51
|
Simões BF, Foley NM, Hughes GM, Zhao H, Zhang S, Rossiter SJ, Teeling EC. As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats. Mol Biol Evol 2019; 36:54-68. [PMID: 30476197 PMCID: PMC6340466 DOI: 10.1093/molbev/msy192] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555-560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
Collapse
Affiliation(s)
- Bruno F Simões
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
- School of Earth Science, University of Bristol, Bristol, United Kingdom
- School of Biological Science, The University of Adelaide, South Australia, Australia
| | - Nicole M Foley
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Graham M Hughes
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Emma C Teeling
- UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
52
|
Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, Bickle M, Rodrigues MT, Hiller M. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun 2018; 9:4737. [PMID: 30413698 PMCID: PMC6226452 DOI: 10.1038/s41467-018-07122-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
Detecting the genomic changes underlying phenotypic changes between species is a main goal of evolutionary biology and genomics. Evolutionary theory predicts that changes in cis-regulatory elements are important for morphological changes. We combined genome sequencing, functional genomics and genome-wide comparative analyses to investigate regulatory elements in lineages that lost morphological traits. We first show that limb loss in snakes is associated with widespread divergence of limb regulatory elements. We next show that eye degeneration in subterranean mammals is associated with widespread divergence of eye regulatory elements. In both cases, sequence divergence results in an extensive loss of transcription factor binding sites. Importantly, diverged regulatory elements are associated with genes required for normal limb patterning or normal eye development and function, suggesting that regulatory divergence contributed to the loss of these phenotypes. Together, our results show that genome-wide decay of the phenotype-specific cis-regulatory landscape is a hallmark of lost morphological traits. Cis-regulatory elements are important factors for morphological changes. Here, the authors show widespread divergence of limb and eye regulatory elements in limb loss in snakes and eye degeneration in subterranean mammals respectively.
Collapse
Affiliation(s)
- Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany.,Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Katrin Sameith
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany
| | - Genis Parra
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany
| | - Bjoern E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany
| | - Andreas Petzold
- Center for Regenerative Therapies TU Dresden, Dresden, 01307, Germany
| | - Claudia Moebius
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | | | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany. .,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany. .,Center for Systems Biology Dresden, Dresden, 01307, Germany.
| |
Collapse
|
53
|
Tseng WH, Lin JW, Lou CH, Lee KH, Wu LS, Wang TY, Wang FY, Irschick DJ, Lin SM. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci Rep 2018; 8:16055. [PMID: 30375514 PMCID: PMC6207759 DOI: 10.1038/s41598-018-34284-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Expression of nuptial color is usually energetically costly, and is therefore regarded as an 'honest signal' to reflect mate quality. In order to choose a mate with high quality, both sexes may benefit from the ability to precisely evaluate their mates through optimizing visual systems which is in turn partially regulated by opsin gene modification. However, how terrestrial vertebrates regulate their color vision sensitivity is poorly studied. The green-spotted grass lizard Takydromus viridipunctatus is a sexually dimorphic lizard in which males exhibit prominent green lateral colors in the breeding season. In order to clarify relationships among male coloration, female preference, and chromatic visual sensitivity, we conducted testosterone manipulation with mate choice experiments, and evaluated the change of opsin gene expression from different testosterone treatments and different seasons. The results indicated that males with testosterone supplementation showed a significant increase in nuptial color coverage, and were preferred by females in mate choice experiments. By using quantitative PCR (qPCR), we also found that higher levels of testosterone may lead to an increase in rhodopsin-like 2 (rh2) and a decrease in long-wavelength sensitive (lws) gene expression in males, a pattern which was also observed in wild males undergoing maturation as they approached the breeding season. In contrast, females showed the opposite pattern, with increased lws and decreased rh2 expression in the breeding season. We suggest this alteration may facilitate the ability of male lizards to more effectively evaluate color cues, and also may provide females with the ability to more effectively evaluate the brightness of potential mates. Our findings suggest that both sexes of this chromatically dimorphic lizard regulate their opsin expression seasonally, which might play an important role in the evolution of nuptial coloration.
