51
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
52
|
Tinkering with Osmotically Controlled Transcription Allows Enhanced Production and Excretion of Ectoine and Hydroxyectoine from a Microbial Cell Factory. Appl Environ Microbiol 2018; 84:AEM.01772-17. [PMID: 29101191 DOI: 10.1128/aem.01772-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Ectoine and hydroxyectoine are widely synthesized by members of the Bacteria and a few members of the Archaea as potent osmostress protectants. We have studied the salient features of the osmostress-responsive promoter directing the transcription of the ectoine/hydroxyectoine biosynthetic gene cluster from the plant-root-associated bacterium Pseudomonas stutzeri by transferring it into Escherichia coli, an enterobacterium that does not produce ectoines naturally. Using ect-lacZ reporter fusions, we found that the heterologous ect promoter reacted with exquisite sensitivity in its transcriptional profile to graded increases in sustained high salinity, responded to a true osmotic signal, and required the buildup of an osmotically effective gradient across the cytoplasmic membrane for its induction. The involvement of the -10, -35, and spacer regions of the sigma-70-type ect promoter in setting promoter strength and response to osmotic stress was assessed through site-directed mutagenesis. Moderate changes in the ect promoter sequence that increase its resemblance to housekeeping sigma-70-type promoters of E. coli afforded substantially enhanced expression, both in the absence and in the presence of osmotic stress. Building on this set of ect promoter mutants, we engineered an E. coli chassis strain for the heterologous production of ectoines. This synthetic cell factory lacks the genes for the osmostress-responsive synthesis of trehalose and the compatible solute importers ProP and ProU, and it continuously excretes ectoines into the growth medium. By combining appropriate host strains and different plasmid variants, excretion of ectoine, hydroxyectoine, or a mixture of both compounds was achieved under mild osmotic stress conditions.IMPORTANCE Ectoines are compatible solutes, organic osmolytes that are used by microorganisms to fend off the negative consequences of high environmental osmolarity on cellular physiology. An understanding of the salient features of osmostress-responsive promoters directing the expression of the ectoine/hydroxyectoine biosynthetic gene clusters is lacking. We exploited the ect promoter from an ectoine/hydroxyectoine-producing soil bacterium for such a study by transferring it into a surrogate bacterial host. Despite the fact that E. coli does not synthesize ectoines naturally, the ect promoter retained its exquisitely sensitive osmotic control, indicating that osmoregulation of ect transcription is an inherent feature of the promoter and its flanking sequences. These sequences were narrowed to a 116-bp DNA fragment. Ectoines have interesting commercial applications. Building on data from a site-directed mutagenesis study of the ect promoter, we designed a synthetic cell factory that secretes ectoine, hydroxyectoine, or a mixture of both compounds into the growth medium.
Collapse
|
53
|
Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. BIORESOURCE TECHNOLOGY 2017; 245:1588-1602. [PMID: 28579173 DOI: 10.1016/j.biortech.2017.05.145] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The l-aspartate amino acids (AFAAs) are constituted of l-aspartate, l-lysine, l-methionine, l-threonine and l-isoleucine. Except for l-aspartate, AFAAs are essential amino acids that cannot be synthesized by humans and most farm animals, and thus possess wide applications in food, animal feed, pharmaceutical and cosmetics industries. To date, a number of amino acids, including AFAAs have been industrially produced by microbial fermentation. However, the overall metabolic and regulatory mechanisms of the synthesis of AFAAs and the recent progress on strain construction have rarely been reviewed. Aiming to promote the establishment of strains of Corynebacterium glutamicum and Escherichia coli, the two industrial amino acids producing bacteria, that are capable of producing high titers of AFAAs and derivatives, this paper systematically summarizes the current progress on metabolic engineering manipulations in both central metabolic pathways and AFAA synthesis pathways based on the category of the five-word strain breeding strategies: enter, flow, moderate, block and exit.
