51
|
Rappaport J, Manthe RL, Garnacho C, Muro S. Altered Clathrin-Independent Endocytosis in Type A Niemann-Pick Disease Cells and Rescue by ICAM-1-Targeted Enzyme Delivery. Mol Pharm 2015; 12:1366-76. [PMID: 25849869 DOI: 10.1021/mp5005959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pharmaceutical intervention often requires therapeutics and/or their carriers to enter cells via endocytosis. Therefore, endocytic aberrancies resulting from disease represent a key, yet often overlooked, parameter in designing therapeutic strategies. In the case of lysosomal storage diseases (LSDs), characterized by lysosomal accumulation of undegraded substances, common clinical interventions rely on endocytosis of recombinant enzymes. However, the lysosomal defect in these diseases can affect endocytosis, as we recently demonstrated for clathrin-mediated uptake in patient fibroblasts with type A Niemann-Pick disease (NPD), a disorder characterized by acid sphingomylinase (ASM) deficiency and subsequent sphingomyelin storage. Using similar cells, we have examined if this is also the case for clathrin-independent pathways, including caveolae-mediated endocytosis and macropinocytosis. We observed impaired caveolin-1 enrichment at ligand-binding sites in NPD relative to wild type fibroblasts, corresponding with altered uptake of ligands and fluid-phase markers by both pathways. Similarly, aberrant lysosomal storage of sphingomyelin induced by pharmacological means also diminished uptake. Partial degradation of the lysosomal storage by untargeted recombinant ASM led to partial uptake enhancement, whereas both parameters were restored to wild type levels by ASM delivery using model polymer nanocarriers specifically targeted to intercellular adhesion molecule-1. Carriers also restored caveolin-1 enrichment at ligand-binding sites and uptake through the caveolar and macropinocytic routes. These results demonstrate a link between lysosomal storage in NPD and alterations in clathrin-independent endocytosis, which could apply to other LSDs. Hence, this study shall guide the design of therapeutic approaches using viable endocytic pathways.
Collapse
Affiliation(s)
- Jeff Rappaport
- †Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742-4450, United States
| | - Rachel L Manthe
- †Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742-4450, United States
| | - Carmen Garnacho
- ‡Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville 41009, Spain
| | - Silvia Muro
- †Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742-4450, United States.,§Institute for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742-4450, United States
| |
Collapse
|
52
|
Wexselblatt E, Esko JD, Tor Y. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery. ACS NANO 2015; 9:3961-3968. [PMID: 25831231 DOI: 10.1021/nn507382n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.
Collapse
Affiliation(s)
- Ezequiel Wexselblatt
- †Chemistry and Biochemistry and ‡Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jeffrey D Esko
- †Chemistry and Biochemistry and ‡Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yitzhak Tor
- †Chemistry and Biochemistry and ‡Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
53
|
Muro S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv Transl Res 2015; 2:169-86. [PMID: 24688886 DOI: 10.1007/s13346-012-0072-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research University of Maryland, College Park, MD, 20742, USA ; Fischell Dept. of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
54
|
Biophysical characterization of lectin–glycan interactions for therapeutics, vaccines and targeted drug-delivery. Future Med Chem 2014; 6:2113-29. [DOI: 10.4155/fmc.14.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lectin–glycan interactions play a role in biological processes, host–pathogen interactions and in disease. A more detailed understanding of these interactions is not only useful for the elucidation of their biological function but can also be applied in immunology, drug development and delivery and diagnostics. We review some commonly used biophysical techniques for studying lectin–glycan interactions; namely: frontal affinity chromatography, glycan/lectin microarray, surface plasmon resonance, electrochemical impedance spectroscopy, isothermal titration calorimetry, fluorescent assays, enzyme linked lectin sorbent assay and saturation transfer difference nuclear magnetic resonance spectroscopy. Each method is evaluated on efficiency, cost and throughput. We also consider the advantages and limitations of each technique and provide examples of their application in biology, drug discovery and delivery, immunology, glycoprofiling and biosensing.