Collapse
Affiliation(s)
- Wen-Hsuan Tseng
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Jhan-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Chen-Han Lou
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Ko-Huan Lee
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Leang-Shin Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Feng-Yu Wang
- National Applied Research Laboratories, Taiwan Ocean Research Institute, Kaohsiung, 801, Taiwan.
| | - Duncan J Irschick
- Department of Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA
| | - Si-Min Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
54
|
Jebb D, Hiller M. Recurrent loss of HMGCS2 shows that ketogenesis is not essential for the evolution of large mammalian brains. eLife 2018; 7:38906. [PMID: 30322448 PMCID: PMC6191284 DOI: 10.7554/elife.38906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/09/2018] [Indexed: 12/04/2022] Open
Abstract
Apart from glucose, fatty acid-derived ketone bodies provide metabolic energy for the brain during fasting and neonatal development. We investigated the evolution of HMGCS2, the key enzyme required for ketone body biosynthesis (ketogenesis). Unexpectedly, we found that three mammalian lineages, comprising cetaceans (dolphins and whales), elephants and mastodons, and Old World fruit bats have lost this gene. Remarkably, many of these species have exceptionally large brains and signs of intelligent behavior. While fruit bats are sensitive to starvation, cetaceans and elephants can still withstand periods of fasting. This suggests that alternative strategies to fuel large brains during fasting evolved repeatedly and reveals flexibility in mammalian energy metabolism. Furthermore, we show that HMGCS2 loss preceded brain size expansion in toothed whales and elephants. Thus, while ketogenesis was likely important for brain size expansion in modern humans, ketogenesis is not a universal precondition for the evolution of large mammalian brains. Our brain requires a lot of energy to work properly. Sugars are usually the main type of fuel for the body, but when they run low – for example during a food shortage – fat, in the form of fatty acids, can be used instead. However, the brain cannot directly process these molecules; instead, fatty acids need to go through ketogenesis, a process that turns fat into ketone bodies, which the organ can then burn. Scientists believe that the ability to create ketone bodies was essential for us to evolve large brains. Yet, it is still unclear if all mammals can transform fatty acids into ketone bodies. One way to look into this question is to track whether other species have HMGCS2, the main enzyme that drives ketogenesis. Jebb and Hiller examined the genomes of 70 different species of mammals for the gene that codes for HMGCS2. The comparisons revealed that cetaceans (whales, dolphins and porpoises), Old World fruit bats and the African savanna elephant have all independently lost their working version of HMGCS2. Yet, many members of these three groups have evolved brains that are large for their body size. The genetic analyses showed that dolphins and elephants developed big brains after the enzyme became inactive, challenging the idea that HMGCS2 – and by extension ketogenesis – is always required for the evolution of large brains. These results may also be useful for conservation efforts. Many fruit bats across the world are severely threatened, and their lack of ketogenesis could explain why these animals are highly sensitive to starvation and quickly die when food becomes scarce.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
55
|
Davies KTJ, Bennett NC, Faulkes CG, Rossiter SJ. Limited Evidence for Parallel Molecular Adaptations Associated with the Subterranean Niche in Mammals: A Comparative Study of Three Superorders. Mol Biol Evol 2018; 35:2544-2559. [PMID: 30137400 PMCID: PMC6188548 DOI: 10.1093/molbev/msy161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among mammals, several lineages have independently adapted to a subterranean niche and possess similar phenotypic traits for burrowing (e.g., cylindrical bodies, short limbs, and absent pinnae). Previous research on mole-rats has revealed molecular adaptations for coping with reduced oxygen, elevated carbon dioxide, and the absence of light. In contrast, almost nothing is known regarding molecular adaptations in other subterranean lineages (e.g., true moles and golden moles). Therefore, the extent to which the recurrent phenotypic adaptations of divergent subterranean taxa have arisen via parallel routes of molecular evolution remains untested. To address these issues, we analyzed ∼8,000 loci in 15 representative subterranean taxa of four independent transitions to an underground niche for signatures of positive selection and convergent amino acid substitutions. Complementary analyses were performed in nonsubterranean "control" taxa to assess the biological significance of results. We found comparable numbers of positively selected genes in each of the four subterranean groups; however, correspondence in terms of gene identity between gene sets was low. Furthermore, we did not detect evidence of more convergent amino acids among subterranean species pairs compared with levels found between nonsubterranean controls. Comparisons with nonsubterranean taxa also revealed loci either under positive selection or with convergent substitutions, with similar functional enrichment (e.g., cell adhesion, immune response, and coagulation). Given the limited indication that positive selection and convergence occurred in the same loci, we conclude that selection may have acted on different loci across subterranean mammal lineages to produce similar phenotypes.