51
|
Colburn TD, Ferguson SK, Holdsworth CT, Craig JC, Musch TI, Poole DC. Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats. J Appl Physiol (1985) 2016; 122:153-160. [PMID: 27789769 DOI: 10.1152/japplphysiol.00367.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise intolerance characteristic of diseases such as chronic heart failure (CHF) and diabetes is associated with reduced nitric oxide (NO) bioavailability from nitric oxide synthase (NOS), resulting in an impaired microvascular O2 driving pressure (Po2mv; O2 delivery/O2 utilization) and metabolic control. Infusions of the potent NO donor sodium nitroprusside augment NO bioavailability yet decrease mean arterial pressure (MAP) thereby reducing its potential efficacy for patient populations. To eliminate or reduce hypotensive sequelae, [Formula: see text] was superfused onto the spinotrapezius muscle. It was hypothesized that local [Formula: see text] administration would elevate resting Po2mv and slow Po2mv kinetics [increased time constant (τ) and mean response time (MRT)] following the onset of muscle contractions without decreasing MAP. In 12 anesthetized male Sprague-Dawley rats, Po2mv of the circulation-intact spinotrapezius muscle was measured by phosphorescence quenching during 180 s of electrically induced twitch contractions (1 Hz) before and after superfusion of sodium nitrite (NaNO2 30 mM). [Formula: see text] superfusion elevated resting Po2mv (control: 28.4 ± 1.1 vs. [Formula: see text]: 31.6 ± 1.2 mmHg; P ≤ 0.05), τ (control: 12.3 ± 1.2 vs. [Formula: see text]: 19.7 ± 2.2 s; P ≤ 0.05), and MRT (control: 19.3 ± 1.9 vs. [Formula: see text]: 25.6 ± 3.3 s; P ≤ 0.05). Importantly, these effects occurred in the absence of any reduction in MAP (103 ± 4 vs. 105 ± 4 mmHg, pre- and postsuperfusion respectively; P > 0.05). These results indicate that [Formula: see text] supplementation delivered to the muscle directly through [Formula: see text] superfusion enhances the blood-myocyte oxygen driving pressure without compromising MAP at rest and following the onset of muscle contraction. This strategy has substantial clinical utility for a range of ischemic conditions. NEW & NOTEWORTHY Ischemic conditions as diverse as chronic heart failure (CHF) and frostbite inflict tissue damage via inadequate O2 delivery. Herein we demonstrate that direct application of sodium nitrite enhances the O2 supply-O2 demand relationship, raising microvascular O2 pressure in healthy skeletal muscle. This therapeutic action of nitrite-derived nitric oxide occurred without inducing systemic hypotension and has the potential to relieve focal ischemia and preserve tissue vitality by enhancing O2 delivery.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - Scott K Ferguson
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and .,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
52
|
Chirinos JA, Zamani P. The Nitrate-Nitrite-NO Pathway and Its Implications for Heart Failure and Preserved Ejection Fraction. Curr Heart Fail Rep 2016; 13:47-59. [PMID: 26792295 DOI: 10.1007/s11897-016-0277-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of exercise intolerance in patients with heart failure and preserved ejection fraction (HFpEF) is likely multifactorial. In addition to cardiac abnormalities (diastolic dysfunction, abnormal contractile reserve, chronotropic incompetence), several peripheral abnormalities are likely to be involved. These include abnormal pulsatile hemodynamics, abnormal arterial vasodilatory responses to exercise, and abnormal peripheral O2 delivery, extraction, and utilization. The nitrate-nitrite-NO pathway is emerging as a potential target to modify key physiologic abnormalities, including late systolic left ventricular (LV) load from arterial wave reflections (which has deleterious short- and long-term consequences for the LV), arterial vasodilatory reserve, muscle O2 delivery, and skeletal muscle mitochondrial function. In a recently completed randomized trial, the administration of a single dose of exogenous inorganic nitrate has been shown to exert various salutary arterial hemodynamic effects, ultimately leading to enhanced aerobic capacity in patients with HFpEF. These effects have the potential for both immediate improvements in exercise tolerance and for long-term "disease-modifying" effects. In this review, we provide an overview of key mechanistic contributors to exercise intolerance in HFpEF, and of the potential therapeutic role of drugs that target the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Hospital of the University of Pennsylvania, Philadelphia, PA, USA. .,Ghent University, Ghent, Belgium.