Collapse
|
55
|
Ghaffarian R, Muro S. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery. Mol Pharm 2014; 11:4350-62. [PMID: 25301142 PMCID: PMC4255724 DOI: 10.1021/mp500409y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ligand-targeted,
receptor-mediated endocytosis is commonly exploited for intracellular
drug delivery. However, cells-surface receptors may follow distinct
endocytic fates when bound by monomeric vs multimeric ligands. Our
purpose was to study this paradigm using ICAM-1, an endothelial receptor
involved in inflammation, to better understand its regulation and
potential for drug delivery. Our procedure involved fluorescence microscopy
of human endothelial cells to determine the endocytic behavior of
unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM)
vs multimeric (anti-ICAM biotin–streptavidin conjugates or
anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that
both monomeric and multimeric ligands undergo a similar endocytic
pathway sensitive to amiloride (∼50% inhibition), but not inhibitors
of clathrin-pits or caveoli. After 30 min, ∼60–70% of
both ligands colocalized with Rab11a-compartments. By 3–5 h,
∼65–80% of multimeric anti-ICAM colocalized with perinuclear
lysosomes with ∼60–80% degradation, while 70% of monomeric
anti-ICAM remained associated with Rab11a at the cell periphery and
recycled to and from the cell-surface with minimal (<10%) lysosomal
colocalization and minimal (≤15%) degradation. In the absence
of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis
with peripheral distribution, suggesting that monomeric (not multimeric)
anti-ICAM follows the route of this receptor. In conclusion, ICAM-1
can mediate different intracellular itineraries, revealing new insight
into this biological pathway and alternative avenues for drug delivery.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland , 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | | |
Collapse
|
56
|
Singh D, Singh S, Sahu J, Srivastava S, Singh MR. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:401-9. [PMID: 25229834 DOI: 10.3109/21691401.2014.955106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past few years, nanoparticles and their role in drug delivery have been the centre of attraction as new drug delivery systems. Various forms of nanosystems have been designed, such as nanoclays, scaffolds and nanotubes, having numerous applications in areas such as drug loading, target cell uptake, bioassay and imaging. The present study discusses various types of nanoparticles, with special emphasis on ceramic nanocarriers. Ceramic materials have high mechanical strength, good body response and low or non-existing biodegradability. In this article, the various aspects concerning ceramic nanoparticles, such as their advantages over other systems, their cellular uptake and toxicity concerns are discussed in detail.
Collapse
Affiliation(s)
- Deependra Singh
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Satpal Singh
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Jageshwari Sahu
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Shikha Srivastava
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Manju Rawat Singh
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| |
Collapse
|
57
|
Rappaport J, Garnacho C, Muro S. Clathrin-mediated endocytosis is impaired in type A-B Niemann-Pick disease model cells and can be restored by ICAM-1-mediated enzyme replacement. Mol Pharm 2014; 11:2887-95. [PMID: 24949999 PMCID: PMC4144747 DOI: 10.1021/mp500241y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Drugs
often use endocytosis to achieve intracellular delivery,
either by passive uptake from the extracellular fluid or by active
targeting of cell surface features such as endocytic receptors. An
example is enzyme replacement therapy, a clinically practiced treatment
for several lysosomal storage diseases where glycosylated recombinant
enzymes naturally target the mannose-6-phosphate receptor and are
internalized by clathrin mediated endocytosis (CME). However, lysosomal
substrate accumulation, a hallmark of these diseases, has been indirectly
linked to aberrant endocytic activity. These effects are poorly understood,
creating an obstacle to therapeutic efficiency. Here we explored endocytic
activity in fibroblasts from patients with type A Niemann–Pick
disease, a lysosomal storage disease characterized by acid sphingomyelinase
(ASM) deficiency. The uptake of fluid phase markers and clathrin-associated
ligands, formation of endocytic structures, and recruitment of intracellular
clathrin to ligand binding sites were all altered, demonstrating aberrant
CME in these cells. Model polymer nanocarriers targeted to intercellular
adhesion molecule-1 (ICAM-1), which are internalized by a clathrin-independent
route, enhanced the intracellular delivery of recombinant ASM more
than 10-fold compared to free enzyme. This strategy reduced substrate
accumulation and restored clathrin endocytic activity to wild-type
levels. There appears to be a relationship between lysosomal storage
and diminished CME, and bypassing this pathway by targeting ICAM-1
may enhance future therapies for lysosomal storage diseases.
