51
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
52
|
Li N, Zeng W, Xu S, Zhou J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth Syst Biotechnol 2020; 5:81-91. [PMID: 32542205 PMCID: PMC7283098 DOI: 10.1016/j.synbio.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
There are numerous microorganisms in nature capable of synthesizing diverse useful compounds; however, these natural microorganisms are generally inefficient in the production of target products on an industrial scale, relative to either chemical synthesis or extraction methods. To achieve industrial production of useful compounds, these natural microorganisms must undergo a certain degree of mutation or effective fine-tuning strategies. This review describes how to achieve an ideal metabolic fine-tuned process, including static control strategies and dynamic control strategies. The static control strategies mainly focus on various matabolic engineering strategies, including protein engineering, upregulation/downregulation, and combinatrorial control of these metabolic engineering strategies, to enhance the flexibility of their application in fine-tuned metabolic metworks. Then, we focus on the dynamic control strategies for fine-tuned metabolic metworks. The design principles derived would guide us to construct microbial cell factories for various useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
53
|
Wang X, Policarpio L, Prajapati D, Li Z, Zhang H. Developing E. coli-E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis. Metab Eng Commun 2020; 10:e00110. [PMID: 31853442 PMCID: PMC6911970 DOI: 10.1016/j.mec.2019.e00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
Tryptamine is an alkaloid compound with demonstrated bioactivities and is also a precursor molecule to many important hormones and neurotransmitters. The high efficiency biosynthesis of tryptamine from inexpensive and renewable carbon substrates is of great research and application significance. In the present study, a tryptamine biosynthesis pathway was established in a metabolically engineered E. coli-E. coli co-culture. The upstream and downstream strains of the co-culture were dedicated to tryptophan provision and conversion to tryptamine, respectively. The constructed co-culture was cultivated using either glucose or glycerol as carbon source for de novo production of tryptamine. The manipulation of the co-culture strains' inoculation ratio was adapted to balance the biosynthetic strengths of the pathway modules for bioproduction optimization. Moreover, a biosensor-assisted cell selection strategy was adapted to improve the pathway intermediate tryptophan provision by the upstream strain, which further enhanced the tryptamine biosynthesis. The resulting biosensor-assisted modular co-culture produced 194 mg/L tryptamine with a yield of 0.02 g/g glucose using shake flask cultivation. The findings of this work demonstrate that the biosensor-assisted modular co-culture engineering offers a new perspective for conducting microbial biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - Haoran Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|
54
|
Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metab Eng Commun 2020; 10:e00118. [PMID: 31908924 PMCID: PMC6938962 DOI: 10.1016/j.mec.2019.e00118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an increasing demand for carotenoids due to their applications in the food, flavor, pharmaceutical and feed industries, however, the extraction and synthesis of these compounds can be expensive and technically challenging. Microbial production of carotenoids provides an attractive alternative to the negative environmental impacts and cost of chemical synthesis or direct extraction from plants. Metabolic engineering and synthetic biology approaches have been widely utilized to reconstruct and optimize pathways for carotenoid overproduction in microorganisms. This review summarizes the current advances in microbial engineering for carotenoid production and divides the carotenoid biosynthesis building blocks into four distinct metabolic modules: 1) central carbon metabolism, 2) cofactor metabolism, 3) isoprene supplement metabolism and 4) carotenoid biosynthesis. These four modules focus on redirecting carbon flux and optimizing cofactor supplements for isoprene precursors needed for carotenoid synthesis. Future perspectives are also discussed to provide insights into microbial engineering principles for overproduction of carotenoids.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Charles A. Swofford
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| |
Collapse
|
55
|
Xu P. Branch point control at malonyl-CoA node: A computational framework to uncover the design principles of an ideal genetic-metabolic switch. Metab Eng Commun 2020; 10:e00127. [PMID: 32455112 PMCID: PMC7236061 DOI: 10.1016/j.mec.2020.e00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/10/2023] Open
Abstract
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
Collapse
Affiliation(s)
- Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
56
|
Zheng Y, Meng F, Zhu Z, Wei W, Sun Z, Chen J, Yu B, Lou C, Chen GQ. A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts. Nucleic Acids Res 2020; 47:e137. [PMID: 31750522 PMCID: PMC6868347 DOI: 10.1093/nar/gkz785] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Natural organisms have evolved intricate regulatory mechanisms that sense and respond to fluctuating environmental temperatures in a heat- or cold-inducible fashion. Unlike dominant heat-inducible switches, very few cold-inducible genetic switches are available in either natural or engineered systems. Moreover, the available cold-inducible switches still have many shortcomings, including high leaky gene expression, small dynamic range (<10-fold) or broad transition temperature (>10°C). To address these problems, a high-performance cold-inducible switch that can tightly control target gene expression is highly desired. Here, we introduce a tight and fast cold-inducible switch that couples two evolved thermosensitive variants, TFts and TEVts, as well as an additional Mycoplasma florum Lon protease (mf-Lon) to effectively turn-off target gene expression via transcriptional and proteolytic mechanisms. We validated the function of the switch in different culture media and various Escherichia coli strains and demonstrated its tightness by regulating two morphogenetic bacterial genes and expressing three heat-unstable recombinant proteins, respectively. Moreover, the additional protease module enabled the cold-inducible switch to actively remove the pre-existing proteins in slow-growing cells. This work establishes a high-performance cold-inducible system for tight and fast control of gene expression which has great potential for basic research, as well as industrial and biomedical applications.