| | - Payman Zamani
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
53
|
Chatterjee D, Sarkar P, Oszajca M, van Eldik R. Formation of [RuIII(edta)(SNO)]2– in RuIII(edta)-Mediated S-Nitrosylation of Bisulfide Ion. Inorg Chem 2016; 55:5037-40. [DOI: 10.1021/acs.inorgchem.6b00615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Debabrata Chatterjee
- Chemistry and Biomimetics
Group, CSIR-Central Mechanical Engineering Research Institute, M.G.
Avenue, Durgapur 713209, India
| | - Papiya Sarkar
- Chemistry and Biomimetics
Group, CSIR-Central Mechanical Engineering Research Institute, M.G.
Avenue, Durgapur 713209, India
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
- Department of Chemistry and
Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
54
|
Omar SA, Webb AJ, Lundberg JO, Weitzberg E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J Intern Med 2016; 279:315-36. [PMID: 26522443 DOI: 10.1111/joim.12441] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- S A Omar
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A J Webb
- Cardiovascular Division, Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, London, UK
| | - J O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
55
|
Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca2+ in replacement of the natural cofactor Mg2+. Biochim Biophys Acta Gen Subj 2016; 1860:345-53. [DOI: 10.1016/j.bbagen.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
|
56
|
Kwon YM, Delgado M, Zakharov LN, Seda T, Gilbertson JD. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere. Chem Commun (Camb) 2016; 52:11016-9. [DOI: 10.1039/c6cc05962g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reduction of NO2− to NO is achieved with a FePDI complex containing a proton-responsive secondary coordination sphere coupled with redox-active sites.
Collapse
Affiliation(s)
- Yubin M. Kwon
- Department of Chemistry
- Western Washington University
- USA
| | - Mayra Delgado
- Department of Chemistry
- Western Washington University
- USA
| | | | - Takele Seda
- Department of Physics
- Western Washington University
- Bellingham
- USA
| | | |
Collapse
|
57
|
Cardioprotective effects of inorganic nitrate/nitrite in chronic anthracycline cardiotoxicity: Comparison with dexrazoxane. J Mol Cell Cardiol 2015; 91:92-103. [PMID: 26724189 DOI: 10.1016/j.yjmcc.2015.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Abstract
Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive. Hence, in this study, the protective potential of inorganic nitrate and nitrite against chronic ANT cardiotoxicity was investigated, and the results were compared to those using DEX. Chronic cardiotoxicity was induced in rabbits with daunorubicin (DAU). Sodium nitrate (1g/L) was administered daily in drinking water, while sodium nitrite (0.15 or 5mg/kg) or DEX (60mg/kg) was administered parenterally before each DAU dose. Although oral nitrate induced a marked increase in plasma NOx, it showed no improvement in DAU-induced mortality, myocardial damage or heart failure. Instead, the higher nitrite dose reduced the incidence of end-stage cardiotoxicity, prevented related premature deaths and significantly ameliorated several molecular and cellular perturbations induced by DAU, particularly those concerning mitochondria. The latter result was also confirmed in vitro. Nevertheless, inorganic nitrite failed to prevent DAU-induced cardiac dysfunction and molecular remodeling in vivo and failed to overcome the cytotoxicity of DAU to cardiomyocytes in vitro. In contrast, DEX completely prevented all of the investigated molecular, cellular and functional perturbations that were induced by DAU. Our data suggest that the difference in cardioprotective efficacy between DEX and inorganic nitrite may be related to their different abilities to address a recently proposed upstream target for ANT in the heart - topoisomerase IIβ.