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel C Bennett
- Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
56
|
Sharma V, Lehmann T, Stuckas H, Funke L, Hiller M. Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLoS Biol 2018; 16:e2005293. [PMID: 29953435 PMCID: PMC6023123 DOI: 10.1371/journal.pbio.2005293] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These “molecular vestiges” provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters. While fossils of whales with legs demonstrate that these species evolved from legged ancestors, the ancestral state of nonfossilizing soft-tissue structures can only be indirectly inferred. This difficulty is also confounded by uncertainties in the phylogenetic relationships between the animals concerned. A prime example is the case of testicular descent, a developmental process that determines the final position of testes, which occurs in most placental mammals but is absent from several afrotherian lineages. Here, we discovered that afrotherians possess remnants of genes known to be required for testicular descent. These “molecular vestiges” show that testicular descent was already present in the placental ancestor and was subsequently lost in Afrotheria. Our study highlights the potential of molecular vestiges in resolving contradictory ancestral states of soft-tissue characters.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
| | - Thomas Lehmann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | | | - Liane Funke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
- * E-mail:
| |
Collapse
|
57
|
Tierney SM, Langille B, Humphreys WF, Austin AD, Cooper SJB. Massive Parallel Regression: A Précis of Genetic Mechanisms for Vision Loss in Diving Beetles. Integr Comp Biol 2018; 58:465-479. [DOI: 10.1093/icb/icy035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Simon M Tierney
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Barbara Langille
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - William F Humphreys
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia
- School of Animal Biology, The University of Western Australia, Nedlands, WA 6907, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
58
|
Yohe LR, Dávalos LM. Strength of selection on the Trpc2 gene predicts accessory olfactory bulb form in bat vomeronasal evolution. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
59
|
Borges R, Johnson WE, O'Brien SJ, Gomes C, Heesy CP, Antunes A. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments. BMC Genomics 2018; 19:121. [PMID: 29402215 PMCID: PMC5800076 DOI: 10.1186/s12864-017-4417-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. RESULTS Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). CONCLUSIONS Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia, 199004
- Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000, North Ocean Drive, Ft Lauderdale, 33004, Florida, USA
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- ICBAS, Institute of the Biomedical Sciences of Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Christopher P Heesy
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th avenue, Glendale, AZ, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
60
|
Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in red carotenoid synthesis. Mol Phylogenet Evol 2018; 118:47-53. [DOI: 10.1016/j.ympev.2017.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/26/2023]
|
61
|
Springer MS, Gatesy J. Evolution of the MC5R gene in placental mammals with evidence for its inactivation in multiple lineages that lack sebaceous glands. Mol Phylogenet Evol 2017; 120:364-374. [PMID: 29277542 DOI: 10.1016/j.ympev.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/09/2017] [Indexed: 12/30/2022]
Abstract