Collapse
Affiliation(s)
- Yang Zheng
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fankang Meng
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Zihui Zhu
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weijia Wei
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Zhi Sun
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jinchun Chen
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China.,College of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms. Trends Biotechnol 2020; 38:797-810. [PMID: 32359951 DOI: 10.1016/j.tibtech.2020.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/28/2022]
Abstract
Low yield and low titer of natural products are common issues in natural product biosynthesis through microbial cell factories. One effective way to resolve such bottlenecks is to design genetic biosensors to monitor and regulate the biosynthesis of target natural products. In this review, we evaluate the most recent advances in the design of genetic biosensors for natural product biosynthesis in microorganisms. In particular, we examine strategies for selection of genetic parts and construction principles for the design and evaluation of genetic biosensors. We also review the latest applications of transcription factor- and riboswitch-based genetic biosensors in natural product biosynthesis. Lastly, we discuss challenges and solutions in designing genetic biosensors for the biosynthesis of natural products in microorganisms.
Collapse
|
58
|
Marsafari M, Samizadeh H, Rabiei B, Mehrabi A, Koffas M, Xu P. Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnol J 2020; 15:e1900432. [DOI: 10.1002/biot.201900432] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/19/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Monireh Marsafari
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Habibollah Samizadeh
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Babak Rabiei
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | | | - Mattheos Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Peng Xu
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
| |
Collapse
|
59
|
Gao C, Guo L, Ding Q, Hu G, Ye C, Liu J, Chen X, Liu L. Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli. Metab Eng 2020; 60:128-137. [PMID: 32315760 DOI: 10.1016/j.ymben.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Numerous value-added chemicals can be produced using xylan as a feedstock. However, the product yields are limited by low xylan utilization efficiency, as well as by carbon flux competition between biomass production and biosynthesis. Herein, a dynamic consolidated bioprocessing strategy was developed, which coupled xylan utilization and yield optimization modules. Specifically, we achieved the efficient conversion of xylan to valuable chemicals in a fully consolidated manner by optimizing the expression level of xylanases and xylose transporter in the xylan utilization module. Moreover, a cell density-dependent, and Cre-triggered dynamic system that enabled the dynamic decoupling of biosynthesis and biomass production was constructed in the yield optimization module. The final shake flask-scale titers of xylonate, produced through an exogenous pathway, and shikimate, produced through an endogenous pathway, reached 16.85 and 3.2 g L-1, respectively. This study not only provides an efficient microbial platform for the utilization of xylan, but also opens up the possibility for the large-scale production of high value-added chemicals from renewable feedstocks.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
60
|
Giri S, Shitut S, Kost C. Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr Opin Biotechnol 2020; 62:228-238. [DOI: 10.1016/j.copbio.2019.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
|
61
|
Gu Y, Ma J, Zhu Y, Xu P. Refactoring Ehrlich Pathway for High-Yield 2-Phenylethanol Production in Yarrowia lipolytica. ACS Synth Biol 2020; 9:623-633. [PMID: 32134637 PMCID: PMC7308069 DOI: 10.1021/acssynbio.9b00468] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/16/2022]
Abstract
Efficient microbial synthesis of chemicals requires the coordinated supply of precursors and cofactors to maintain cell growth and product formation. Substrates with different entry points into the metabolic network have different energetic and redox statuses. Generally, substrate cofeeding could bypass the lengthy and highly regulated native metabolism and facilitates high carbon conversion rate. Aiming to efficiently synthesize the high-value rose-smell 2-phenylethanol (2-PE) in Y. lipolytica, we analyzed the stoichiometric constraints of the Ehrlich pathway and identified that the selectivity of the Ehrlich pathway and the availability of 2-oxoglutarate are the rate-limiting factors. Stepwise refactoring of the Ehrlich pathway led us to identify the optimal catalytic modules consisting of l-phenylalanine permease, ketoacid aminotransferase, phenylpyruvate decarboxylase, phenylacetaldehyde reductase, and alcohol dehydrogenase. On the other hand, mitochondrial compartmentalization of 2-oxoglutarate inherently creates a bottleneck for efficient assimilation of l-phenylalanine, which limits 2-PE production. To improve 2-oxoglutarate (aKG) trafficking across the mitochondria membrane, we constructed a cytosolic aKG source pathway by coupling a bacterial aconitase with a native isocitrate dehydrogenase (ylIDP2). Additionally, we also engineered dicarboxylic acid transporters to further improve the 2-oxoglutarate availability. Furthermore, by blocking the precursor-competing pathways and mitigating fatty acid synthesis, the engineered strain produced 2669.54 mg/L of 2-PE in shake flasks, a 4.16-fold increase over the starting strain. The carbon conversion yield reaches 0.702 g/g from l-phenylalanine, 95.0% of the theoretical maximal. The reported work expands our ability to harness the Ehrlich pathway for production of high-value aromatics in oleaginous yeast species.