Collapse
|
58
|
Dungel P, Perlinger M, Weidinger A, Redl H, Kozlov AV. The cytoprotective effect of nitrite is based on the formation of dinitrosyl iron complexes. Free Radic Biol Med 2015; 89:300-10. [PMID: 26415027 DOI: 10.1016/j.freeradbiomed.2015.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Nitrite protects various organs from ischemia-reperfusion injury by ameliorating mitochondrial dysfunction. Here we provide evidence that this protection is due to the inhibition of iron-mediated oxidative reactions caused by the release of iron ions upon hypoxia. We show in a model of isolated rat liver mitochondria that upon hypoxia, mitochondria reduce nitrite to nitric oxide (NO) in amounts sufficient to inactivate redox-active iron ions by formation of inactive dinitrosyl iron complexes (DNIC). The scavenging of iron ions in turn prevents the oxidative modification of the outer mitochondrial membrane and the release of cytochrome c during reoxygenation. This action of nitrite protects mitochondrial function. The formation of DNIC with nitrite-derived NO could also be confirmed in an ischemia-reperfusion model in liver tissue. Our data suggest that the formation of DNIC is a key mechanism of nitrite-mediated cytoprotection.
Collapse
Affiliation(s)
- Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
| | - Martin Perlinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria.
| |
Collapse
|
59
|
Gonçalves-Rizzi VH, Nascimento RA, Possomato-Vieira JS, Dias-Junior CA. Sodium Nitrite Prevents both Reductions in Circulating Nitric Oxide and Hypertension in 7-Day Lead-Treated Rats. Basic Clin Pharmacol Toxicol 2015; 118:225-30. [DOI: 10.1111/bcpt.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Victor Hugo Gonçalves-Rizzi
- Department of Pharmacology; Biosciences Institute of Botucatu; Sao Paulo State University - UNESP; Botucatu Sao Paulo Brazil
| | - Regina Aparecida Nascimento
- Department of Pharmacology; Biosciences Institute of Botucatu; Sao Paulo State University - UNESP; Botucatu Sao Paulo Brazil
| | - Jose Sergio Possomato-Vieira
- Department of Pharmacology; Biosciences Institute of Botucatu; Sao Paulo State University - UNESP; Botucatu Sao Paulo Brazil
| | - Carlos A. Dias-Junior
- Department of Pharmacology; Biosciences Institute of Botucatu; Sao Paulo State University - UNESP; Botucatu Sao Paulo Brazil
| |
Collapse
|
60
|
Garofalo F, Amelio D, Gattuso A, Cerra MC, Pellegrino D. Cardiac contractility in Antarctic teleost is modulated by nitrite through xanthine oxidase and cytochrome p-450 nitrite reductase. Nitric Oxide 2015; 49:1-7. [PMID: 26045289 DOI: 10.1016/j.niox.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022]
Abstract
In mammalian and non-mammalian vertebrates, nitrite anion, the largest pool of intravascular and tissue nitric oxide storage, represents a key player of many biological processes, including cardiac modulation. As shown by our studies on Antarctic teleosts, nitrite-dependent cardiac regulation is of great relevance also in cold-blooded vertebrates. This study analysed the influence elicited by nitrite on the performance of the perfused beating heart of two Antarctic stenotherm teleosts, the haemoglobinless Chionodraco hamatus (icefish) and the red-blooded Trematomus bernacchii. Since haemoglobin is crucial in nitric oxide homeostasis, the icefish, a naturally occurring genetic knockout for this protein, provides exclusive opportunities to investigate nitric oxide/nitrite signaling. In vivo, nitrite conversion to nitric oxide requires the nitrite reductase activity of xanthine oxidase and cytochrome P-450, thus the involvement of these enzymes was also evaluated. We showed that, in C. hamatus and T. bernacchii, nitrite influenced cardiac performance by inducing a concentration-dependent positive inotropic effect which was unaffected by nitric oxide scavenging by PTIO in C. hamatus, while it was abolished in T. bernacchii. Specific inhibition of xanthine oxidase and cytochrome P-450 revealed, in the two teleosts, that the nitrite-dependent inotropism required the nitrite reductase activity of both enzymes. We also found that xanthine oxidase is more expressed in C. hamatus than in T. bernacchii, while the opposite was observed concerning cytochrome P-450. Results suggested that in the heart of C. hamatus and T. bernacchii, nitrite is an integral physiological source of nitric oxide with important signaling properties, which require the nitrite reductase activity of xanthine oxidase and cytochrome P-450.