MC5R is one of five melanocortin receptor genes found in placental mammals. MC5R plays an important role in energy homeostasis and is also expressed in the terminal differentiation of sebaceous glands. Among placental mammals there are multiple lineages that either lack or have degenerative sebaceous glands including Cetacea (whales, dolphins, and porpoises), Hippopotamidae (hippopotamuses), Sirenia (manatees and dugongs), Proboscidea (elephants), Rhinocerotidae (rhinos), and Heterocephalus glaber (naked mole rat). Given the loss or diminution of sebaceous glands in these taxa, we procured MC5R sequences from publicly available genomes and transcriptomes, supplemented by a newly generated sequence for Choeropsis liberiensis (pygmy hippopotamus), to determine if this gene remains intact or is inactivated in association with loss/reduction of sebaceous glands. Our data set includes complete MC5R sequences for 114 placental mammal species including two individuals of Mammuthus primigenius (woolly mammoth) from Oimyakon and Wrangel Island. Complete loss or inactivation of the MC5R gene occurs in multiple placental lineages that have lost sebaceous glands (Cetacea, West Indian manatee, African elephant, white rhinoceros) or are characterized by unusual skin (pangolins, aardvarks). Both M. primigenius individuals share inactivating mutations with the African elephant even though sebaceous glands have been reported in the former. MC5R remains intact in hippopotamuses and the naked mole rat, although slightly elevated dN/dS ratios in these lineages allow for the possibility that the accumulation of inactivating mutations in MC5R may lag behind the relaxation of purifying selection. For Cetacea and Hippopotamidae, the absence of shared inactivating mutations in two different skin genes (MC5R, PSORS1C2) is consistent with the hypothesis that semi-aquatic lifestyles were acquired independently in these clades following divergence from a common ancestor.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
62
|
Emerling CA, Widjaja AD, Nguyen NN, Springer MS. Their loss is our gain: regressive evolution in vertebrates provides genomic models for uncovering human disease loci. J Med Genet 2017; 54:787-794. [PMID: 28814606 DOI: 10.1136/jmedgenet-2017-104837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Throughout Earth's history, evolution's numerous natural 'experiments' have resulted in a diverse range of phenotypes. Though de novo phenotypes receive widespread attention, degeneration of traits inherited from an ancestor is a very common, yet frequently neglected, evolutionary path. The latter phenomenon, known as regressive evolution, often results in vertebrates with phenotypes that mimic inherited disease states in humans. Regressive evolution of anatomical and/or physiological traits is typically accompanied by inactivating mutations underlying these traits, which frequently occur at loci identical to those implicated in human diseases. Here we discuss the potential utility of examining the genomes of vertebrates that have experienced regressive evolution to inform human medical genetics. This approach is low cost and high throughput, giving it the potential to rapidly improve knowledge of disease genetics. We discuss two well-described examples, rod monochromacy (congenital achromatopsia) and amelogenesis imperfecta, to demonstrate the utility of this approach, and then suggest methods to equip non-experts with the ability to corroborate candidate genes and uncover new disease loci.
Collapse
Affiliation(s)
- Christopher A Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Biology, University of California, Riverside, California, USA
| | - Andrew D Widjaja
- Department of Biochemistry, University of California, Riverside, California, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Nancy N Nguyen
- Department of Bioengineering, University of California, Riverside, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mark S Springer
- Department of Biology, University of California, Riverside, California, USA
| |
Collapse
|
63
|
Moritz GL, Ong PS, Perry GH, Dominy NJ. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0075. [PMID: 28193820 DOI: 10.1098/rstb.2016.0075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 11/12/2022] Open
Abstract
The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers (Tarsius syrichta). Second, to explore whether the dichromatic visual systems of Philippine and Bornean (Tarsius bancanus) tarsiers-which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW/OPN1LW-confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW, indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey-background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Gillian L Moritz
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences Building, Campus Box 90383, Durham, NC 27708, USA
| | - Perry S Ong
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, 513 Carpenter Building, University Park, PA 16802, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH 03755, USA .,Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, 78 College Street, Hanover, NH 03755, USA
| |
Collapse
|
64
|
Partha R, Chauhan BK, Ferreira Z, Robinson JD, Lathrop K, Nischal KK, Chikina M, Clark NL. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 2017; 6:e25884. [PMID: 29035697 PMCID: PMC5643096 DOI: 10.7554/elife.25884] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype-genotype relationships.