Collapse
Affiliation(s)
- Jeff Rappaport
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742-4450, United States
| | | | | |
Collapse
|
58
|
Hsu J, Bhowmick T, Burks SR, Kao JPY, Muro S. Enhancing biodistribution of therapeutic enzymes in vivo by modulating surface coating and concentration of ICAM-1-targeted nanocarriers. J Biomed Nanotechnol 2014; 10:345-54. [PMID: 24738342 DOI: 10.1166/jbn.2014.1718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coupling therapeutic proteins to targeted nanocarriers can enhance their biodistribution. This is the case for enzyme replacement therapies where intravenously injected enzymes must avoid prolonged blood exposure while reaching body organs. We have shown enhanced tissue targeting of various lysosomal enzymes by coupling to nanocarriers targeted to intercellular adhesion molecule-1 (ICAM-1). Here, we varied design parameters to modify tissue enzyme levels without affecting specific targeting and relative biodistribution. We coupled a-galactosidase (aGal; affected in Fabry disease) to model polymer nanocarriers and varied enzyme load (50 vs. 500 molecules/particle), anti-ICAM surface density (80 vs. 180 molecules/particle), and nanocarrier concentration (1.6 x 1013 vs. 2.4 x 1013 carriers/kg) to render three formulations (45, 449, 555 microg alphaGal/kg). Naked alpha Gal preferentially distributed in blood vs. organs, while nanocarriers shifted biodistribution from blood to tissues. Accumulation in brain, kidneys, heart, liver, lungs, and spleen did not vary among nanocarrier formulations, with enhanced specific tissue accumulation compared to naked aGal. The highest specificity was associated with lowest antibody density and nanocarrier concentration, but highest enzyme load; possibly because of synergistic enzyme affinity toward cell-surface markers. Variation of these parameters significantly increased absolute enzyme accumulation. This strategy may help optimize delivery of lysosomal enzyme replacement and, likely, other protein delivery approaches.
Collapse
|
59
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
60
|
Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One 2013; 8:e65620. [PMID: 23724146 PMCID: PMC3665770 DOI: 10.1371/journal.pone.0065620] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/02/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the third leading cause of cancer death worldwide. The only approved systemic treatment for unresectable HCC is the oral kinase inhibitor, sorafenib. Recombinant human acid sphingomyelinase (rhASM), which hydrolyzes sphingomyelin to ceramide, is an orphan drug under development for the treatment of Type B Niemann-Pick disease (NPD). Due to the hepatotropic nature of rhASM and its ability to generate pro-apoptotic ceramide, this study evaluated the use of rhASM as an adjuvant treatment with sorafenib in experimental models of HCC. METHODOLOGY/PRINCIPAL FINDINGS In vitro, rhASM/sorafenib treatment reduced the viability of Huh7 liver cancer cells more than sorafenib. In vivo, using a subcutaneous Huh7 tumor model, mouse survival was increased and proliferation in the tumors decreased to a similar extent in both sorafenib and rhASM/sorafenib treatment groups. However, combined rhASM/sorafenib treatment significantly lowered tumor volume, increased tumor necrosis, and decreased tumor blood vessel density compared to sorafenib. These results were obtained despite poor delivery of rhASM to the tumors. A second (orthotopic) model of Huh7 tumors also was established, but modest ASM activity was similarly detected in these tumors compared to healthy mouse livers. Importantly, no chronic liver toxicity or weight loss was observed from rhASM therapy in either model. CONCLUSIONS/SIGNIFICANCE The rhASM/sorafenib combination exhibited a synergistic effect on reducing the tumor volume and blood vessel density in Huh7 xenografts, despite modest activity of rhASM in these tumors. No significant increases in survival were observed from the rhASM/sorafenib treatment. The poor delivery of rhASM to Huh7 tumors may be due, at least in part, to low expression of mannose receptors. The safety and efficacy of this approach, together with the novel findings regarding enzyme targeting, merits further investigation.
Collapse
|
61
|
Papademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor. J Inherit Metab Dis 2013; 36:467-77. [PMID: 22968581 PMCID: PMC3556357 DOI: 10.1007/s10545-012-9534-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/13/2022]
Abstract
Targeting lysosomal enzymes to receptors involved in transport into and across cells holds promise to enhance peripheral and brain delivery of enzyme replacement therapies (ERTs) for lysosomal storage disorders. Receptors being explored include those associated with clathrin-mediated pathways, yet other pathways seem also viable. Well characterized examples are that of transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1), involved in iron transport and leukocyte extravasation, respectively. TfR and ICAM-1 support ERT delivery via clathrin- vs. cell adhesion molecule-mediated mechanisms, displaying different valency and size restrictions. To comparatively assess this, we used antibodies vs. larger multivalent antibody-coated carriers and evaluated TfR vs. ICAM-1 binding and endocytosis in endothelial cells, as well as in vivo biodistribution and delivery of a model lysosomal enzyme required in peripheral organs and brain: acid sphingomyelinase (ASM), deficient in types A-B Niemann Pick disease. We found similar binding of antibodies to both receptors under control conditions, with enhanced binding to activated endothelium for ICAM-1, yet only anti-TfR induced endocytosis efficiently. Contrarily, antibody-coated carriers showed enhanced binding, engulfment, and endocytosis for ICAM-1. In mice, anti-TfR enhanced brain targeting over anti-ICAM, with an opposite outcome in the lungs, while carriers enhanced ICAM-1 targeting over TfR in both organs. Both targeted carriers enhanced ASM delivery to the brain and lungs vs. free ASM, with greater enhancement for anti-ICAM carriers. Therefore, targeting TfR or ICAM-1 improves lysosomal enzyme delivery. Yet, TfR targeting may be more efficient for smaller conjugates or fusion proteins, while ICAM-1 targeting seems superior for multivalent carrier formulations.
