich SG, Graphodatsky AS, Aguirre GD, Acland GM. A meiotic linkage map of the silver fox, aligned and compared to the canine genome. Genes Dev 2007; 17:387-99. [PMID: 17284676 PMCID: PMC1800930 DOI: 10.1101/gr.5893307] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/08/2006] [Indexed: 12/11/2022]
Abstract
A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.
Collapse
Affiliation(s)
- Anna V Kukekova
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Clancy B, Finlay BL, Darlington RB, Anand KJS. Extrapolating brain development from experimental species to humans. Neurotoxicology 2007; 28:931-7. [PMID: 17368774 PMCID: PMC2077812 DOI: 10.1016/j.neuro.2007.01.014] [Citation(s) in RCA: 611] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/23/2007] [Indexed: 11/16/2022]
Abstract
To better understand the neurotoxic effects of diverse hazards on the developing human nervous system, researchers and clinicians rely on data collected from a number of model species that develop and mature at varying rates. We review the methods commonly used to extrapolate the timing of brain development from experimental mammalian species to humans, including morphological comparisons, "rules of thumb" and "event-based" analyses. Most are unavoidably limited in range or detail, many are necessarily restricted to rat/human comparisons, and few can identify brain regions that develop at different rates. We suggest this issue is best addressed using "neuroinformatics", an analysis that combines neuroscience, evolutionary science, statistical modeling and computer science. A current use of this approach relates numeric values assigned to 10 mammalian species and hundreds of empirically derived developing neural events, including specific evolutionary advances in primates. The result is an accessible, online resource (http://www.translatingtime.net/) that can be used to equate dates in the neurodevelopmental literature across laboratory species to humans, predict neurodevelopmental events for which data are lacking in humans, and help to develop clinically relevant experimental models.
Collapse
Affiliation(s)
- Barbara Clancy
- University of Central Arkansas/ University of Arkansas for Medical Sciences Conway, AR UNITED STATES
| | | | | | - KJS Anand
- University of Arkansas for Medical Sciences,
| |
Collapse
|
88
|
Bennett AJ. Gene environment interplay: Nonhuman primate models in the study of resilience and vulnerability. Dev Psychobiol 2007; 50:48-59. [DOI: 10.1002/dev.20263] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
89
|
Abstract
Recombination has essential functions in mammalian meiosis, which impose several constraints on the recombination process. However, recent studies have shown that, in spite of these roles, recombination rates vary tremendously among humans, and show marked differences between humans and closely related species. These findings provide important insights into the determinants of recombination rates and raise new questions about the selective pressures that affect recombination over different genomic scales, with implications for human genetics and evolutionary biology.
Collapse
Affiliation(s)
- Graham Coop
- Department of Human Genetics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
90
|
Kikuchi T, Hara M, Terao K. Development of a microsatellite marker set applicable to genome-wide screening of cynomolgus monkeys (Macaca fascicularis). Primates 2006; 48:140-6. [PMID: 17119865 DOI: 10.1007/s10329-006-0008-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 05/30/2006] [Indexed: 10/23/2022]
Abstract
To develop a microsatellite marker set applicable to genome-wide screening of cynomolgus monkeys (Macaca fascicularis), 148 microsatellite markers were selected from the human genome database. The polymorphisms and inheritance of PCR products were determined by screening twenty unrelated monkeys and by analysis of three families, respectively. As a result, 106 primers (72%) gave PCR products of the size expected for humans and rhesus monkeys. Among these products, polymorphism and single-gene inheritance in cynomolgus monkeys was observed for 66 markers (62%). The average number of alleles at the 66 polymorphic loci was 5.86 (range 2-10), and average heterozygosity was 0.63 (range 0.10-0.88). This is the first report of microsatellite markers for cynomolgus monkeys. Chromosomal mapping of these markers is now in progress.
Collapse
Affiliation(s)
- Toshihiko Kikuchi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1-1 Hachimandai, Tskukuba, Ibaraki 305-0843, Japan
| | | | | |
Collapse
|
91
|
Wojcechowskyj JA, Yant LJ, Wiseman RW, O'Connor SL, O'Connor DH. Control of simian immunodeficiency virus SIVmac239 is not predicted by inheritance of Mamu-B*17-containing haplotypes. J Virol 2006; 81:406-10. [PMID: 17079280 PMCID: PMC1797263 DOI: 10.1128/jvi.01636-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome.
Collapse
Affiliation(s)
- Jason A Wojcechowskyj
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Dr., Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
92
|
Raveendran M, Harris RA, Milosavljevic A, Johnson Z, Shelledy W, Cameron J, Rogers J. Designing new microsatellite markers for linkage and population genetic analyses in rhesus macaques and other nonhuman primates. Genomics 2006; 88:706-710. [PMID: 17010566 DOI: 10.1016/j.ygeno.2006.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
Identification of polymorphic microsatellite loci in nonhuman primates is useful for various biomedical and evolutionary studies of these species. Prior methods for identifying microsatellites in nonhuman primates are inefficient. We describe a new strategy for marker development that uses the available whole genome sequence for rhesus macaques. Fifty-four novel rhesus-derived microsatellites were genotyped in large pedigrees of rhesus monkeys. Linkage analysis was used to place 51 of these loci into the existing rhesus linkage map. In addition, we find that microsatellites identified this way are polymorphic in other Old World monkeys such as baboons. This approach to marker development is more efficient than previous methods and produces polymorphisms with known locations in the rhesus genome assembly. Finally, we propose a nomenclature system that can be used for rhesus-derived microsatellites genotyped in any species or for novel loci derived from the genome sequence of any nonhuman primate.
Collapse
Affiliation(s)
- Muthuswamy Raveendran
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA
| | | | | | - Zach Johnson
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA
| | - Wendy Shelledy
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA
| | - Judy Cameron
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA; Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| |
Collapse
|
93
|
Abstract
Many animal species have been used to model certain aspects of alcohol use and addiction. However, there are complex behavioral and social features of alcohol use disorders that are not easily modeled in animal species. This review considers both the limitations and advantages of using a non-human primate to model alcohol use disorders and discusses how non-human primates can be particularly useful for studying how genetic variants interact with social factors, temperament and alcohol response as motivating factors for alcohol consumption and abstinence. Genetic variants in rhesus macaques (Macaca mulatta) that are functionally equivalent to those increasing addiction vulnerability in humans influence temperament, stress reactivity and alcohol response in addition to voluntary alcohol consumption. Non-human primate models may also have translational value for understanding of how variants within addiction and abuse vulnerability genes influence alcohol-induced neuroadaptation, neuropathology and treatment response.
Collapse
Affiliation(s)
- Christina S Barr
- NIH/NIAAA, Laboratory of Clinical and Translational Studies, Poolesville, MD 20837, USA.
| | | |
Collapse
|