Collapse
Affiliation(s)
- Raghavendran Partha
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| | - Bharesh K Chauhan
- UPMC Eye CenterChildren’s Hospital of PittsburghPittsburghUnited States
- Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUnited States
| | - Zelia Ferreira
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| | - Joseph D Robinson
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| | - Kira Lathrop
- UPMC Eye CenterChildren’s Hospital of PittsburghPittsburghUnited States
- Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUnited States
| | - Ken K Nischal
- UPMC Eye CenterChildren’s Hospital of PittsburghPittsburghUnited States
- Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUnited States
| | - Maria Chikina
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| | - Nathan L Clark
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
65
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
66
|
Stahl BA, Gross JB. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:515-532. [PMID: 28612405 DOI: 10.1002/jez.b.22749] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
67
|
Lefébure T, Morvan C, Malard F, François C, Konecny-Dupré L, Guéguen L, Weiss-Gayet M, Seguin-Orlando A, Ermini L, Sarkissian CD, Charrier NP, Eme D, Mermillod-Blondin F, Duret L, Vieira C, Orlando L, Douady CJ. Less effective selection leads to larger genomes. Genome Res 2017; 27:1016-1028. [PMID: 28424354 PMCID: PMC5453316 DOI: 10.1101/gr.212589.116] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/30/2017] [Indexed: 12/18/2022]
Abstract
The evolutionary origin of the striking genome size variations found in eukaryotes remains enigmatic. The effective size of populations, by controlling selection efficacy, is expected to be a key parameter underlying genome size evolution. However, this hypothesis has proved difficult to investigate using empirical data sets. Here, we tested this hypothesis using 22 de novo transcriptomes and low-coverage genomes of asellid isopods, which represent 11 independent habitat shifts from surface water to resource-poor groundwater. We show that these habitat shifts are associated with higher transcriptome-wide [Formula: see text] After ruling out the role of positive selection and pseudogenization, we show that these transcriptome-wide [Formula: see text] increases are the consequence of a reduction in selection efficacy imposed by the smaller effective population size of subterranean species. This reduction is paralleled by an important increase in genome size (25% increase on average), an increase also confirmed in subterranean decapods and mollusks. We also control for an adaptive impact of genome size on life history traits but find no correlation between body size, or growth rate, and genome size. We show instead that the independent increases in genome size measured in subterranean isopods are the direct consequence of increasing invasion rates by repeat elements, which are less efficiently purged out by purifying selection. Contrary to selection efficacy, polymorphism is not correlated to genome size. We propose that recent demographic fluctuations and the difficulty of observing polymorphism variation in polymorphism-poor species can obfuscate the link between effective population size and genome size when polymorphism data are used alone.
Collapse
Affiliation(s)
- Tristan Lefébure
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Claire Morvan
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Florian Malard
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Clémentine François
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Lara Konecny-Dupré
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Laurent Guéguen
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Michèle Weiss-Gayet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Andaine Seguin-Orlando
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Luca Ermini
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Clio Der Sarkissian
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark
| | - N Pierre Charrier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - David Eme
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Florian Mermillod-Blondin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France
| | - Laurent Duret
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.,Institut Universitaire de France, F-75005 Paris, France
| | - Ludovic Orlando
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), CNRS UMR 5288, Laboratoire AMIS, F-31073 Toulouse, France
| | - Christophe Jean Douady
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, F-69622 Villeurbanne, France.,Institut Universitaire de France, F-75005 Paris, France
| |
Collapse
|
68
|
Cheng F, He K, Chen ZZ, Zhang B, Wan T, Li JT, Zhang BW, Jiang XL. Phylogeny and systematic revision of the genus Typhlomys (Rodentia, Platacanthomyidae), with description of a new species. J Mammal 2017. [DOI: 10.1093/jmammal/gyx016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Feng Cheng
- Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China (FC, BWZ)
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China (FC, KH, ZZC, BZ, TW, XLJ)
| | - Kai He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China (FC, KH, ZZC, BZ, TW, XLJ)