Collapse
Affiliation(s)
- Filippo Garofalo
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | - Daniela Amelio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
61
|
Glean AA, Ferguson SK, Holdsworth CT, Colburn TD, Wright JL, Fees AJ, Hageman KS, Poole DC, Musch TI. Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H1354-60. [PMID: 26371165 DOI: 10.1152/ajpheart.00421.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Chronic heart failure (CHF) reduces nitric oxide (NO) bioavailability and impairs skeletal muscle vascular control during exercise. Reduction of NO2 (-) to NO may impact exercise-induced hyperemia, particularly in muscles with pathologically reduced O2 delivery. We tested the hypothesis that NO2 (-) infusion would increase exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats with a preferential effect in muscles composed primarily of type IIb + IId/x fibers. CHF (coronary artery ligation) was induced in adult male Sprague-Dawley rats. After a >21-day recovery, mean arterial pressure (MAP; carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% incline) with and without NO2 (-) infusion. The myocardial infarct size (35 ± 3%) indicated moderate CHF. NO2 (-) infusion increased total hindlimb skeletal muscle VC (CHF: 0.85 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1) and CHF + NO2 (-): 0.93 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1), P < 0.05) without changing MAP (CHF: 123 ± 4 mmHg and CHF + NO2 (-): 120 ± 4 mmHg, P = 0.17). Total hindlimb skeletal muscle BF was not significantly different (CHF: 102 ± 7 and CHF + NO2 (-): 109 ± 7 ml·min(-1)·100 g(-1) ml·min(-1)·100 g(-1), P > 0.05). BF increased in 6 (∼21%) and VC in 8 (∼29%) of the 28 individual muscles and muscle parts. Muscles and muscle portions exhibiting greater BF and VC after NO2 (-) infusion comprised ≥63% type IIb + IId/x muscle fibers. These data demonstrate that NO2 (-) infusion can augment skeletal muscle vascular control during exercise in CHF rats. Given the targeted effects shown herein, a NO2 (-)-based therapy may provide an attractive "needs-based" approach for treatment of the vascular dysfunction in CHF.
Collapse
Affiliation(s)
- Angela A Glean
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Scott K Ferguson
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jennifer L Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Alex J Fees
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Karen S Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Timothy I Musch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
62
|
Waltz P, Escobar D, Botero AM, Zuckerbraun BS. Nitrate/Nitrite as Critical Mediators to Limit Oxidative Injury and Inflammation. Antioxid Redox Signal 2015; 23:328-39. [PMID: 26140517 PMCID: PMC4692126 DOI: 10.1089/ars.2015.6256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) is a critical signaling molecule marked by complex chemistry and varied biological responses depending on the context of the redox environment. In the setting of inflammation, NO can not only contribute to tissue injury and be causative of oxidative damage but can also signal as an adaptive molecule to limit inflammatory signaling in multiple cell types and tissues. RECENT ADVANCES An advance in our understanding of NO biology was the recognition of the nitrate-nitrite-NO axis, whereby nitrate (predominantly from dietary sources) could be converted to nitrite and nitrite could be reduced to NO. CRITICAL ISSUES Intriguingly, the recognition of multiple enzymes that serve as nitrite reductases in the setting of hypoxia or ischemia established the concept of nitrite as a circulating endocrine reservoir of NO, with the selective release of NO at sites that were primed for this reaction. This review highlights the anti-inflammatory roles of nitrite in numerous clinical conditions, including ischemia/reperfusion, transplant, cardiac arrest, and vascular injury, and in gastrointestinal inflammation. FUTURE DIRECTIONS These preclinical and clinical investigations set up further clinical trials and studies that elucidate the endogenous role this pathway plays in protection against inflammatory signaling.