Collapse
Affiliation(s)
- Yang Gu
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of
Education, Jiangnan University, Wuxi 214122, China
| | - Jingbo Ma
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Yonglian Zhu
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of
Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
62
|
Abstract
Microbes adapt their metabolism to take advantage of nutrients in their environment. Such adaptations control specific metabolic pathways to match energetic demands with nutrient availability. Upon depletion of nutrients, rapid pathway recovery is key to release cellular resources required for survival under the new nutritional conditions. Yet, little is known about the regulatory strategies that microbes employ to accelerate pathway recovery in response to nutrient depletion. Using the fatty acid catabolic pathway in Escherichia coli, here, we show that fast recovery can be achieved by rapid release of a transcriptional regulator from a metabolite-sequestered complex. With a combination of mathematical modeling and experiments, we show that recovery dynamics depend critically on the rate of metabolite consumption and the exposure time to nutrients. We constructed strains with rewired transcriptional regulatory architectures that highlight the metabolic benefits of negative autoregulation over constitutive and positive autoregulation. Our results have wide-ranging implications for our understanding of metabolic adaptations, as well as for guiding the design of gene circuitry for synthetic biology and metabolic engineering.IMPORTANCE Rapid metabolic recovery during nutrient shift is critical to microbial survival, cell fitness, and competition among microbiota, yet little is known about the regulatory mechanisms of rapid metabolic recovery. This work demonstrates a previously unknown mechanism where rapid release of a transcriptional regulator from a metabolite-sequestered complex enables fast recovery to nutrient depletion. The work identified key regulatory architectures and parameters that control the speed of recovery, with wide-ranging implications for the understanding of metabolic adaptations as well as synthetic biology and metabolic engineering.
Collapse
|
63
|
Ge C, Sheng H, Chen X, Shen X, Sun X, Yan Y, Wang J, Yuan Q. Quorum Sensing System Used as a Tool in Metabolic Engineering. Biotechnol J 2020; 15:e1900360. [DOI: 10.1002/biot.201900360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/07/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Chang Ge
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Xin Chen
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Yajun Yan
- College of EngineeringThe University of Georgia Athens GA 30605 USA
| | - Jia Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| |
Collapse
|
64
|
Dong X, Li N, Liu Z, Lv X, Shen Y, Li J, Du G, Wang M, Liu L. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto- N-neotetraose Production in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2477-2484. [PMID: 32013418 DOI: 10.1021/acs.jafc.9b07642] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lacto-N-neotetraose (LNnT), one of the oligosaccharides in human milk, has many beneficial effects on infant health. In a recent work, we have constructed a recombinant Bacillus subtilis strain for the production of LNnT. Here, we further improved LNnT production with a xylose-induced clustered regularly interspaced short palindromic repeats interference system. In particular, the expressions of pfkA and pyk genes in the Embden-Meyerhof-Parnas pathway module, zwf gene in the pentose phosphate pathway module, and mnaA gene in the teichoic acid synthesis module were downregulated. The LNnT titer was increased from 1.32 to 1.55 g/L. Furthermore, to improve the conversion efficiency of lacto-N-triose II to LNnT, we knocked out tuaD gene in branch pathway and improved the expression of lgtB gene, resulting in the further increase of LNnT titer to 2.01 g/L. Finally, the addition time and amount of inducer xylose were optimized, and LNnT titer reached 2.30 g/L in shake flask and 5.41 g/L in 3 L bioreactor.