Collapse
Affiliation(s)
- Jason Papademetriou
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville 41009, Spain
| | - Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Tridib Bhowmick
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Edward H. Schuchman
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Author to whom correspondence should be addressed: Silvia Muro, Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, College Park, MD 20742-4450.
| |
Collapse
|
62
|
|
63
|
Ayyaswamy PS, Muzykantov V, Eckmann DM, Radhakrishnan R. Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation. J Nanotechnol Eng Med 2013; 4:101011-1010115. [PMID: 23917383 PMCID: PMC3708709 DOI: 10.1115/1.4024004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/06/2013] [Indexed: 11/08/2022]
Abstract
This review discusses current progress and future challenges in the numerical modeling of targeted drug delivery using functionalized nanocarriers (NC). Antibody coated nanocarriers of various size and shapes, also called functionalized nanocarriers, are designed to be injected in the vasculature, whereby they undergo translational and rotational motion governed by hydrodynamic interaction with blood particulates as well as adhesive interactions mediated by the surface antibody binding to target antigens/receptors on cell surfaces. We review current multiscale modeling approaches rooted in computational fluid dynamics and nonequilibrium statistical mechanics to accurately resolve fluid, thermal, as well as adhesive interactions governing nanocarrier motion and their binding to endothelial cells lining the vasculature. We also outline current challenges and unresolved issues surrounding the modeling methods. Experimental approaches in pharmacology and bioengineering are discussed briefly from the perspective of model validation.
Collapse
Affiliation(s)
- Portonovo S. Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics,University of Pennsylvania,Philadelphia, PA 19104
| | - Vladimir Muzykantov
- Department of Pharmacology,and Center for Targeted Therapeutics and Translational Nanomedicine,University of Pennsylvania,Philadelphia, PA 19104
| | - David M. Eckmann
- Institute of Translational Medicine and Therapeutics,Department of Anesthesiology and Critical Care,and Department of Bioengineering,University of Pennsylvania,Philadelphia, PA 19104
| | - Ravi Radhakrishnan
- Institute of Translational Medicine and Therapeutics,Department of Bioengineering,Department of Chemical and Biomolecular Engineering,University of Pennsylvania,Philadelphia, PA 19104e-mail:
| |
Collapse
|
64
|
Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1363-84. [PMID: 22917779 DOI: 10.1016/j.addr.2012.08.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022]
Abstract
The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials.
Collapse
|
65
|
ICAM-1 and IL-8 are expressed by DEHP and suppressed by curcumin through ERK and p38 MAPK in human umbilical vein endothelial cells. Inflammation 2012; 35:859-70. [PMID: 21932059 DOI: 10.1007/s10753-011-9387-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study aimed to determine whether curcumin isolated from the rhizome of Curcuma longa Linn could inhibit di-(2-ethylhexyl) phthalate (DEHP)-induced allergic inflammatory responses in human umbilical vein endothelial cells (HUVECs). We found that DEHP dose-dependently elevated adhesion molecule-1 (ICAM-1) protein level within 15-30 min, which was independent of de novo protein synthesis. And a late-phase induction of ICAM-1 was observed within 8 h treatment of DEHP via de novo protein synthesis through transcription and translation. DEHP also increased the expression of interleukin (IL)-8 in a time- and dose-dependent manner. Pretreatment with curcumin dose-dependently decreased DEHP-induced expression of ICAM-1 and IL-8 as well as phosphorylation of ERK1/2 and p38. Preincubation with ERK1/2 inhibitor (PD98059) or p38 inhibitor (SB203580) markedly blocked DEHP-stimulated activation of ICAM-1 and IL-8. We suggest that curcumin inhibits DEHP-induced expression of ICAM-1 and IL-8 through ERK and p38 MAPK signaling pathways in HUVECs and may contribute to ameliorate pathologies of DEHP-related allergic disorders.
