51
|
Venkatesh A, Ma S, Langellotto F, Gao G, Punzo C. Retinal gene delivery by rAAV and DNA electroporation. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14D.4. [PMID: 23408132 DOI: 10.1002/9780471729259.mc14d04s28] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ocular gene therapy is a fast-growing area of research. The eye is an ideal organ for gene therapy since it is immune privileged and easily accessible, and direct viral delivery results primarily in local infection. Because the eye is not a vital organ, mutations in eye-specific genes tend to be more common. To date, over 40 eye-specific genes have been identified harboring mutations that lead to blindness. Gene therapy with recombinant adeno-associated virus (rAAV) holds the promise to treat patients with such mutations. However, proof-of-concept and safety evaluation for gene therapy remains to be established for most of these diseases. This unit describes the in vivo delivery of genes to the mouse eye by rAAV-mediated gene transfer and plasmid DNA electroporation. Advantages and limitations of these methods are discussed, and detailed protocols for gene delivery, required materials, and subsequent tissue processing methods are described.
Collapse
Affiliation(s)
- Aditya Venkatesh
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | |
Collapse
|
52
|
Long-term efficacy of ciliary muscle gene transfer of three sFlt-1 variants in a rat model of laser-induced choroidal neovascularization. Gene Ther 2013; 20:1093-103. [PMID: 23804076 DOI: 10.1038/gt.2013.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/05/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023]
Abstract
Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.
Collapse
|
53
|
Luo L, Uehara H, Zhang X, Das SK, Olsen T, Holt D, Simonis JM, Jackman K, Singh N, Miya TR, Huang W, Ahmed F, Bastos-Carvalho A, Le YZ, Mamalis C, Chiodo VA, Hauswirth WW, Baffi J, Lacal PM, Orecchia A, Ferrara N, Gao G, Young-Hee K, Fu Y, Owen L, Albuquerque R, Baehr W, Thomas K, Li DY, Chalam KV, Shibuya M, Grisanti S, Wilson DJ, Ambati J, Ambati BK. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. eLife 2013; 2:e00324. [PMID: 23795287 PMCID: PMC3687373 DOI: 10.7554/elife.00324] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/08/2013] [Indexed: 12/30/2022] Open
Abstract
Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI:http://dx.doi.org/10.7554/eLife.00324.001.
Collapse
Affiliation(s)
- Ling Luo
- Moran Eye Center , University of Utah , Salt Lake City , United States ; Department of Ophthalmology , The 306th Hospital of PLA , Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Fellows A, Mierke DF, Nichols RC. AUF1-RGG peptides up-regulate the VEGF antagonist, soluble VEGF receptor-1 (sFlt-1). Cytokine 2013; 64:337-42. [PMID: 23769804 DOI: 10.1016/j.cyto.2013.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 01/17/2023]
Abstract
The macrophage is essential to the innate immune response, but also contributes to human disease by aggravating inflammation. Under severe inflammation, macrophages and other immune cells over-produce immune mediators, including vascular endothelial growth factor (VEGF). The VEGF protein stimulates macrophage activation and induces macrophage migration. A natural inhibitor of VEGF, the soluble VEGF receptor (sFlt-1) is also produced by macrophages and sFlt-1 has been used clinically to block VEGF. In macrophages, we have shown that the mRNA regulatory protein AUF1/hnRNP D represses VEGF gene expression by inhibiting translation of AURE-regulated VEGF mRNA. Peptides (AUF1-RGG peptides) that are modeled on the arginine-glycine-glycine (RGG) motif in AUF1 also block VEGF expression. This report shows that the AUF1-RGG peptides reduce two other AURE-regulated genes, TNF and GLUT1. Three alternative splice variants of sFlt-1 contain AURE in their 3'UTR, and in an apparent paradox, AUF1-RGG peptides stimulate expression of these three sFlt-1 Variants. The AUF1-RGG peptides likely act by distinct mechanisms with complimentary effects to repress VEGF gene expression and over-express the endogenous VEGF blocking agent, sFlt-1. The AUF1-RGG peptides are novel reagents that reduce VEGF and other inflammatory mediators, and may be useful tools to suppress severe inflammation.
Collapse
Affiliation(s)
- Abigail Fellows
- Veterans Administration Research Service, White River Junction, VT 05009, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | |
Collapse
|
55
|
Gnanaguru G, Bachay G, Biswas S, Pinzón-Duarte G, Hunter DD, Brunken WJ. Laminins containing the β2 and γ3 chains regulate astrocyte migration and angiogenesis in the retina. Development 2013; 140:2050-60. [PMID: 23571221 DOI: 10.1242/dev.087817] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathologies of retinal blood vessels are among the major causes of blindness worldwide. A key cell type that regulates retinal vascular development is the astrocyte. Generated extrinsically to the retina, astrocytes migrate into the retina through the optic nerve head. Even though there is a strong correlation between astrocyte distribution and retinal vascular development, the factors that guide astrocytes into the retina remain unclear. In this study, we show that astrocytes migrate within a laminin-containing basement membrane - the inner limiting membrane. Genetic deletion of the laminin β2 and γ3 chains affects astrocyte migration and spatial distribution. We show that laminins act as haptotactic factors in vitro in an isoform-specific manner, inducing astrocyte migration and promoting astrocyte differentiation. The addition of exogenous laminins to laminin-null retinal explants rescues astrocyte migration and spatial patterning. Furthermore, we show that the loss of laminins reduces β1 integrin expression in astrocytes. Culturing laminin-null retinal astrocytes on laminin substrates restores focal localization of β1 integrin. Finally, we show that laminins containing β2 and γ3 chains regulate subsequent retinal blood vessel growth and maintain vascular integrity. These in vivo and in vitro studies demonstrate clearly that laminins containing β2 and γ3 chains are indispensable for migration and spatial organization of astrocytes and that they play a crucial role during retinal angiogenesis in vivo.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Departments of Ophthalmology and Cell Biology, and the SUNY Eye Institute, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
56
|
Fellows A, Mierke D, Nichols RC. WITHDRAWN: AUF1-RGG peptides up-regulate the VEGF antagonist, soluble VEGF receptor-1 (sFlt-1). Biochem Biophys Res Commun 2013:S0006-291X(13)00156-3. [PMID: 23376075 DOI: 10.1016/j.bbrc.2013.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Abigail Fellows
- Veterans Administration Research Service, White River Junction, Vermont, USA, 05009; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA, 03755
| | | | | |
Collapse
|
57
|
Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21:509-19. [PMID: 23358189 DOI: 10.1038/mt.2012.280] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement.
