51
|
O’Harte FPM, Parthsarathy V, Hogg C, Flatt PR. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One 2018; 13:e0202350. [PMID: 30157220 PMCID: PMC6114795 DOI: 10.1371/journal.pone.0202350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/01/2018] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that modified apelin analogues exhibited enzyme resistance in plasma and improved circulating half-life compared to apelin-13. This study investigated the antidiabetic effects of chronic administration of stable long acting fatty acid modified apelin analogues, namely, (Lys8GluPAL)apelin-13 amide and pGlu(Lys8GluPAL)apelin-13 amide, in high-fat fed obese-diabetic mice. Male NIH Swiss mice (groups n = 8) were maintained either on a high-fat diet (45% fat) from 8 to 28 weeks old, or control mice were fed a normal diet (10% fat). When diet induced obesity-diabetes was established after high-fat feeding, mice were injected i.p. once daily with apelin analogues, liraglutide (25 nmol/kg) or saline (controls). Administration of (Lys8GluPAL)apelin-13 amide and pGlu(Lys8GluPAL)apelin-13 amide for 28 days significantly reduced food intake and decreased body weight. Non-fasting glucose was reduced (p<0.01 to p<0.001) and plasma insulin concentrations increased (p<0.01 to p<0.001). This was accompanied by enhanced insulin responses (p<0.01 to p<0.001) and significant reductions in glucose excursion after oral (p<0.01) or i.p. (p<0.01) glucose challenges and feeding. Apelin analogues also significantly improved HbA1c (p<0.01), enhanced insulin sensitivity (p<0.01), reduced triglycerides (p<0.001), increased HDL-cholesterol (p<0.01) and decreased LDL-cholesterol (p<0.01), compared to high-fat fed saline treated control mice. Cholesterol levels were decreased (p<0.01) by pGlu(Lys8GluPAL)apelin-13 amide and both apelin treated groups showed improved bone mineral content, reduced fat deposits and increased plasma GLP-1. Daily treatment with liraglutide mirrored many of these changes (not on bone or adipose tissue), but unlike apelin analogues increased plasma amylase. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were improved by apelin analogues. These results indicate that long-term treatment with acylated analogues (Lys8GluPAL)apelin-13 amide and particularly pGlu(Lys8GluPAL)apelin-13 amide resulted in similar or enhanced therapeutic responses to liraglutide in high-fat fed mice. Fatty acid derived apelin analogues represent a new and exciting development in the treatment of obesity-diabetes.
Collapse
Affiliation(s)
- Finbarr P. M. O’Harte
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Vadivel Parthsarathy
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Christopher Hogg
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
52
|
Apelin: A potential novel serum biomarker for early detection of diabetic nephropathy in patients with type 2 diabetes. North Clin Istanb 2018; 6:151-155. [PMID: 31297482 PMCID: PMC6593907 DOI: 10.14744/nci.2018.62134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 02/19/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE: Diabetic nephropathy (DN) is the major cause of chronic renal failure, and proteinuria is an independent risk factor for the end stage renal disease. The random urine protein: creatinine ratio (P:C ratio) can accurately predict the amount of 24-hour urinary protein excretion. Apelin is thought to be associated with endothelial dysfunction, angiogenesis, and inflammation. This study investigated the apelin concentration and its association with the urine P:C ratio, and metabolic parameters in subjects with and without type 2 diabetes mellitus (T2D). METHODS: This study involved 86 subjects: 56 with newly diagnosed and untreated T2D and 30 non-diabetic controls. All subjects underwent a complete clinical examination that included anthropometric and laboratory measurements. RESULTS: Twenty-four males and sixty-two females participated in this study, and their mean age was 52.27±11.34 years. There were no differences in age, thyrotropin-stimulating hormone (TSH), creatinine clearance, and apelin levels between groups. As expected, fasting plasma glucose, weight, body mass index, and HbA1C were higher in T2D subjects (p=0.001, p=0.02, p=0.03, and p=0.001, respectively). Although apelin levels were higher in the control group, the differences were not statistically significant (p=0.93). The P:C ratio levels were lower in the control group, and the differences were statistically significant (p=0.006). A Spearman correlation analysis revealed that serum apelin levels were not correlated with the urine P:C ratio. CONCLUSION: Our study demonstrates that T2D is associated with decreased serum apelin levels and increased urine P:C ratios compared to those in non-diabetic subjects. This association may depend on impaired glucose homeostasis. Our results show that the serum apelin levels were not correlated with the urine protein: creatinine ratio and provide further evidence regarding the relationship between apelin and DN.