Collapse
|
66
|
Muzykantov VR, Radhakrishnan R, Eckmann DM. Dynamic factors controlling targeting nanocarriers to vascular endothelium. Curr Drug Metab 2012; 13:70-81. [PMID: 22292809 DOI: 10.2174/138920012798356916] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/05/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022]
Abstract
Endothelium lining the luminal surface of blood vessels is the key target and barrier for vascular drug delivery. Nanocarriers coated with antibodies or affinity peptides that bind specifically to endothelial surface determinants provide targeted delivery of therapeutic cargoes to these cells. Endothelial targeting consists of several phases including circulation in the bloodstream, anchoring on the endothelial surface and, in some cases, intracellular uptake and trafficking of the internalized materials. Dynamic parameters of the vasculature including the blood hydrodynamics as well as surface density, accessibility, membrane mobility and clustering of target determinants modulate these phases of the targeting, especially anchoring to endothelium. Further, such controlled parameters of design of drug nanocarriers such as affinity, surface density and epitope specificity of targeting antibodies, carrier size and shape also modulate endothelial targeting and resultant sub-cellular addressing. This article reviews experimental and computational approaches for analysis of factors modulating targeting nanocarriers to the endothelial cells.
Collapse
|
67
|
Serrano D, Bhowmick T, Chadha R, Garnacho C, Muro S. Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium. Arterioscler Thromb Vasc Biol 2012; 32:1178-85. [PMID: 22328778 PMCID: PMC3331944 DOI: 10.1161/atvbaha.111.244186] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/25/2012] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Engagement of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by ICAM-1-targeted carriers induces cell adhesion molecule-mediated endocytosis, providing intraendothelial delivery of therapeutics. This pathway differs from classical endocytic mechanisms and invokes aspects of endothelial signaling during inflammation. ICAM-1 interacts with Na(+)/H(+) exchanger NHE1 during endocytosis, but it is unclear how this regulates plasmalemma and cytoskeletal changes. We studied such aspects in this work. METHODS AND RESULTS We used fluorescence and electron microscopy, inhibitors and knockout tools, cell culture, and mouse models. ICAM-1 engagement by anti-ICAM carriers induced sphingomyelin-enriched engulfment structures. Acid sphingomyelinase (ASM), an acidic enzyme that hydrolyzes sphingomyelin into ceramide (involved in plasmalemma deformability and cytoskeletal reorganization), redistributed to ICAM-1-engagement sites at ceramide-enriched areas. This induced actin stress fibers and carrier endocytosis. Inhibiting ASM impaired ceramide enrichment, engulfment structures, cytoskeletal reorganization, and carrier uptake, which was rescued by supplying this enzyme activity exogenously. Interfering with NHE1 rendered similar outcomes, suggesting that Na(+)/H(+) exchange might provide an acidic microenvironment for ASM at the plasmalemma. CONCLUSIONS These findings are consistent with the ability of endothelial cells to internalize relatively large ICAM- 1--targeted drug carriers and expand our knowledge on the regulation of the sphingomyelin/ceramide pathway by the vascular endothelium.
Collapse
Affiliation(s)
- Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD
| | - Tridib Bhowmick
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Rishi Chadha
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Carmen Garnacho
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Silvia Muro
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|
68
|
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41:2971-3010. [PMID: 22388185 PMCID: PMC3684255 DOI: 10.1039/c2cs15344k] [Citation(s) in RCA: 1170] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).
Collapse
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zeyu Xiao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro M. Valencia
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aleksandar F. Radovic-Moreno
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
69
|
Shuvaev VV, Muzykantov VR. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS NANO 2011; 5:6991-9. [PMID: 21838300 PMCID: PMC3342815 DOI: 10.1021/nn2015453] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The endothelial lining of the lumen of blood vessels is a key therapeutic target for many human diseases. Polymeric filomicelles that self-assemble from polyethylene oxide (PEO)-based diblock copolymers are long and flexible rather than small or rigid, can be loaded with drugs, and--most importantly--they circulate for a prolonged period of time in the bloodstream due in part to flow alignment. Filomicelles seem promising for targeted drug delivery to endothelial cells because they can in principle adhere strongly, length-wise to specific cell surface determinants. In order to achieve such a goal of vascular drug delivery, two fundamental questions needed to be addressed: (i) whether these supramolecular filomicelles retain structural integrity and dynamic flexibility after attachment of targeting molecules such as antibodies, and (ii) whether the avidity of antibody-carrying filomicelles is sufficient to anchor the carrier to the endothelial surface despite the effects of flow that oppose adhesive interactions. Here we make targeted filomicelles that bear antibodies which recognize distinct endothelial surface molecules. We characterize these antibody targeted filomicelles and prove that (i) they retain structural integrity and dynamic flexibility and (ii) they adhere to endothelium with high specificity both in vitro and in vivo. These results provide the basis for a new drug delivery approach employing antibody-targeted filomicelles that circulate for a prolonged time yet bind to endothelial cells in vascular beds expressing select markers.