Collapse
Affiliation(s)
- Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
58
|
Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res 2013; 32:22-47. [DOI: 10.1016/j.preteyeres.2012.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 02/08/2023]
|
59
|
Bennett J, Maguire AM. Gene Therapy for Retinal Disease. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
60
|
Soluble fms-like tyrosine kinase 1 and soluble endoglin are elevated circulating anti-angiogenic factors in pre-eclampsia. Pregnancy Hypertens 2012; 2:358-67. [PMID: 26105603 DOI: 10.1016/j.preghy.2012.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/05/2023]
Abstract
Pre-eclampsia, characterized by hypertension and proteinuria, affects approximately 3-5% of all pregnancies worldwide and is a major cause of maternal and fetal morbidity and mortality. Maternal endothelial dysfunction is associated with disease pathogenesis. Recently, reports have shown that elevated levels of circulating soluble fms-like tyrosine kinase 1 [sFlt1] and soluble endoglin [sEng] are associated with pre-eclampsia. Flt1 is a receptor for vascular endothelial growth factor receptor [VEGF], whereas endoglin [Eng] is an auxiliary receptor for transforming growth factor-β [TGF-β] super-family members. Both signaling pathways modulate angiogenesis and are involved in vascular homeostasis. Increased levels of sFlt1 and sEng dysregulate VEGF and TGF-β signaling respectively, resulting in endothelial dysfunction of maternal blood vessels. This review summarizes our current knowledge of Flt1 and endoglin and soluble forms in pre-eclampsia. Furthermore, it highlights the predictive and early-screening value of circulating levels of sFlt1 and sEng for the risk of developing pre-eclampsia.
Collapse
|
61
|
Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012; 33:487-509. [PMID: 22705444 DOI: 10.1016/j.mam.2012.06.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.
Collapse
Affiliation(s)
- Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
62
|
Cai X, Sezate SA, McGinnis JF. Neovascularization: ocular diseases, animal models and therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:245-52. [PMID: 22183339 DOI: 10.1007/978-1-4614-0631-0_32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xue Cai
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
63
|
Owen LA, Uehara H, Cahoon J, Huang W, Simonis J, Ambati BK. Morpholino-mediated increase in soluble Flt-1 expression results in decreased ocular and tumor neovascularization. PLoS One 2012; 7:e33576. [PMID: 22438952 PMCID: PMC3305322 DOI: 10.1371/journal.pone.0033576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background Angiogenesis is a key process in several ocular disorders and cancers. Soluble Flt-1 is an alternatively spliced form of the Flt-1 gene that retains the ligand-binding domain, but lacks the membrane-spanning and intracellular kinase domains of the full-length membrane bound Flt-1 (mbFlt-1) protein. Thus, sFlt-1 is an endogenous inhibitor of VEGF-A mediated angiogenesis. Synthetic mopholino oligomers directed against splice site targets can modulate splice variant expression. We hypothesize that morpholino-induced upregulation of sFlt-1 will suppress angiogenesis in clinically relevant models of macular degeneration and breast cancer. Methods and Findings In vivo morpholino constructs were designed to target murine exon/intron 13 junction of the Flt-1 transcript denoted VEGFR1_MOe13; standard nonspecific morpholino was used as control. After nucleofection of endothelial and breast adenocarcinoma cell lines, total RNA was extracted and real-time RT-PCR performed for sFlt-1 and mbFlt-1. Intravitreal injections of VEGFR1_MOe13 or control were done in a model of laser-induced choroidal neovascularization and intratumoral injections were performed in MBA-MD-231 xenografts in nude mice. VEGFR1_MOe13 elevated sFlt-1 mRNA expression and suppressed mbFlt-1 mRNA expression in vitro in multiple cellular backgrounds (p<0.001). VEGFR1_MOe13 also elevated sFlt/mbFlt-1 ratio in vivo after laser choroidal injury 5.5 fold (p<0.001) and suppressed laser-induced CNV by 50% (p = 0.0179). This latter effect was reversed by RNAi of sFlt-1, confirming specificity of morpholino activity through up-regulation of sFlt-1. In the xenograft model, VEGFR1_MOe13 regressed tumor volume by 88.9%, increased sFlt-1 mRNA expression, and reduced vascular density by 50% relative to control morpholino treatment (p<0.05). Conclusions Morpholino oligomers targeting the VEGFR1 mRNA exon/intron 13 junction promote production of soluble FLT-1 over membrane bound FLT-1, resulting in suppression of lesional volume in laser induced CNV and breast adenocarcinoma. Thus, morpholino manipulation of alternative splicing offers translational potential for therapy of angiogenic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Balamurali K. Ambati
- Department Of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
64
|
Tuo J, Pang JJ, Cao X, Shen D, Zhang J, Scaria A, Wadsworth SC, Pechan P, Boye SL, Hauswirth WW, Chan CC. AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. Neurobiol Aging 2012; 33:433.e1-10. [PMID: 21397984 PMCID: PMC3136657 DOI: 10.1016/j.neurobiolaging.2011.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/08/2011] [Accepted: 01/26/2011] [Indexed: 12/18/2022]
Abstract