- Smithsonian Institution, National Museum of Natural History, 1000 Constitution Avenue, NW, Washington, DC 20004, USA (KH)
- The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan (KH)
| | - Zhong-Zheng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China (FC, KH, ZZC, BZ, TW, XLJ)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China (ZZC, BZ)
| | - Bin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China (FC, KH, ZZC, BZ, TW, XLJ)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China (ZZC, BZ)
| | - Tao Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China (FC, KH, ZZC, BZ, TW, XLJ)
| | - Jia-Tang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China (JTL)
| | - Bao-Wei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China (BWZ)
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China (FC, KH, ZZC, BZ, TW, XLJ)
| |
Collapse
|
69
|
Springer MS, Gatesy J. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans. Mol Phylogenet Evol 2017; 109:375-387. [PMID: 28193458 DOI: 10.1016/j.ympev.2017.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common ancestor of Cetacea and was not relaxed significantly until the evolution of echolocation in Odontoceti.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
70
|
Springer MS, Emerling CA, Fugate N, Patel R, Starrett J, Morin PA, Hayashi C, Gatesy J. Inactivation of Cone-Specific Phototransduction Genes in Rod Monochromatic Cetaceans. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
71
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
72
|
Wilkens H. Genetics and hybridization in surface and caveAstyanax(Teleostei): a comparison of regressive and constructive traits. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Horst Wilkens
- University of Hamburg; Centrum für Naturkunde - CeNak; Zoological Museum; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| |
Collapse
|
73
|
Emerling CA, Springer MS. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra. Proc Biol Sci 2016; 282:20142192. [PMID: 25540280 DOI: 10.1098/rspb.2014.2192] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution.
Collapse
Affiliation(s)
- Christopher A Emerling
- Department of Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Mark S Springer
- Department of Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
74
|
Emerling CA, Huynh HT, Nguyen MA, Meredith RW, Springer MS. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution. Proc Biol Sci 2015; 282:20151817. [PMID: 26582021 PMCID: PMC4685808 DOI: 10.1098/rspb.2015.1817] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/09/2015] [Indexed: 11/12/2022] Open
Abstract
Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage.
Collapse
Affiliation(s)
- Christopher A Emerling
- Department of Biology, University of California Riverside, Riverside, CA, USA Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Hieu T Huynh
- Department of Biology, University of California Riverside, Riverside, CA, USA School of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| | - Minh A Nguyen
- Department of Biology, University of California Riverside, Riverside, CA, USA School of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| | - Robert W Meredith
- Department of Biology, University of California Riverside, Riverside, CA, USA Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ, USA
| | - Mark S Springer
- Department of Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
75
|
Davies KTJ, Bennett NC, Tsagkogeorga G, Rossiter SJ, Faulkes CG. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis. Mol Biol Evol 2015; 32:3089-107. [PMID: 26318402 PMCID: PMC4652621 DOI: 10.1093/molbev/msv175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein–protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel C Bennett
- Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Christopher G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
76
|
Simões BF, Sampaio FL, Jared C, Antoniazzi MM, Loew ER, Bowmaker JK, Rodriguez A, Hart NS, Hunt DM, Partridge JC, Gower DJ. Visual system evolution and the nature of the ancestral snake. J Evol Biol 2015; 28:1309-20. [PMID: 26012745 DOI: 10.1111/jeb.12663] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 11/27/2022]
Abstract
The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic.
Collapse
Affiliation(s)
- B F Simões
- Department of Life Sciences, The Natural History Museum, London, UK
| | - F L Sampaio
- Department of Life Sciences, The Natural History Museum, London, UK
| | - C Jared
- Laboratório de Biologia Celular, Instituto Butantan, São Paulo, Brazil
| | - M M Antoniazzi
- Laboratório de Biologia Celular, Instituto Butantan, São Paulo, Brazil
| | - E R Loew
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - J K Bowmaker
- Institute of Ophthalmology, University College London, London, UK
| | - A Rodriguez
- Unit of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | - N S Hart
- School of Animal Biology and The Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - D M Hunt
- School of Animal Biology and The Oceans Institute, The University of Western Australia, Perth, WA, Australia.,Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - J C Partridge
- School of Animal Biology and The Oceans Institute, The University of Western Australia, Perth, WA, Australia.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - D J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|