Collapse
Affiliation(s)
| | - Vladimir R. Muzykantov
- Corresponding author at: Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, United States. Tel.: +1 215 898 9100; fax: +1 215 898 0868. (V.R. Muzykantov)
| |
Collapse
|
70
|
Hsu J, Northrup L, Bhowmick T, Muro S. Enhanced delivery of α-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:731-9. [PMID: 21906578 DOI: 10.1016/j.nano.2011.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/08/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022]
Abstract
UNLABELLED Enzyme replacement therapies for lysosomal storage disorders are often hindered by suboptimal biodistribution of recombinant enzymes after systemic injection. This is the case for Pompe disease caused by acid α-glucosidase (GAA) deficiency, leading to excess glycogen storage throughout the body, mainly the liver and striated muscle. Targeting intercellular adhesion molecule-1 (ICAM-1), a protein involved in inflammation and overexpressed on most cells under pathological conditions, provides broad biodistribution and lysosomal transport of therapeutic cargoes. To improve its delivery, we coupled GAA to polymer nanocarriers (NCs; ∼180 nm) coated with an antibody specific to ICAM-1. Fluorescence microscopy showed specific targeting of anti-ICAM/GAA NCs to cells, with efficient internalization and lysosomal transport, enhancing glycogen degradation over nontargeted GAA. Radioisotope tracing in mice demonstrated enhanced GAA accumulation in all organs, including Pompe targets. Along with improved delivery of Niemann-Pick and Fabry enzymes, previously described, these results indicate that ICAM-1 targeting holds promise as a broad platform for lysosomal enzyme delivery. FROM THE CLINICAL EDITOR In this study, ICAM-1 targeted nanocarriers were used to deliver GAA (acid alpha glucosidase) into cells to address the specific enzyme deficiency in Pompe's disease. The results unequivocally demonstrate enhanced enzyme delivery over nontargeted GAA in a mice model.
Collapse
Affiliation(s)
- Janet Hsu
- Fischell Department of Bioengineering, School of Engineering, University of Maryland, College Park, Maryland, USA
| | | | | | | |
Collapse
|
71
|
Manikwar P, Tejo BA, Shinogle H, Moore DS, Zimmerman T, Blanco F, Siahaan TJ. Utilization of I-domain of LFA-1 to Target Drug and Marker Molecules to Leukocytes. Theranostics 2011; 1:277-89. [PMID: 21611107 PMCID: PMC3100608 DOI: 10.7150/thno/v01p0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/09/2011] [Indexed: 01/02/2023] Open
Abstract
The long-term objective of this project is to utilize the I-domain protein for the α-subunit of LFA-1 to target drugs to lymphocytes by binding to ICAM receptors on the cell surface. The short-term goal is to provide proof-of-concept that I-domain conjugated to small molecules can still bind to and uptake by ICAM-1 on the surface of lymphocytes (i.e., Raji cells). To accomplish this goal, the I-domain protein was labeled with FITC at several lysine residues to produce the FITC-I-domain and CD spectroscopy showed that the FITC-I-domain has a secondary structure similar to that of the parent I-domain. The FITC-I-domain was taken up by Raji cells via receptor-mediated endocytosis and its uptake can be blocked by anti-I-domain mAb but not by its isotype control. Antibodies to ICAM-1 enhance the binding of I-domain to ICAM-1, suggesting it binds to ICAM-1 at different sites than the antibodies. The results indicate that fluorophore modification does not alter the binding and uptake properties of the I-domain protein. Thus, I-domain could be useful as a carrier of drug to target ICAM-1-expressing lymphocytes.