To test the effects of adeno-associated virus encoding sFLT01 (AAV5.sFLT01) on the retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice, a model for age-related macular degeneration (AMD), AAV5.sFLT01 was injected into the subretinal space of the right eyes and the left eyes served as controls. Histology found no retinal toxicity due to the treatment after 3 months. The treated eyes showed lesion arrest compared with lesion progression in the left eyes by fundus monitoring monthly and histological evaluation 3 months after treatment. Retinal ultrastructure showed fewer lipofuscin and better preserved photoreceptors after the treatment. A2E, a major component of lipofuscin, was lower in the treated eyes than in the control eyes. Molecular analysis showed that AAV5.sFLT01 lowered retinal extracellular signal-regulated kinase (ERK) phosphorylation and inducible nitric oxide synthetase expression, which suggested the involvement of reactive nitrogen species in the retinal lesions of Ccl2(-/-)/Cx3cr1(-/-). We concluded that local delivery of AAV5.sFLT01 can stabilize retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. The findings provide further support for the potential beneficial effects of sFLT01 gene therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | | | - Xiaoguang Cao
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
- Department of Ophthalmology, People’s Hospital, Beijing University, Beijing, China
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Jun Zhang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Abraham Scaria
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | | | - Peter Pechan
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | | | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| |
Collapse
|
65
|
Abstract
Diseases complicated by abnormal growth of vessels or excessive leakage are the most prevalent cause of moderate or severe vision loss in developed countries. Recent progress unraveling the molecular pathogenesis of several of these disease processes has led to new drug therapies that have provided major benefits to patients. However, those treatments often require frequent intraocular injections, and despite monthly injections, some patients have a suboptimal response. Gene transfer of antiangiogenic proteins is an alternative approach that has the potential to provide long-term suppression of neovascularization (NV) and/or excessive vascular leakage in the eye. Studies in animal models of ocular NV have demonstrated impressive results with a number of transgenes, and a clinical trial in patients with advanced neovascular age-related macular degeneration has provided proof-of-concept. Two ongoing clinical trials, one using an adeno-associated viral (AAV) vector to express a vascular endothelial growth factor-binding protein and another using a lentiviral vector to express endostatin and angiostatin, will provide valuable information that should help to inform future trials and provide a foundation on which to build.
Collapse
Affiliation(s)
- P A Campochiaro
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA.
| |
Collapse
|
66
|
Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Ther 2011; 19:999-1009. [DOI: 10.1038/gt.2011.169] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Campochiaro PA. Gene transfer for neovascular age-related macular degeneration. Hum Gene Ther 2011; 22:523-9. [PMID: 21443427 DOI: 10.1089/hum.2011.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease that has two phases: a degenerative phase often referred to as nonneovascular AMD (non-NVAMD) or dry AMD and a phase dominated by growth of new blood vessels in the subretinal space, referred to as NVAMD or wet AMD. Advances in the understanding of the molecular pathogenesis of NVAMD have led to new drug therapies that have provided major benefits to patients. However, those treatments require frequent intraocular injections that in many patients must be continued indefinitely to maintain visual benefits. Gene transfer to augment expression of endogenous antiangiogenic proteins is an alternative approach that has the potential to provide long-term stability in patients with NVAMD. Studies in animal models that mimic aspects of NVAMD have identified several possible transgenes, and a clinical trial in patients with advanced NVAMD has suggested that the approach may be feasible. Many important questions remain, but the rationale and preliminary data are compelling. The results of two ongoing clinical trials may answer several of the questions and help direct future research.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Department of Ophthalmology and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
68
|
Ali Rahman IS, Li CR, Lai CM, Rakoczy EP. In VivoMonitoring of VEGF-Induced Retinal Damage in the Kimba Mouse Model of Retinal Neovascularization. Curr Eye Res 2011; 36:654-62. [DOI: 10.3109/02713683.2010.551172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
69
|
Horizons in therapy for corneal angiogenesis. Ophthalmology 2011; 118:591-9. [PMID: 21376242 DOI: 10.1016/j.ophtha.2011.01.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 11/21/2022] Open
Abstract
Corneal neovascularization can lead to a devastating disease process that involves the breakdown of the limbal barrier and the formation of blood vessels in the cornea, leading to severe visual impairment. This review discusses the delicate balance between antiangiogenic and angiogenic factors that govern the antiangiogenic privilege of the cornea. Current treatment methods, clinical trials, and future prospects in the management of corneal neovascularization also are discussed.