Collapse
|
53
|
Huang Z, He L, Chen Z, Chen L. Targeting drugs to APJ receptor: From signaling to pathophysiological effects. J Cell Physiol 2018; 234:61-74. [DOI: 10.1002/jcp.27047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen Huang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
- Department of Pharmacy The First Affiliated Hospital, University Of South China Hengyang China
| | - Lu He
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| | - Zhe Chen
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| |
Collapse
|
54
|
Wang W, Zhang D, Yang R, Xia W, Qian K, Shi Z, Brown R, Zhou H, Xi Y, Shi L, Chen L, Xu F, Sun X, Zhu D, Gong DW. Hepatic and cardiac beneficial effects of a long-acting Fc-apelin fusion protein in diet-induced obese mice. Diabetes Metab Res Rev 2018; 34:e2997. [PMID: 29577579 DOI: 10.1002/dmrr.2997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Apelin is a peptide ligand of the G-protein-coupled receptor APJ and exhibits anti-diabetes and anti-heart failure activities. However, short serum half-life of the apelin peptide limits its potential clinical applications. This study aimed to develop a long-acting apelin analog. METHODS To extend apelin's in vivo half-life, we made a recombinant protein by fusing the IgG Fc fragment to apelin-13 (Fc-apelin-13), conducted pharmacokinetics studies in mice, and determined in vitro biological activities in suppressing cyclic adenosine monophosphate and activating extracellular signal-regulated kinase signalling by reporter assays. We investigated the effects of Fc-apelin-13 on food intake, body weight, fasting blood glucose and insulin levels, glucose tolerance test, hepatic steatosis, and cardiac function and fibrosis by subcutaneous administration of Fc-apelin-13 in diet-induced obese mice for 4 weeks. RESULTS The estimated half-life of Fc-apelin-13 in blood was approximately 33 hours. Reporter assays showed that Fc-apelin-13 was active in suppressing cyclic adenosine monophosphate response element and activating serum response element activities. Four weeks of Fc-apelin-13 treatment in obese mice did not affect food intake and body weight, but resulted in a significant improvement of glucose tolerance, and a decrease in hepatic steatosis and fibrosis, as well as in serum alanine transaminase levels. Moreover, cardiac stroke volume and output were increased and cardiac fibrosis was decreased in the treated mice. CONCLUSIONS Fc-apelin-13 fusion protein has an extended in vivo half-life and exerts multiple benefits on obese mice with respect to the improvement of glucose disposal, amelioration of liver steatosis and heart fibrosis, and increase of cardiac output. Hence, Fc-apelin-13 is potentially a therapeutic for obesity-associated disease conditions.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Endocrinology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dongming Zhang
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rongze Yang
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei Xia
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kun Qian
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhengrong Shi
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Brown
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huifen Zhou
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yue Xi
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lin Shi
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ling Chen
- Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Xu
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaojian Sun
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Da-Wei Gong
- Division of Endocrinology, Department of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
55
|
Jiang Y, Liu H, Ji B, Wang Z, Wang C, Yang C, Pan Y, Chen J, Cheng B, Bai B. Apelin‑13 attenuates ER stress‑associated apoptosis induced by MPP+ in SH‑SY5Y cells. Int J Mol Med 2018; 42:1732-1740. [PMID: 29901077 DOI: 10.3892/ijmm.2018.3719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Apelin‑13, a neuropeptide that acts as a ligand for a putative receptor related to the angiotensin II type receptor, elicits neuroprotective effects in numerous neurological conditions, such as Huntington's disease and cerebral ischemia. Parkinson's disease (PD), one of the most prevalent neurodegenerative diseases, is caused by damage to neurons in the brain; however, the underlying mechanism remains unclear. The present study explored the effects of apelin‑13 on SH‑SY5Y human neuroblastoma cells treated with 1‑methyl‑4‑phenylpyridine (MPP+). Cell growth, cell viability, and apoptosis were measured by real‑time cell analysis, the Cell Counting Kit‑8 assay, and flow cytometry, respectively. In addition, the expression levels of extracellular signal‑regulated kinase (ERK) 1/2, p38 mitogen‑activated protein kinase (MAPK), glucose‑regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase‑12 were assessed by western blotting. MPP+ treatment decreased the viability of SH‑SY5Y cells and increased their apoptosis; however, these changes were attenuated by pretreatment with apelin‑13. Treatment with MPP+ for 24 h significantly increased the expression levels of phospho‑ERK1/2, phospho‑p38, GRP78, CHOP, and cleaved caspase‑12 in SH‑SY5Y cells. Pretreatment with apelin‑13 significantly attenuated the upregulation of GRP78, CHOP and cleaved caspase‑12 in MPP+‑treated SH‑SY5Y cells, and significantly enhanced the expression levels of phospho‑ERK1/2. Taken together, the present results support a model in which apelin‑13 inhibits MPP+‑induced apoptosis of SH‑SY5Y cells by decreasing the expression of GRP78, CHOP, and cleaved caspase‑12, and by increasing the expression of phospho‑ERK1/2. The present findings suggest that apelin‑13 may be useful for the treatment of PD.