Collapse
|
72
|
Shuvaev VV, Muzykantov VR. Targeted modulation of reactive oxygen species in the vascular endothelium. J Control Release 2011; 153:56-63. [PMID: 21457736 DOI: 10.1016/j.jconrel.2011.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/21/2011] [Indexed: 01/28/2023]
Abstract
'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6068, USA
| | | |
Collapse
|
73
|
Solomon M, D’Souza GGM. Approaches to Achieving Sub-cellular Targeting of Bioactives Using Pharmaceutical Nanocarriers. INTRACELLULAR DELIVERY 2011. [DOI: 10.1007/978-94-007-1248-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
74
|
Calderon AJ, Bhowmick T, Leferovich J, Burman B, Pichette B, Muzykantov V, Eckmann DM, Muro S. Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers. J Control Release 2010; 150:37-44. [PMID: 21047540 DOI: 10.1016/j.jconrel.2010.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/15/2022]
Abstract
Targeting of drug carriers to cell adhesion molecules expressed on endothelial cells (ECs) may improve treatment of diseases involving the vascular endothelium. This is the case for carriers targeted to intercellular adhesion molecule 1 (ICAM-1), an endothelial surface protein overexpressed in many pathologies. In order to optimize our design of anti-ICAM carriers, we have explored in this study the influence of two carrier design parameters on specific and efficient endothelial targeting in vitro and in vivo: carrier dose and density of targeting molecules (antibodies-Ab) on the carrier surface. Using radioisotope tracing we assessed the role of these parameters on the biodistribution of model polymer carriers targeted to ICAM-1 ((125)I-anti-ICAM carriers) in mice. Increasing the carrier dose enhanced specific accumulation in the lung vasculature (a preferential endothelial target) and decreased non-specific hepatic and splenic uptake. Increasing the Ab density enhanced lung accumulation with minimally reduced liver and spleen uptake. These studies account for the influence of blood hydrodynamic forces on carrier binding to endothelium, relevant to arterioles, venules and larger vessels. Yet, carriers may rather bind to the extensive capillary bed where shear stress is minimal. We used fluorescence microscopy to determine binding kinetics of FITC-labeled anti-ICAM carriers in static conditions, at the threshold found in vivo and conditions mimicking low vs high ICAM-1 expression on quiescent vs activated ECs. Binding to activated ECs reached similar saturation with all tested Ab densities and carrier concentrations. In quiescent cells, carriers reached ~3-fold lower binding saturation, even at high carrier concentration and Ab density, and carriers with low Ab density did not reach saturation, reflecting avidity below threshold. Binding kinetics was positively regulated by anti-ICAM carrier concentration and Ab density. Counterintuitively, binding was faster in quiescent ECs (except for carriers with high Ab density and concentration), likely due to fast saturation of fewer binding sites on these cells. These results will guide optimization of ICAM-1-targeted carriers, e.g., in the context of targeting healthy vs diseased endothelium for prophylactic vs therapeutic interventions.
Collapse
Affiliation(s)
- Andres J Calderon
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Hsu J, Serrano D, Bhowmick T, Kumar K, Shen Y, Kuo YC, Garnacho C, Muro S. Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease. J Control Release 2010; 149:323-31. [PMID: 21047542 DOI: 10.1016/j.jconrel.2010.10.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/19/2010] [Accepted: 10/21/2010] [Indexed: 01/31/2023]
Abstract
Fabry disease, due to the deficiency of α-galactosidase A (α-Gal), causes lysosomal accumulation of globotriaosylceramide (Gb3) in multiple tissues and prominently in the vascular endothelium. Although enzyme replacement therapy (ERT) by injection of recombinant α-Gal improves the disease outcome, the effects on the vasculopathy associated with life-threatening cerebrovascular, cardiac and renal complications are still limited. We designed a strategy to enhance the delivery of α-Gal to organs and endothelial cells (ECs). We targeted α-Gal to intercellular adhesion molecule 1 (ICAM-1), a protein expressed on ECs throughout the vasculature, by loading this enzyme on nanocarriers coated with anti-ICAM (anti-ICAM/α-Gal NCs). In vitro radioisotope tracing showed efficient loading of α-Gal on anti-ICAM NCs, stability of this formulation under storage and in model physiological fluids, and enzyme release in response to lysosome environmental conditions. In mice, the delivery of (125)I-α-Gal was markedly enhanced by anti-ICAM/(125)I-α-Gal NCs in brain, kidney, heart, liver, lung, and spleen, and transmission electron microscopy showed anti-ICAM/α-Gal NCs attached to and internalized into the vascular endothelium. Fluorescence microscopy proved targeting, endocytosis and lysosomal transport of anti-ICAM/α-Gal NCs in macro- and micro-vascular ECs and a marked enhancement of Gb3 degradation. Therefore, this ICAM-1-targeting strategy may help improve the efficacy of therapeutic enzymes for Fabry disease.
Collapse
Affiliation(s)
- Janet Hsu
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
77
|
Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond) 2010; 5:287-306. [PMID: 20148639 DOI: 10.2217/nnm.09.110] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oral route is the most common route for the delivery of drugs because it is simple to implement and improves patient compliance and quality of life. However, oral absorption is limited by various physiological barriers and remains a scientific challenge. Nanometric-sized drug delivery systems are being extensively studied and provide promising potential for oral drug delivery. Many different technological solutions have been proposed to enhance the bioavailability or the targeting of drug after oral administration. To reach these goals, it is important to analyze the biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. In the present review, the gastrointestinal barrier and physiological stress factors with regard to nanocarriers' performance or integrity issues are first described. Second, the different characteristics offered by the nanocarriers (size, surface composition and properties mediated by external factors such as ligands) and their effect on the optimal transport of drug into the bloodstream are discussed. Finally, the integrity issue is discussed in function of the expected role of the nanocarriers: bioavailability enhancement or pharmacological targeting.