Collapse
|
70
|
Abstract
Working at the nanoscale means to completely rethink how to approach engineering in the body in general and in the eye in particular. In nanomedicine, tissue engineering is the ability to influence an environment either by adding, subtracting or manipulating that environment to allow it to be more conducive for its purpose. The goal is to function at the optimum state, or to return to that optimum state. Additive tissue engineering replaces cells or tissue, or tries to get something to grow that is no longer there. Arrestive tissue engineering tries to stop aberrant growth which, if left uncontrolled, would result in a decrease in function. Nano delivery of therapeutics can perform both additive and arrestive functions influencing the environment either way, depending on the targeting. By manipulating the environment at the nanoscale, the rate and distribution of healing can be controlled. It infers that potential applications of nanomedicine in ophthalmology include procedures, such as corneal endothelial cell transplantation, single retinal ganglion cell repair, check of retinal ganglion cell viability, building of nanofibre scaffolds, such as self-assembling peptides, to create a scaffold-like tissue-bridging structure to provide a framework for axonal regeneration in the case of optic nerve reconnection or eye transplantation, and ocular drug delivery. Examples of potential arrestive therapies include gene-related treatment modalities to inhibit intraocular neovascularization and to block retinal cell apoptosis. Looking towards the future, this review focuses on how nanoscale tissue engineering can be and is being used to influence that local environment.
Collapse
Affiliation(s)
- Rutledge Ellis-Behnke
- Department of Anatomy, State Key Lab of Brain & Cognitive Sciences, Research Centre for Heart, Brain and Healthy Aging, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong SAR, China.
| | | |
Collapse
|
71
|
Roy K, Stein L, Kaushal S. Ocular gene therapy: an evaluation of recombinant adeno-associated virus-mediated gene therapy interventions for the treatment of ocular disease. Hum Gene Ther 2011; 21:915-27. [PMID: 20384478 DOI: 10.1089/hum.2010.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both gene replacement therapy and alteration of host gene expression are playing increasingly important roles in the treatment of ocular diseases. Ocular gene therapy may provide alternatives to current treatments for eye diseases that are either greatly invasive and thus run the risk of complications, that offer only short-term relief from disease symptoms, or that are unable to directly treat vision loss. The success of three separate phase I clinical trials investigating a gene therapy intervention for the treatment of the retinal degenerative disorder Leber's congenital amaurosis (LCA) has unveiled the therapeutic potential of gene therapy. Preliminary results have demonstrated ocular gene transfer, using nonpathogenic recombinant adeno-associated viral (rAAV) vectors specifically, to be a safe, effective, and long-term treatment for LCA, a previously untreatable disorder. Nonpathogenic rAAV vectors offer the potential for long-term treatment. Many of the genes implicated in human ocular diseases have been identified, and animal models for such diseases have been developed, which have greatly facilitated the application of experimental rAAV-mediated gene therapy. This review highlights the key features of rAAV-mediated gene therapy that make it the most suitable gene therapy treatment approach for ocular diseases. Furthermore, it summarizes the current progress of rAAV-mediated gene therapy interventions/applications for a wide variety of ophthalmologic disorders.
Collapse
Affiliation(s)
- Kamolika Roy
- Department of Ophthalmology, University of Massachusetts Medical School , Worcester, MA 01605, USA
| | | | | |
Collapse
|
72
|
Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Mol Ther 2010; 19:326-34. [PMID: 21119620 DOI: 10.1038/mt.2010.258] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AAV2-sFLT01 is a vector that expresses a modified soluble Flt1 receptor designed to neutralize the proangiogenic activities of vascular endothelial growth factor (VEGF) for treatment of age-related macular degeneration (AMD) via an intravitreal injection. Owing to minimal data available for the intravitreal route of administration for adeno-associated virus (AAV), we initiated a 12-month safety study of AAV2-sFLT01 administered intravitreally at doses of 2.4 × 10(9) vector genomes (vg) and 2.4 × 10(10) vg to cynomolgus monkeys. Expression of sFlt01 protein peaked at ~1-month postadministration and remained relatively constant for the remainder of the study. Electroretinograms, fluorescein angiograms, and tonometry were assessed every 3 months, with no test article-related findings observed in any group. Indirect ophthalmoscopy and slit lamp exams performed monthly revealed a mild to moderate but self-resolving vitreal inflammation in the high-dose group only, which follow-up studies suggest was directed against the AAV2 capsid. Histological evaluation revealed no structural changes in any part of the eye and occasional inflammatory cells in the trabecular meshwork, vitreous and retina in the high-dose group. Biodistribution analysis in rats and monkeys found only trace amounts of vector outside the injected eye. In summary, these studies found AAV2-sFLT01 to be well-tolerated, localized, and capable of long-term expression.