Collapse
Affiliation(s)
- Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Haiqing Liu
- Department of Physiology, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhengwen Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunqing Yang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
56
|
Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Front Physiol 2018; 9:557. [PMID: 29875677 PMCID: PMC5974534 DOI: 10.3389/fphys.2018.00557] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Apelin is an endogenous peptide identified as a ligand of the G protein-coupled receptor APJ. Apelin belongs to the family of adipokines, which are bioactive mediators released by adipose tissue. Extensive tissue distribution of apelin and its receptor suggests, that it could be involved in many physiological processes including regulation of blood pressure, body fluid homeostasis, endocrine stress response, cardiac contractility, angiogenesis, and energy metabolism. Additionally, this peptide participates in pathological processes, such as heart failure, obesity, diabetes, and cancer. In this article, we review current knowledge about the role of apelin in organ and tissue pathologies. We also summarize the mechanisms by which apelin and its receptor mediate the regulation of physiological and pathological processes. Moreover, we put forward an indication of apelin as a biomarker predicting cardiac diseases and various types of cancer. A better understanding of the function of apelin and its receptor in pathologies might lead to the development of new medical compounds.
Collapse
Affiliation(s)
- Marta B Wysocka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
57
|
Liu M, Li H, Zhou Q, Zhao H, Lv D, Cao J, Jiang J, Tang M, Wu D, Liu J, Wu L, Hu H, He L, Huang S, Chen Z, Li L, Chen L. ROS-Autophagy pathway mediates monocytes-human umbilical vein endothelial cells adhesion induced by apelin-13. J Cell Physiol 2018; 233:6839-6850. [PMID: 29691838 DOI: 10.1002/jcp.26554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/16/2018] [Indexed: 01/03/2023]
Abstract
Apelin is the endogenous ligand of APJ receptor. Both monocytes (MCs) and human umbilical vein endothelial cells (HUVECs) express apelin and APJ, which play important roles in the physiological processes of atherosclerosis. Our previous research indicated that apelin-13 promoted MCs-HUVECs adhesion. Here, we further explore the mechanism responsible for MCs-HUVECs adhesion induced by apelin-13. Apelin-13 promoted reactive oxygen species (ROS) generation and NOX4 expression in HUVECs. Apelin-13 inducedautophagy, increased proteins beclin1 and LC3-II/I expression and induced autophagy flux in HUVECs, which was blocked by NAC, catalase and DPI. Autophagy flux induced by apelin-13 was inhibited by NAC and catalase but not hydroxychloroquine (HCQ). NAC, catalase, and DPI prevented apelin-13 induced ICAM-1 expression in HUVECs. Rapamycin enhanced MCs-HUVECs adhesion that was reversed by NAC, catalase, and DPI. Down-regulation of beclin1 and LC3 by siRNA blocked MCs-HUVECs adhesion. Apelin-13 induced atherosclerotic plaque and increased NOX4, LC3-II/I expression in ApoE-/-(HFD) mouse model. Our results demonstrated that apelin-13 induced MCs-HUVECs adhesion via a ROS-autophagy pathway.