Collapse
Affiliation(s)
- Xiaomin Dong
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute , Bright Dairy & Food Company, Ltd. , Shanghai 200436 , China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute , Bright Dairy & Food Company, Ltd. , Shanghai 200436 , China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Yu Shen
- School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Miao Wang
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
65
|
Xu P, Marsafari M, Zha J, Koffas M. Microbial Coculture for Flavonoid Synthesis. Trends Biotechnol 2020; 38:686-688. [PMID: 32497514 DOI: 10.1016/j.tibtech.2020.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
Flavonoids are plant-derived natural products with human health-promoting benefits. The modularity and complexity of the flavonoid biosynthetic pathway allow us to leverage the metabolic characteristics of distinct microbial hosts and install structural functionalities beyond what monocultures can achieve. We discuss the promising future of applying microbial cocultures to improve the cost-efficiency and diversity of flavonoid biosynthesis.
Collapse
Affiliation(s)
- Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, MD 21250, USA.
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, MD 21250, USA
| | - Jian Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
66
|
Alvarez-Gonzalez G, Dixon N. Genetically encoded biosensors for lignocellulose valorization. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:246. [PMID: 31636705 PMCID: PMC6792243 DOI: 10.1186/s13068-019-1585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2019] [Indexed: 05/07/2023]
Abstract
Modern society is hugely dependent on finite oil reserves for the supply of fuels and chemicals. Moving our dependence away from these unsustainable oil-based feedstocks to renewable ones is, therefore, a critical factor towards the development of a low carbon bioeconomy. Lignin derived from biomass feedstocks offers great potential as a renewable source of aromatic compounds if methods for its effective valorization can be developed. Synthetic biology and metabolic engineering offer the potential to synergistically enable the development of cell factories with novel biosynthetic routes to valuable chemicals from these sustainable sources. Pathway design and optimization is, however, a major bottleneck due to the lack of high-throughput methods capable of screening large libraries of genetic variants and the metabolic burden associated with bioproduction. Genetically encoded biosensors can provide a solution by transducing the target metabolite concentration into detectable signals to provide high-throughput phenotypic read-outs and allow dynamic pathway regulation. The development and application of biosensors in the discovery and engineering of efficient biocatalytic processes for the degradation, conversion, and valorization of lignin are paving the way towards a sustainable and economically viable biorefinery.
Collapse
Affiliation(s)
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| |
Collapse
|
67
|
Cui S, Lv X, Wu Y, Li J, Du G, Ledesma-Amaro R, Liu L. Engineering a Bifunctional Phr60-Rap60-Spo0A Quorum-Sensing Molecular Switch for Dynamic Fine-Tuning of Menaquinone-7 Synthesis in Bacillus subtilis. ACS Synth Biol 2019; 8:1826-1837. [PMID: 31257862 DOI: 10.1021/acssynbio.9b00140] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS)-based dynamic regulation has been widely used as basic tool for fine-tuning gene expression in response to cell density changes without adding expensive inducers. However, most reported QS systems primarily relied on down-regulation rather than up-regulation of gene expression, significantly limiting its potential as a molecular switch to control metabolic flux. To solve this challenge, we developed a bifunctional and modular Phr60-Rap60-Spo0A QS system, based on two native promoters, PabrB (down-regulation by Spo0A-P) and PspoiiA (up-regulation by Spo0A-P). We constructed a library of promoters with different capacities to implement down-regulation and up-regulation by changing the location, number, and sequences of the binding sites for Spo0A-P. The QS system can dynamically balance the relationship between efficient synthesis of the target product and cell growth. Finally, we validated the usefulness of this strategy by dynamic control of menaquinone-7 (MK-7) synthesis in Bacillus subtilis 168, a model Gram-positive bacterium, with the bifunctional Phr60-Rap60-Spo0A quorum sensing system. Our dynamic pathway regulation led to a 40-fold improvement of MK-7 production from 9 to 360 mg/L in shake flasks and 200 mg/L in 15-L bioreactor. Taken together, our bilayer QS system has been successfully integrated with biocatalytic functions to achieve dynamic pathway regulation in B. subtilis 168, which may be extended for use in other microbes to fine-tune gene expression and improve metabolites production.
Collapse
Affiliation(s)
- Shixiu Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
68
|
Rosano GL, Morales ES, Ceccarelli EA. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci 2019; 28:1412-1422. [PMID: 31219641 PMCID: PMC6635841 DOI: 10.1002/pro.3668] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
The production of proteins in sufficient amounts is key for their study or use as biotherapeutic agents. Escherichia coli is the host of choice for recombinant protein production given its fast growth, easy manipulation, and cost-effectiveness. As such, its protein production capabilities are continuously being improved. Also, the associated tools (such as plasmids and cultivation conditions) are subject of ongoing research to optimize product yield. In this work, we review the latest advances in recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Germán L. Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Enrique S. Morales
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| |
Collapse
|
69
|
Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Appl Microbiol Biotechnol 2019; 103:6449-6462. [DOI: 10.1007/s00253-019-09993-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
70
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|