Collapse
|
73
|
Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol Ther 2010; 19:260-5. [PMID: 20978476 DOI: 10.1038/mt.2010.230] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inhibition of vascular endothelial growth factor (VEGF) for the management of the pathological ocular neovascularization associated with diseases such as neovascular age-related macular degeneration is a proven paradigm; however, monthly intravitreal injections are required for optimal treatment. We have previously shown that a novel, secreted anti-VEGF molecule sFLT01 delivered by intravitreal injection of an AAV2 vector (AAV2-sFLT01) gives persistent expression and is efficacious in a murine model of retinal neovascularization. In the present study, we investigate transduction and efficacy of an intravitreally administered AAV2-sFLT01 in a nonhuman primate (NHP) model of choroidal neovascularization (CNV). A dose-dependent and persistent expression of sFLT01 was observed by collecting samples of aqueous humor at different time points over 5 months. The location of transduction as elucidated by in situ hybridization was in the transitional epithelial cells of the pars plana and in retinal ganglion cells. AAV2-sFLT01 was able to effectively inhibit laser-induced CNV in a dose-dependent manner as determined by comparing the number of leaking CNV lesions in the treated versus control eyes using fluorescein angiography. Our data suggest that intravitreal delivery of AAV2-sFLT01 may be an effective long-term treatment for diseases caused by ocular neovascularization.
Collapse
|
74
|
Rakoczy EP, Ali Rahman IS, Binz N, Li CR, Vagaja NN, de Pinho M, Lai CM. Characterization of a mouse model of hyperglycemia and retinal neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2659-70. [PMID: 20829433 DOI: 10.2353/ajpath.2010.090883] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the limitations of research into diabetic retinopathy is the lack of suitable animal models. To study how the two important factors--hyperglycemia and vascular endothelial growth factor--interact in diabetic retinopathy, the Akimba mouse (Ins2AkitaVEGF+/-) was generated by crossing the Akita mouse (Ins2Akita) with the Kimba mouse (VEGF+/+). C57Bl/6 and the parental and Akimba mouse lines were characterized by biometric measurements, histology, immunohistochemistry, and Spectralis Heidelberg retinal angiography and optical coherence tomography. The Akimba line not only retained the characteristics of the parental strains, such as developing hyperglycemia and retinal neovascularization, but developed higher blood glucose levels at a younger age and had worse kidney-body weight ratios than the Akita line. With aging, the Akimba line demonstrated enhanced photoreceptor cell loss, thinning of the retina, and more severe retinal vascular pathology, including more severe capillary nonperfusion, vessel constriction, beading, neovascularization, fibroses, and edema, compared with the Kimba line. The vascular changes were associated with major histocompatibility complex class II+ cellular staining throughout the retina. Together, these observations suggest that hyperglycemia resulted in higher prevalences of edema and exacerbated the vascular endothelial growth factor-driven neovascular and retinal changes in the Akimba line. Thus, the Akimba line could become a useful model for studying the interplay between hyperglycemia and vascular endothelial growth factor and for testing treatment strategies for potentially blinding complications, such as edema.
Collapse
Affiliation(s)
- Elizabeth P Rakoczy
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | | | |
Collapse
|
75
|
Igarashi T, Miyake K, Masuda I, Takahashi H, Shimada T. Adeno-associated vector (type 8)-mediated expression of soluble Flt-1 efficiently inhibits neovascularization in a murine choroidal neovascularization model. Hum Gene Ther 2010; 21:631-7. [PMID: 20053138 DOI: 10.1089/hum.2009.153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To assess the feasibility of a gene therapeutic approach to treating choroidal neovascularization (CNV), we generated a recombinant adeno-associated viral (AAV) vector (type 8) encoding soluble Flt-1 (AAV-sflt-1), and determined its ability to inhibit angiogenesis. When we treated human umbilical vein endothelial cells (HUVECs) with the supernatant of cells transduced with AAV-sflt-1 or AAV-EGFP (control), we found that tube formation was significantly inhibited by the former but not the latter (area: 25,121 +/- 557 vs. 68,628 +/- 1357 pixels [p < 0.01]; length: 4811 +/- 246 vs. 10,894 +/- 297 pixels [p < 0.01]). CNV was induced in C57BL/6 mice by making four separate choroidal burns around the optic nerve in each eye, using a diode laser. Thereafter, 2 microl (5 x 10(11) vector genomes/ml) of AAV-sflt-1 (n = 11) or control AAV-LacZ (n = 12) was injected into the subretinal space, and 2 weeks later the eyes were removed for flatmount analysis of CNV surface area. Notably, subretinal delivery of AAV-sflt-1 significantly diminished CNV at the laser lesions, as compared with AAV-LacZ (555 +/- 304 vs. 1470 +/- 1000 microm(2); p = 0.007). These results suggest that there was diffusion of the secreted sFlt-1 across the retina and that long-term suppression of CNV is possible through the use of stable rAAV-mediated sflt-1 expression. In vivo gene therapy thus appears to be a feasible approach to the clinical management of CNV in conditions such as age-related macular degeneration.