Collapse
Affiliation(s)
- Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Pharmacy, The Second People's Hospital of Yunnan province, Kunming, China
| | - Hening Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Pharmacy, The First People's Hospital of Yueyang, Hunan, China
| | - Qun Zhou
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,College of Pharmacy, Hunan University of Medicine, Huaihua, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Deguan Lv
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jiangang Cao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Di Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jiaqi Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lele Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
58
|
Brunet MA, Levesque SA, Hunting DJ, Cohen AA, Roucou X. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res 2018; 28:609-624. [PMID: 29626081 PMCID: PMC5932603 DOI: 10.1101/gr.230938.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Technological advances promise unprecedented opportunities for whole exome sequencing and proteomic analyses of populations. Currently, data from genome and exome sequencing or proteomic studies are searched against reference genome annotations. This provides the foundation for research and clinical screening for genetic causes of pathologies. However, current genome annotations substantially underestimate the proteomic information encoded within a gene. Numerous studies have now demonstrated the expression and function of alternative (mainly small, sometimes overlapping) ORFs within mature gene transcripts. This has important consequences for the correlation of phenotypes and genotypes. Most alternative ORFs are not yet annotated because of a lack of evidence, and this absence from databases precludes their detection by standard proteomic methods, such as mass spectrometry. Here, we demonstrate how current approaches tend to overlook alternative ORFs, hindering the discovery of new genetic drivers and fundamental research. We discuss available tools and techniques to improve identification of proteins from alternative ORFs and finally suggest a novel annotation system to permit a more complete representation of the transcriptomic and proteomic information contained within a gene. Given the crucial challenge of distinguishing functional ORFs from random ones, the suggested pipeline emphasizes both experimental data and conservation signatures. The addition of alternative ORFs in databases will render identification less serendipitous and advance the pace of research and genomic knowledge. This review highlights the urgent medical and research need to incorporate alternative ORFs in current genome annotations and thus permit their inclusion in hypotheses and models, which relate phenotypes and genotypes.
Collapse
Affiliation(s)
- Marie A Brunet
- Biochemistry Department, Université de Sherbrooke, Quebec J1E 4K8, Canada.,Groupe de recherche PRIMUS, Department of Family and Emergency Medicine, Quebec J1H 5N4, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec G1V 0A6, Canada
| | - Sébastien A Levesque
- Pediatric Department, Centre Hospitalier de l'Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Darel J Hunting
- Department of Nuclear Medicine & Radiobiology, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Alan A Cohen
- Groupe de recherche PRIMUS, Department of Family and Emergency Medicine, Quebec J1H 5N4, Canada
| | - Xavier Roucou
- Biochemistry Department, Université de Sherbrooke, Quebec J1E 4K8, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec G1V 0A6, Canada
| |
Collapse
|
59
|
Bertrand C, Pradère JP, Geoffre N, Deleruyelle S, Masri B, Personnaz J, Le Gonidec S, Batut A, Louche K, Moro C, Valet P, Castan-Laurell I. Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism. Endocrine 2018; 60:112-121. [PMID: 29392617 DOI: 10.1007/s12020-018-1536-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. METHODS Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. RESULTS Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. CONCLUSIONS Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.
Collapse
Affiliation(s)
- Chantal Bertrand
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jean-Philippe Pradère
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Nancy Geoffre
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Simon Deleruyelle
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Bernard Masri
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jean Personnaz
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Aurélie Batut
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Katie Louche
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Isabelle Castan-Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France.