Collapse
Affiliation(s)
- Paul Waltz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Escobar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ana Maria Botero
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian S. Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
63
|
Affourtit C, Bailey SJ, Jones AM, Smallwood MJ, Winyard PG. On the mechanism by which dietary nitrate improves human skeletal muscle function. Front Physiol 2015; 6:211. [PMID: 26283970 PMCID: PMC4518145 DOI: 10.3389/fphys.2015.00211] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favorably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome-both aging-related medical disorders-has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University Plymouth, UK
| | - Stephen J Bailey
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Andrew M Jones
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Miranda J Smallwood
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter Exeter, UK
| | - Paul G Winyard
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter Exeter, UK
| |
Collapse
|
64
|
Baek JH, Zhang X, Williams MC, Hicks W, Buehler PW, D'Agnillo F. Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs. Toxicology 2015; 333:89-99. [PMID: 25891524 DOI: 10.1016/j.tox.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/17/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Methemoglobin-forming drugs, such as sodium nitrite (NaNO2), may exacerbate oxidative toxicity under certain chronic or acute hemolytic settings. In this study, we evaluated markers of renal oxidative stress and injury in guinea pigs exposed to extracellular hemoglobin (Hb) followed by NaNO2 at doses sufficient to simulate clinically relevant acute methemoglobinemia. NaNO2 induced rapid and extensive oxidation of plasma Hb in this model. This was accompanied by increased renal expression of the oxidative response effectors nuclear factor erythroid 2-derived-factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), elevated non-heme iron deposition, lipid peroxidation, interstitial inflammatory cell activation, increased expression of tubular injury markers kidney injury-1 marker (KIM-1) and liver-fatty acid binding protein (L-FABP), podocyte injury, and cell death. Importantly, these indicators of renal oxidative stress and injury were minimal or absent following infusion of Hb or NaNO2 alone. Together, these results suggest that the exposure to NaNO2 in settings associated with increased extracellular Hb may potentiate acute renal toxicity via processes that are independent of NaNO2 induced erythrocyte methemoglobinemia.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Xiaoyuan Zhang
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Matthew C Williams
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Wayne Hicks
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA.
| |
Collapse
|
65
|
Wobst J, Kessler T, Dang TA, Erdmann J, Schunkert H. Role of sGC-dependent NO signalling and myocardial infarction risk. J Mol Med (Berl) 2015; 93:383-94. [PMID: 25733135 DOI: 10.1007/s00109-015-1265-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
The NO/cGMP pathway plays an important role in many physiological functions and pathophysiological conditions. In the last few years, several genetic and functional studies pointed to an underestimated role of this pathway in the development of atherosclerosis. Indeed, several genetic variants of key enzymes modulating the generation of NO and cGMP have been strongly associated with coronary artery disease and myocardial infarction risk. In this review, we aim to place the genomic findings on components of the NO/cGMP pathway, namely endothelial nitric oxide synthase, soluble guanylyl cyclase and phosphodiesterase 5A, in context of preventive and therapeutic strategies for treating atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Jana Wobst
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | | | | | | | | |
Collapse
|
66
|
Development and characterization of an endothelial cell line from the bulbus arteriosus of walleye, Sander vitreus. Comp Biochem Physiol A Mol Integr Physiol 2015; 180:57-67. [DOI: 10.1016/j.cbpa.2014.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/15/2022]
|
67
|