Collapse
Affiliation(s)
- Tsutomu Igarashi
- Department of Ophthalmology, Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | | | | | | | | |
Collapse
|
76
|
Murakami Y, Ikeda Y, Yonemitsu Y, Miyazaki M, Inoue M, Hasegawa M, Sueishi K, Ishibashi T. Inhibition of Choroidal Neovascularization via Brief Subretinal Exposure to a Newly Developed Lentiviral Vector Pseudotyped with Sendai Viral Envelope Proteins. Hum Gene Ther 2010; 21:199-209. [DOI: 10.1089/hum.2009.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshikazu Yonemitsu
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masanori Miyazaki
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | - Katsuo Sueishi
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
77
|
Jiang D, Gu H, Wu Q, Wang X, Zhang M, Song B. Impact of the transfer of sFlt-1 gene fragments on the ERK1/2 pathway of VEGF in vitro. Curr Eye Res 2009; 34:800-8. [PMID: 19839874 DOI: 10.1080/02713680903090176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate whether various sFlt-1 gene fragments affect the biological functions and ERK1/2 pathway of vascular endothelial growth factor (VEGF) under conditions of hypoxia or in the presence of high glucose concentrations in vitro. METHODS Plasmids expressing loops 2-3 and loops 2-4 of sFlt-1 were packed in carboxymethylated dextran-coated nanoparticles and transferred into human umbilical vein endothelial cells (HUVECs), which were then cultured under hypoxia or in a high-glucose environment. The proliferation and migration of HUVECs were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and low-power microscopy, respectively. Western blot analyses were performed to detect p-ERK1/2 protein expression. RESULTS After transfection with the sFlt-1(2-3) or sFlt-1(2-4) gene fragment, the proliferation and migration of HUVECs were markedly reduced, and p-ERK1/2 protein expression was down-regulated under both hypoxic and high-glucose conditions. The impacts on the proliferation, migration of HUVECs, and on p-ERK1/2 protein expression did not differ significantly between the sFlt-1(2-3) and sFlt-1(2-4) gene fragments. CONCLUSIONS Both sFlt-1(2-3) and sFlt-1(2-4) gene fragments inhibited the proliferation and migration of HUVECs, as well as signal transduction in the ERK1/2 pathway of VEGF.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Ophthalmology, Shanghai No. 6 People's Hospital, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
78
|
Bello A, Tran K, Chand A, Doria M, Allocca M, Hildinger M, Beniac D, Kranendonk C, Auricchio A, Kobinger GP. Isolation and evaluation of novel adeno-associated virus sequences from porcine tissues. Gene Ther 2009; 16:1320-8. [PMID: 19626054 DOI: 10.1038/gt.2009.82] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High antigenic compatibility and low toxicity is associated with xenograft transplantation of porcine tissues in immunodeficient human recipients. We hypothesized that adeno-associated viruses (AAVs) of porcine origin could be highly compatible to human tissues and thus of good efficiency and low toxicity for in vivo gene transfer. Porcine tissues were screened by PCR for the presence of AAV using primers designed to bind conserved regions and amplify variable regions of an alignment of several AAV sequences available on GenBank. We isolated new AAV capsid sequences from porcine tissues and successfully generated a recombinant AAV2/po1 vector by transfection. The AAV2/po1 vector was not cross-neutralized by antisera generated against all other commonly used AAVs (serotype 1, 2, 3, 4, 5, 7 and 8) indicating a distinct antigenic profile. Preexisting immunity to AAVpo1 could not be detected in the human sera evaluated. In mice, AAV2/po1 particles expressing beta-galactosidase or green fluorescent protein demonstrated high transduction efficiency in muscle fibers and the retina after intramuscular or intraocular administration. Biodistribution experiments following systemic administration showed efficient gene transfer exclusively in muscle fibers. Novel AAVs derived from porcine tissues may contribute to the generation of new preventive or curative clinical modalities acceptable for human use.
Collapse
Affiliation(s)
- A Bello
- Special Pathogens Program, Public Health Agency of Canada, National Microbiology Laboratory, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Pechan P, Rubin H, Lukason M, Ardinger J, DuFresne E, Hauswirth WW, Wadsworth SC, Scaria A. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 2009; 16:10-6. [PMID: 18633446 DOI: 10.1038/gt.2008.115] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/27/2008] [Accepted: 06/03/2008] [Indexed: 12/27/2022]
Abstract
Vascular endothelial growth factor (VEGF) is important in pathological neovascularization, which is a key component of diseases such as the wet form of age-related macular degeneration, proliferative diabetic retinopathy and cancer. One of the most potent naturally occurring VEGF binders is VEGF receptor Flt-1. We have generated two novel chimeric VEGF-binding molecules, sFLT01 and sFLT02, which consist of the second immunoglobulin (IgG)-like domain of Flt-1 fused either to a human IgG1 Fc or solely to the CH3 domain of IgG1 Fc through a polyglycine linker 9Gly. In vitro analysis showed that these novel molecules are high-affinity VEGF binders. We have demonstrated that adeno-associated virus serotype 2 (AAV2)-mediated intravitreal gene delivery of sFLT01 efficiently inhibits angiogenesis in the mouse oxygen-induced retinopathy model. There were no histological observations of toxicity upon persistent ocular expression of sFLT01 for up to 12 months following intravitreal AAV2-based delivery in the rodent eye. Our data suggest that AAV2-mediated intravitreal gene delivery of our novel molecules may be a safe and effective treatment for retinal neovascularization.
Collapse
Affiliation(s)
- P Pechan
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 2008; 8:942-56. [PMID: 19029957 DOI: 10.1038/nrc2524] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Less than 5 years ago, it was still not clear whether anti-angiogenic drugs would prove successful in the clinic. After numerous patients with cancer or age-related macular degeneration have been treated with these drugs, they have now become part of the standard range of therapeutic tools. Despite this milestone, anti-angiogenic therapy still faces a number of clinical hurdles, such as improving efficacy, avoiding escape and resistance, and minimizing toxicity. Hopefully, other agents with complementary mechanisms, such as those that target placental growth factor, will offer novel opportunities for improved treatment.