- Université de Toulouse, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
60
|
Li X, Yu L, Gao J, Bi X, Zhang J, Xu S, Wang M, Chen M, Qiu F, Fu G. Apelin Ameliorates High Glucose-Induced Downregulation of Connexin 43 via AMPK-Dependent Pathway in Neonatal Rat Cardiomyocytes. Aging Dis 2018; 9:66-76. [PMID: 29392082 PMCID: PMC5772859 DOI: 10.14336/ad.2017.0426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Diabetes Mellitus is a common disorder, with increasing risk of cardiac arrhythmias. Studies have shown that altered connexin expression and gap junction remodeling under hyperglycemia contribute to the high prevalence of cardiac arrhythmias and even sudden death. Connexin 43 (Cx43), a major protein that assembles to form cardiac gap junctions, has been found to be downregulated under high glucose conditions, along with inhibition of gap junctional intercellular communication (GJIC). While, apelin, a beneficial adipokine, increases Cx43 protein expression in mouse and human embryonic stem cells during cardiac differentiation. However, it remains unknown whether apelin influences GJIC capacity in cardiomyocytes. Here, using Western blotting and dye transfer assays, we found that Cx43 protein expression was reduced and GJIC was impaired after treatment with high glucose, which, however, could be abrogated after apelin treatment for 48 h. We also found that apelin increased Cx43 expression under normal glucose. Real-time PCR showed that the Cx43 mRNA was not significantly affected under high glucose conditions in the presence of apelin or high glucose and apelin. High glucose decreased the phosphorylation of AMPKα; however, apelin activated AMPKα. Interestingly, we found that Cx43 expression was increased after treatment with AICAR, an activator of AMPK signaling. AMPKα inhibition mediated with transfection of siRNA-AMPKα1 and siRNA-AMPKα2 abolished the protective effect of apelin on Cx43 expression. Our data suggest that apelin attenuates high glucose-induced Cx43 downregulation and improves the loss of functional gap junctions partly through the AMPK pathway.
Collapse
Affiliation(s)
- Xiaoting Li
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Yu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Gao
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xukun Bi
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juhong Zhang
- 2Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiming Xu
- 3Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meihui Wang
- 4Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Chen
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuyu Qiu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guosheng Fu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
61
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
62
|
Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochem Pharmacol 2017; 146:165-173. [DOI: 10.1016/j.bcp.2017.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
|
63
|
Liu Y, Zhang J, Wang Y, Zeng X. Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis 2017; 8:e3006. [PMID: 28837139 PMCID: PMC5596593 DOI: 10.1038/cddis.2017.414] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022]
Abstract
Podocyte autophagy dysfunction has been reported to be responsible for the progression of diabetic nephropathy (DN), however, the factors contributed to autophagy dysfunction in type 2 diabetes are not fully understood. Among promoting factors in DN, an adipokine, apelin, had been showed to trigger podocyte dysfunction. Therefore, it is hypothesized that apelin, which is increased in plasma in type 2 diabetes, lead to podocyte apoptosis through inhibiting podocyte autophagy, which resulted in podocyte dysfunction followed by DN. KkAy mice (diabetic mice) and cultured podocytes (MPC5 cells and native podocytes) were treated with high glucose (HG) and apelin or its antagonist F13A. Renal function, podocyte autophagy, podocyte apoptosis and corresponding cell signaling pathways in podocytes were detected. The results showed that apelin aggravated the renal dysfunction and foot process injuries in kkAy mice, which is positively correlated to podocyte apoptosis and negatively correlated to podocyte autophagy. Apelin induced podocyte apoptosis and inhibited podocyte autophagy in both normal glucose and HG conditions while F13A reversed these effects. Investigations by western blot found that apelin inhibits podocyte autophagy through ERK-, Akt- and mTOR-dependent pathways. In conclusion, increased apelin concentration in plasma inhibited podocyte autophagy, which would lead to podocyte apoptosis and renal dysfunction in diabetes. These effects would contribute to the progression of DN.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| | - Jia Zhang
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| | - Yangjia Wang
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| | - Xiangjun Zeng
- Department of Pathology and Pathophysiology, Basic Medical School of Capital Medical University, Beijing 100069, China
| |
Collapse
|
64
|
Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin Chim Acta 2016; 466:78-84. [PMID: 28025030 DOI: 10.1016/j.cca.2016.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Apelin is the endogenous ligand of the G protein-coupled receptor APJ. Both Apelin and APJ receptor are widely distributed in various tissues such as heart, brain, limbs, retina and liver. Recent research indicates that the Apelin/APJ system plays an important role in pathological angiogenesis which is a progress of new blood branches developing from preexisting vessels via sprouting. In this paper, we review the important role of the Apelin/APJ system in pathological angiogenesis. The Apelin/APJ system promotes angiogenesis in myocardial infarction, ischemic stroke, critical limb ischemia, tumor, retinal angiogenesis diseases, cirrhosis, obesity, diabetes and other related diseases. Furthermore, we illustrate the detailed mechanism of pathological angiogenesis induced by the Apelin/APJ system. In conclusion, the Apelin/APJ system would be a promising therapeutic target for angiogenesis-related diseases.
Collapse
|