Omar SA, Fok H, Tilgner KD, Nair A, Hunt J, Jiang B, Taylor P, Chowienczyk P, Webb AJ. Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures. Circulation 2015; 131:381-9; discussion 389. [PMID: 25533964 DOI: 10.1161/circulationaha.114.009554] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inorganic nitrite dilates small resistance arterioles via hypoxia-facilitated reduction to vasodilating nitric oxide. The effects of nitrite in human conduit arteries have not been investigated. In contrast to nitrite, organic nitrates are established selective dilators of conduit arteries. METHODS AND RESULTS We examined the effects of local and systemic administration of sodium nitrite on the radial artery (a muscular conduit artery), forearm resistance vessels (forearm blood flow), and systemic hemodynamics in healthy male volunteers (n=43). Intrabrachial sodium nitrite (8.7 μmol/min) increased radial artery diameter by a median of 28.0% (25th and 75th percentiles, 25.7% and 40.1%; P<0.001). Nitrite (0.087-87 μmol/min) displayed conduit artery selectivity similar to that of glyceryl trinitrate (0.013-4.4 nmol/min) over resistance arterioles. Nitrite dose-dependently increased local cGMP production at the dose of 2.6 μmol/min by 1.1 pmol·min(-1)·100 mL(-1) tissue (95% confidence interval, 0.5-1.8). Nitrite-induced radial artery dilation was enhanced by administration of acetazolamide (oral or intra-arterial) and oral raloxifene (P=0.0248, P<0.0001, and P=0.0006, respectively) but was inhibited under hypoxia (P<0.0001) and hyperoxia (P=0.0006) compared with normoxia. Systemic intravenous administration of sodium nitrite (8.7 μmol/min) dilated the radial artery by 10.7% (95% confidence interval, 6.8-14.7) and reduced central systolic blood pressure by 11.6 mm Hg (95% confidence interval, 2.4-20.7), augmentation index, and pulse wave velocity without changing peripheral blood pressure. CONCLUSIONS Nitrite selectively dilates conduit arteries at supraphysiological and near-physiological concentrations via a normoxia-dependent mechanism that is associated with cGMP production and is enhanced by acetazolamide and raloxifene. The selective central blood pressure-lowering effects of nitrite have therapeutic potential to reduce cardiovascular events.
Collapse
Affiliation(s)
- Sami A Omar
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Henry Fok
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Katharina D Tilgner
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Ashok Nair
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Joanne Hunt
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Benyu Jiang
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Paul Taylor
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Phil Chowienczyk
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Andrew J Webb
- From the King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, London, UK (S.A.O., H.F., A.N., J.H., B.J., P.C., A.J.W.); Division of Women's Health, Women's Health Academic Centre, King's College London and King's Health Partners, London, UK (K.D.T., P.T.); Department of Anaesthetics (A.N.), and Biomedical Research Centre (S.A.O., H.F., A.N., J.H., B.J., P.C., A.W.), Guy's & St. Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
68
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
69
|
Maia LB, Pereira V, Mira L, Moura JJG. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 2015; 54:685-710. [PMID: 25537183 DOI: 10.1021/bi500987w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitrite is presently considered a NO "storage form" that can be made available, through its one-electron reduction, to maintain NO formation under hypoxia/anoxia. The molybdoenzymes xanthine oxidase/dehydrogenase (XO/XD) and aldehyde oxidase (AO) are two of the most promising mammalian nitrite reductases, and in this work, we characterized NO formation by rat and human XO/XD and AO. This is the first characterization of human enzymes, and our results support the employment of rat liver enzymes as suitable models of the human counterparts. A comprehensive kinetic characterization of the effect of pH on XO and AO-catalyzed nitrite reduction showed that the enzyme's specificity constant for nitrite increase 8-fold, while the Km(NO2(-)) decrease 6-fold, when the pH decreases from 7.4 to 6.3. These results demonstrate that the ability of XO/AO to trigger NO formation would be greatly enhanced under the acidic conditions characteristic of ischemia. The dioxygen inhibition was quantified, and the Ki(O2) values found (24.3-48.8 μM) suggest that in vivo NO formation would be fine-tuned by dioxygen availability. The potential in vivo relative physiological relevance of XO/XD/AO-dependent pathways of NO formation was evaluated using HepG2 and HMEC cell lines subjected to hypoxia. NO formation by the cells was found to be pH-, nitrite-, and dioxygen-dependent, and the relative contribution of XO/XD plus AO was found to be as high as 50%. Collectively, our results supported the possibility that XO/XD and AO can contribute to NO generation under hypoxia inside a living human cell. Furthermore, the molecular mechanism of XO/AO-catalyzed nitrite reduction was revised.