Collapse
Affiliation(s)
- Christian Fischer
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
81
|
Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48:353-9. [DOI: 10.1016/j.visres.2007.07.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 12/21/2022]
|
82
|
Lamartina S, Cimino M, Roscilli G, Dammassa E, Lazzaro D, Rota R, Ciliberto G, Toniatti C. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 2007; 9:862-74. [PMID: 17685494 DOI: 10.1002/jgm.1083] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Ocular neovascular disorders, such as diabetic retinopathy and age-related macular degeneration, are the principal causes of blindness in developed countries. Current treatments are of limited efficacy, whereas a therapy based on intraocular gene transfer of angiostatic factors represents a promising alternative. For the first time we have explored the potential of helper-dependent adenovirus (HD-Ad), the last generation of Ad vectors, in the therapy of retinal neovascularization. METHODS We first analyzed efficiency and stability of intraretinal gene transfer following intravitreous injection in mice. A HD-Ad vector expressing green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter (HD-Ad/GFP) was compared with a first-generation (E1/E3-deleted) Ad vector carrying an identical GFP expression cassette (FG-Ad/GFP). We also constructed HD-Ad vectors expressing a soluble form of the VEGF receptor (sFlt-1) in a constitutive (HD-Ad/sFlt-1) or doxycycline (dox)-inducible (HD-Ad/S-M2/sFlt-1) manner and tested their therapeutic efficacy upon intravitreous delivery in a rat model of oxygen-induced retinopathy (OIR). RESULTS HD-Ad/GFP promoted long-lasting (up to 1 year) transgene expression in retinal Müller cells, in marked contrast with the short-term expression observed with FG-Ad/GFP. Intravitreous injection of HD-Ad vectors expressing sFlt-1 resulted in detectable levels of sFlt-1 and inhibited retinal neovascularization by more than 60% in a rat model of OIR. Notably, the therapeutic efficacy of the inducible vector HD-Ad/S-M2/sFlt-1 was strictly dox-dependent. CONCLUSIONS HD-Ad vectors enable stable gene transfer and regulated expression of angiostatic factors following intravitreous injection and thus are attractive vehicles for the gene therapy of neovascular diseases of the retina.
Collapse
|
83
|
Hernández C, Simó R. Strategies for blocking angiogenesis in diabetic retinopathy: from basic science to clinical practice. Expert Opin Investig Drugs 2007; 16:1209-26. [PMID: 17685870 DOI: 10.1517/13543784.16.8.1209] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proliferative diabetic retinopathy (PDR) demands both more effective and less expensive biologically based treatments. Our understanding of the pathophysiology of the disease is increasing as new biochemical pathways are identified. Most reports emphasize proangiogenic stimuli, with the natural inhibitory elements receiving little attention. There are two therapeutic strategies for blocking retinal angiogenesis in PDR: systemic drug administration (protein kinase C inhibitors and somatostatin analogs) or local therapies (anti-vascular endothelial growth factor strategies, anti-inflammatory agents, gene therapy and stem cell therapy). This review mainly focuses on the role of local therapies, especially intravitreous delivery, in the management of PDR. The potential for adverse effect are also discussed. The availability of these new strategies or the combination of them will not only be beneficial in treating PDR but may also result in a shift towards treating earlier stages of diabetic retinopathy, thus easing the burden of this devastating disease.
Collapse
Affiliation(s)
- Cristina Hernández
- Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Endocrinology Division, Pg. Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
84
|
Allocca M, Tessitore A, Cotugno G, Auricchio A. AAV-mediated gene transfer for retinal diseases. Expert Opin Biol Ther 2007; 6:1279-94. [PMID: 17223737 DOI: 10.1517/14712598.6.12.1279] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vectors based on the adeno-associated virus (rAAV) are able to transduce the retina of animal models, including non-human primates, for a long-term period, safely and at sustained levels. The ability of the various rAAV serotypes to transduce retinal target cells has been exploited to successfully transfer genes to photoreceptors, retinal pigment epithelium and the inner retina, which are affected in many inherited and non-inherited blinding diseases. rAAV-mediated, constitutive and regulated gene expression at therapeutic levels has been achieved in the retina of animal models, thus providing proof-of-principle of gene therapy efficacy and safety in models of dominant and recessive retinal disorders. In addition, gene transfer of molecules with either neurotrophic or antiangiogenic properties provides useful alternatives to the classic gene replacement for treatment of both mendelian and complex traits affecting the retina. Years of successful rAAV-mediated gene transfer to the retina have resulted in restoration of vision in dogs affected with congenital blindness. This has paved the way to the first attempts at treating inherited retinal diseases in humans with rAAV. Although the results of rAAV clinical trials for non-retinal diseases give a warning that the outcome of viral-mediated gene transfer in humans may be different from that predicted based on results in other species, the immune privilege of the retina combined with the versatility of rAAV serotypes may ultimately provide the first successful treatment of human inherited diseases using rAAV.