Collapse
Affiliation(s)
- Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongbo Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
54
|
Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol 2017; 258:59-68. [DOI: 10.1016/j.jbiotec.2017.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
|
55
|
Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2017; 2:87-96. [PMID: 29062965 PMCID: PMC5637227 DOI: 10.1016/j.synbio.2017.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Collapse
|
56
|
Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, Chen GQ. Semirational Approach for Ultrahigh Poly(3-hydroxybutyrate) Accumulation in Escherichia coli by Combining One-Step Library Construction and High-Throughput Screening. ACS Synth Biol 2016; 5:1308-1317. [PMID: 27133230 DOI: 10.1021/acssynbio.6b00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three genes can influence properties of the final product. Here, we reported a semirational approach for highly efficient PHB pathway optimization in E. coli based on a phbCAB operon cloned from the native producer Ralstonia entropha (R. entropha). Rationally designed ribosomal binding site (RBS) libraries with defined strengths for each of the three genes were constructed based on high or low copy number plasmids in a one-pot reaction by an oligo-linker mediated assembly (OLMA) method. Strains with desired properties were evaluated and selected by three different methodologies, including visual selection, high-throughput screening, and detailed in-depth analysis. Applying this approach, strains accumulating 0%-92% PHB contents in cell dry weight (CDW) were achieved. PHB with various weight-average molecular weights (Mw) of 2.7-6.8 × 106 were also efficiently produced in relatively high contents. These results suggest that the semirational approach combining library design, construction, and proper screening is an efficient way to optimize PHB and other multienzyme pathways.
Collapse
Affiliation(s)
- Teng Li
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianwen Ye
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Shen
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yeqing Zong
- Key
Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejin Zhao
- Key
Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbo Lou
- Key
Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Qiang Chen
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center
for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Huang JF, Liu ZQ, Jin LQ, Tang XL, Shen ZY, Yin HH, Zheng YG. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnol Bioeng 2016; 114:843-851. [PMID: 27723097 DOI: 10.1002/bit.26198] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/08/2022]
Abstract
L-methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over-expression of homoserine O-succinyltransferase MetA together with efflux transporter YjeH, resulting in L-methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L-methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L-ethionine concentration and accumulated L-methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5-fold increase in L-methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2 S2 O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L-methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L-methionine. Biotechnol. Bioeng. 2017;114: 843-851. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian-Feng Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhen-Yang Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
58
|
Czech L, Stöveken N, Bremer E. EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb Cell Fact 2016; 15:126. [PMID: 27439307 PMCID: PMC4955205 DOI: 10.1186/s12934-016-0525-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022] Open
Abstract
Background Ectoine and its derivative 5-hydroxyectoine are cytoprotectants widely synthesized by microorganisms as a defense against the detrimental effects of high osmolarity on cellular physiology and growth. Both ectoines possess the ability to preserve the functionality of proteins, macromolecular complexes, and even entire cells, attributes that led to their description as chemical chaperones. As a consequence, there is growing interest in using ectoines for biotechnological purposes, in skin care, and in medical applications. 5-Hydroxyectoine is synthesized from ectoine through a region- and stereo-specific hydroxylation reaction mediated by the EctD enzyme, a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenases. This chemical modification endows the newly formed 5-hydroxyectoine with either superior or different stress- protecting and stabilizing properties. Microorganisms producing 5-hydroxyectoine typically contain a mixture of both ectoines. We aimed to establish a recombinant microbial cell factory where 5-hydroxyectoine is (i) produced in highly purified form, and (ii) secreted into the growth medium. Results We used an Escherichia coli strain (FF4169) defective in the synthesis of the osmostress protectant trehalose as the chassis for our recombinant cell factory. We expressed in this strain a plasmid-encoded ectD gene from Pseudomonas stutzeri A1501 under the control of the anhydrotetracycline-inducible tet promoter. We chose the ectoine hydroxylase from P. stutzeri A1501 for our cell factory after a careful comparison of the in vivo performance of seven different EctD proteins. In the final set-up of the cell factory, ectoine was provided to salt-stressed cultures of strain FF4169 (pMP41; ectD+). Ectoine was imported into the cells via the osmotically inducible ProP and ProU transport systems, intracellularly converted to 5-hydroxyectoine, which was then almost quantitatively secreted into the growth medium. Experiments with an E. coli mutant lacking all currently known mechanosensitive channels (MscL, MscS, MscK, MscM) revealed that the release of 5-hydroxyectoine under osmotic steady-state conditions occurred independently of these microbial safety valves. In shake-flask experiments, 2.13 g l−1 ectoine (15 mM) was completely converted into 5-hydroxyectoine within 24 h. Conclusions We describe here a recombinant E. coli cell factory for the production and secretion of the chemical chaperone 5-hydroxyectoine free from contaminating ectoine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany. .,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany. .,Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany.
| |
Collapse
|