Collapse
Affiliation(s)
- Luisa B Maia
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
70
|
Dorofeyeva NA, Kotsuruba AV, Mogilnitskaya LA, Malyna AE, Kornelyuk AI, Sagach VF. [ENDOTHELIAL MONOCYTEACTIVATING FACTOR II CANCELS OXIDATIVE STRESS, CONSTITUTIVE NOS UNCOUPLING AND INDUCED VIOLATIONS OF CARDIAC HEMODYNAMICS IN HYPERTENSION (PART II)]. FIZIOLOHICHNYI ZHURNAL (KIEV, UKRAINE : 1994) 2015; 61:11-18. [PMID: 26495731 DOI: 10.15407/fz61.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to investigate the effect of EMAP II on free radical state of the heart and blood vessels, to restore cNOS coupling and cardiac hemodynamics in spontaneously hypertensive rats. It was found that, due to the combined inhibition of oxidative and nitrosative stress, EMAP I quickly restores impaired in hypertension constitutive de novo synthesis of NO by restoring cNOS coupling. Restoration by EMAP II of constitutive de novo synthesis NO abolished cardiac and endothelial dysfunction in spontaneously hypertensive rats. In hypertension, the introduction of EMAP II helped to improve the performance of the pumping function of the heart (stroke volume increased by 18.2 %, cardiac output -22 %), an arterial stiffness decreased by 23.2 %, process of relaxation of the left ventricle improved, due to decreased in 4,7 times myocardial end-diastolic stiffness.
Collapse
|
71
|
Matson EM, Park YJ, Fout AR. Facile nitrite reduction in a non-heme iron system: formation of an iron(III)-oxo. J Am Chem Soc 2014; 136:17398-401. [PMID: 25470029 DOI: 10.1021/ja510615p] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reaction of tetrabutylammonium nitrite with [N(afa(Cy))3Fe(OTf)](OTf) cleanly resulted in the formation of an iron(III)-oxo species, [N(afa(Cy))3Fe(O)](OTf), and NO(g). Formation of NO(g) as a byproduct was confirmed by reaction of the iron(II) starting material with half an equivalent of nitrite, resulting in a mixture of two products, the iron-oxo and an iron-NO species, [N(afa(Cy))3Fe(NO)](OTf)2. Formation of the latter was confirmed through independent synthesis. The results of this study provide insight into the role of hydrogen bonding in the mechanism of nitrite reduction and the binding mode of nitrite in biological heme systems.