Collapse
Affiliation(s)
- Mariacarmela Allocca
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino, 111. 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
85
|
Zhang SX, Ma JX. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 2007; 26:1-37. [PMID: 17074526 DOI: 10.1016/j.preteyeres.2006.09.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and as a consequence, there is no satisfactory therapy for ocular NV. In the last 10 years, a number of studies provided increasing evidence demonstrating that the imbalance between angiogenic stimulating factors and angiogenic inhibitors is a major contributor to the angiogenesis induced by various insults, such as hypoxia or ischemia, inflammation and tumor. The angiogenic inhibitors alone or in combination with other existing therapies are, therefore, believed to be promising in the treatment of ocular NV in the near future. This article reviews recent progress in studies on the mechanisms and treatment of ocular NV, focusing on the implication and therapeutic potential of endogenous angiogenic inhibitors in ocular NV.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
86
|
Campochiaro PA. Seeing the light: New insights into the molecular pathogenesis of retinal diseases. J Cell Physiol 2007; 213:348-54. [PMID: 17654481 DOI: 10.1002/jcp.21213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the past, most treatments for retinal diseases have been empirical. Steroids and/or laser photocoagulation and/or surgery have been tried for almost every condition with little or no understanding of the underlying disease. Over the past several years vision researchers have uncovered molecular components of processes, such as visual transduction and the visual cycle, that are critical for visual function, and identified other molecules that lead to dysfunction and disease processes such as neovascularization and macular edema. It is becoming clear that dysregulation of certain molecules can have major effects on retinal structure and function. Studies in animal models have suggested that inhibiting or augmenting levels of a single molecule can have major effects in complex disease processes. Although several molecules probably contribute to neovascularization and excessive vascular permeability in the eye, blockade of vascular endothelial growth factor (VEGF) has remarkable beneficial effects in animal models that have now been proven to apply to human diseases in clinical trials. Intraocular injection of VEGF antagonists has revolutionized the treatment of choroidal neovascularization (CNV) and macular edema and serves as a model of targeted ocular pharmacotherapy. Significant progress elucidating the molecular pathogenesis of several disease processes in the eye may soon lead to new treatments following the lead of VEGF antagonists. Initial treatments that provide benefit from frequent intraocular injections are likely to be followed by sustained delivery of drugs and/or prolonged protein delivery by gene transfer. The eye has entered the era of molecular therapy.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA.
| |
Collapse
|
87
|
Selvam S, Thomas PB, Hamm-Alvarez SF, Schechter JE, Stevenson D, Mircheff AK, Trousdale* MD. Current status of gene delivery and gene therapy in lacrimal gland using viral vectors. Adv Drug Deliv Rev 2006; 58:1243-57. [PMID: 17056149 PMCID: PMC1773022 DOI: 10.1016/j.addr.2006.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
Gene delivery is one of the biggest challenges in the field of gene therapy. It involves the efficient transfer of transgenes into somatic cells for therapeutic purposes. A few major drawbacks in gene delivery include inefficient gene transfer and lack of sustained transgene expression. However, the classical method of using viral vectors for gene transfer has circumvented some of these issues. Several kinds of viruses, including retrovirus, adenovirus, adeno-associated virus, and herpes simplex virus, have been manipulated for use in gene transfer and gene therapy applications. The transfer of genetic material into lacrimal epithelial cells and tissues, both in vitro and in vivo, has been critical for the study of tear secretory mechanisms and autoimmunity of the lacrimal gland. These studies will help in the development of therapeutic interventions for autoimmune disorders such as Sjögren's syndrome and dry eye syndromes which are associated with lacrimal dysfunction. These studies are also critical for future endeavors which utilize the lacrimal gland as a reservoir for the production of therapeutic factors which can be released in tears, providing treatment for diseases of the cornea and posterior segment. This review will discuss the developments related to gene delivery and gene therapy in the lacrimal gland using several viral vector systems.
Collapse
Affiliation(s)
- Shivaram Selvam
- Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Padmaja B. Thomas
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Pharmaceutical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joel E. Schechter
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Douglas Stevenson
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Austin K. Mircheff
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Melvin D. Trousdale*
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Corresponding Author: Doheny Eye Institute, 1450 San Pablo Street, #204, Los Angeles, CA, 90033 USA, Tel.: +1 323 442 6610, Fax: +1 323 442 6688, E-mail: (Melvin D. Trousdale)
| |
Collapse
|
88
|
Tong JP, Yao YF. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin Biochem 2006; 39:267-76. [PMID: 16409998 DOI: 10.1016/j.clinbiochem.2005.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/05/2005] [Accepted: 11/24/2005] [Indexed: 01/21/2023]
Abstract
Ocular angiogenesis may lead to visual impairment and even irreversible blindness in people of all ages worldwide. Choroidal neovascularization (CNV), a major clinical complication of ocular angiogenesis, is an important cause of vision loss that affects a large number of people. Physiological angiogenesis is tightly controlled by a balance in the expression of angiogenic and anti-angiogenic factors. While the underlying mechanism of CNV is complex, it is attributed to an upset in this balance. The vascular endothelial growth factor (VEGF) is essential in the development of CNV as one of the most potent angiogenic stimulators and vascular permeability factors. Pigment epithelium derived factor (PEDF) is a strong inhibitor of angiogenesis with high neuroprotective effects. VEGF and PEDF both possess multiple biological activities and functions that affect a large variety of tissue cells of the eye and other organs. Inappropriate expression levels are associated with many diseases involving neovascularization. This paper describes the unbalanced expressions of VEGF and PEDF as a cause of CNV. Based on the respective angiogenic and anti-angiogenic properties of VEGF and PEDF, experimental models have been devised to genetically reduce VEGF or enhance PEDF to achieve therapeutic effects. Gene therapy for CNV is promising and is under intensive research.
Collapse
Affiliation(s)
- Jian-Ping Tong
- Zheyi Eye Center, The First Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, 310003 Zhejiang, PR China.
| | | |
Collapse
|