Collapse
Affiliation(s)
- Ellen M Matson
- School of Chemical Sciences, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
72
|
Effects of polymorphisms in endothelial nitric oxide synthase and folate metabolizing genes on the concentration of serum nitrate, folate, and plasma total homocysteine after folic acid supplementation: a double-blind crossover study. Nutrition 2014; 31:337-44. [PMID: 25592012 DOI: 10.1016/j.nut.2014.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/12/2014] [Accepted: 08/19/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A number of studies have explored the effects of dietary nitrate on human health. Nitrate in the blood can be recycled to nitric oxide, which is an essential mediator involved in many important biochemical mechanisms. Nitric oxide is also formed in the body from l-arginine by nitric oxide synthase. The aim of this study was to investigate whether genetic polymorphisms in endothelial nitric oxide synthase (eNOS) and genes involved in folate metabolism affect the concentration of serum nitrate, serum folate, and plasma total homocysteine in healthy individuals after folic acid supplementation. METHODS In a randomized double-blind, crossover study, participants were given either folic acid 800 μg/d (n = 52) or placebo (n = 51) for 2 wk. Wash-out period was 2 wk. Fasting blood samples were collected, DNA was extracted by salting-out method and the polymorphisms in eNOS synthase and folate genes were genotyped by polymerase chain reaction methods. Measurement of serum nitrate and plasma total homocysteine (p-tHcy) concentration was done by high-performance liquid chromatography. RESULTS The concentration of serum nitrate did not change in individuals after folic acid supplements (trial 1); however, the concentration of serum nitrate increased in the same individuals after placebo (P = 0.01) (trial 2). The individuals with three polymorphisms in eNOS gene had increased concentration of serum folate and decreased concentration of p-tHcy after folic acid supplementation. Among the seven polymorphisms tested in folate metabolizing genes, serum nitrate concentration was significantly decreased only in DHFR del 19 gene variant. A significant difference in the concentration of serum nitrate was detected among individuals with MTHFR C > T677 polymorphisms. CONCLUSIONS Polymorphisms in eNOS and folate genes affect the concentration of serum folate and p-tHcy but do not have any effect on the concentration of NO3 in healthy individuals after folic acid supplementation.
Collapse
|
73
|
Chatterjee D, Shome S, Jaiswal N, Banerjee P. Nitrite reduction mediated by the complex RuIII(EDTA). Dalton Trans 2014; 43:13596-600. [DOI: 10.1039/c4dt01447b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
74
|
Piell KM, Qipshidze Kelm N, Caroway MP, Aman M, Cole MP. Nitrite treatment rescues cardiac dysfunction in aged mice treated with conjugated linoleic acid. Free Radic Biol Med 2014; 72:66-75. [PMID: 24721151 PMCID: PMC4108078 DOI: 10.1016/j.freeradbiomed.2014.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/11/2014] [Accepted: 03/29/2014] [Indexed: 11/21/2022]
Abstract
Conjugated linoleic acid (cLA) is a commercially available weight-loss supplement that is not currently regulated by the U.S. FDA. Numerous studies suggest that cLA mediates protection against diseases including cancer, diabetes, atherosclerosis, immune function, and obesity. Based upon these reports, it was hypothesized that supplementation with cLA would improve heart function in aged wild-type (WT) mice. At 10 months of age, mice were treated with cLA, nitrite, or the combination of the two. Echocardiograms revealed that cardiac function was decreased in aged compared to young WT mice, as determined by percentage of fractional shortening. Also, contrary to the hypothesis, mice that received cLA (6-week treatment) had significantly worse cardiac function compared to controls. This effect was attenuated when mice were cotreated with cLA and nitrite. Taken together, these results suggest that cLA-mediated cardiac injury can be circumvented by nitrite supplementation in a murine model of aging.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Megan P Caroway
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Masarath Aman
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
75
|
Neuroglobin – recent developments. Biomol Concepts 2014; 5:195-208. [DOI: 10.1515/bmc-2014-0011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/20/2014] [Indexed: 11/15/2022] Open
Abstract
AbstractNeuroglobin (Ngb), a monomeric hexacoordinated heme protein of 17 kDa, was identified in 2000 in the nervous system. Accumulative evidence has proved that Ngb is an endogenous neuroprotective molecule against ischemic/hypoxic insults and oxidative stresses, and in most ischemic conditions, Ngb is up-regulated. The underlying mechanisms, however, are not fully clarified. Here we review the recent experimental findings, mainly focusing on the mechanisms of Ngb’s protection and induction during ischemic/hypoxic conditions, the roles of Ngb in astrocytes and tumors, as well as Ngb’s function in neurite outgrowth.
Collapse
|