Collapse
|
78
|
Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:189-204. [PMID: 20112244 PMCID: PMC4002210 DOI: 10.1002/wnan.73] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses the multiple bio- and nanotechnological strategies developed in the last few decades for treatment of a group of fatal genetic diseases termed lysosomal storage disorders. Some basic foundation on the biomedical causes and social and clinical relevance of these diseases is provided. Several treatment modalities, from those currently available to novel therapeutic approaches under development, are also discussed; these include gene and cell therapies, substrate reduction therapy, chemical chaperones, enzyme replacement therapy, multifunctional chimeras, targeting strategies, and drug carrier approaches.
Collapse
Affiliation(s)
- Silvia Muro
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA.
| |
Collapse
|
79
|
Calderon AJ, Muzykantov V, Muro S, Eckmann DM. Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells. Biorheology 2010; 46:323-41. [PMID: 19721193 DOI: 10.3233/bir-2009-0544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular drug delivery by administration of carriers targeted to endothelial surface determinants, such as intercellular adhesion molecule (ICAM-1), holds considerable promise to improve disease treatment. As a model to define elusive factors controlling the interplay between carrier motion in the bloodstream and its interactions with molecular targets in the endothelial wall, we used 1 mum beads coated with ICAM-1 monoclonal antibody (Ab) at 370, 1100 or 4100 Ab/microm2. Carriers were perfused at two shear rates over resting or activated endothelial cells, expressing minimum vs. maximum ICAM-1 levels, to determine carrier rolling, binding and detachment. Even at 0.1 Pa and 4100 Ab/microm2, carriers attached only to activated cells (21 fold increase over resting cells), ideal for specific drug targeting to sites of pathology. Binding was increased by raising the Ab surface density on the carrier, e.g., 59.4+/-11.1% increase for carriers having 4100 vs. 1100 Ab/microm2, as a consequence of decreased rolling velocity. Carrier binding was stable even under a high shear stress: carriers with 1100 and 4100 Ab/microm2 withstand shear stress over 3 Pa without detaching from the cells. This is further supported by theoretical modeling. These results will guide vascular targeting of drug carriers via rational design of experimentally tunable parameters.
Collapse
Affiliation(s)
- Andres J Calderon
- Department of Anesthesiology and Critical Care, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
80
|
Segal E, Satchi-Fainaro R. Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev 2009; 61:1159-76. [PMID: 19699248 DOI: 10.1016/j.addr.2009.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/12/2009] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is one of the central key steps in tumor progression and metastasis. Consequently, it became an important target in cancer therapy, making novel angiogenesis inhibitors a new modality of anticancer agents. Although relative to conventional chemotherapy, anti-angiogenic agents display a safer toxicity profile, the vast majority of these agents are low-molecular-weight compounds exhibiting poor pharmacokinetic profile with short half-life in the bloodstream and high overall clearance rate. The "Polymer Therapeutics" field has significantly improved the therapeutic potential of low-molecular-weight drugs and proteins for cancer treatment. Drugs can be conjugated to polymeric carriers that can be either directly conjugated to targeting proteins or peptides or derivatized with adapters conjugated to a targeting moiety. This approach holds a significant promise for the development of new targeted anti-angiogenic therapies as well as for the optimization of existing anti-angiogenic drugs or polypeptides. Here we overview the innovative approach of targeting tumor angiogenesis using polymer therapeutics.
Collapse
|
81
|
Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009; 66:2873-96. [PMID: 19499185 PMCID: PMC11115599 DOI: 10.1007/s00018-009-0053-z] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 11/28/2022]
Abstract
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.
Collapse
Affiliation(s)
- Hervé Hillaireau
- School of Engineering and Applied Sciences, Harvard University, 40 Oxford Street, Cambridge, MA 02138 USA
| | - Patrick Couvreur
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud 11, IFR 141, 5 rue J.B. Clément, 92296 Châtenay Malabry, France
| |
Collapse
|
82
|
D'Souza GGM, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 2009; 6:1135-48. [DOI: 10.1517/17425240903236101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
83
|
Abstract
Enzyme replacement therapy for lysosomal storage diseases is currently based on endocytosis of lysosomal enzymes via the mannose or mannose 6-phosphate receptors. We are developing a technology for endocytosis of lysosomal enzymes that depends on generic, chemically conjugated reagents. These reagents are aptamers (single-stranded nucleic acid molecules) selected to bind to the extracellular domain of the mouse transferrin receptor. After selection, an RNA aptamer and a DNA aptamer were modified with biotin and linked to dye-labeled streptavidin for detection by confocal microscopy. Aptamer-streptavidin conjugates showed saturable uptake into mouse fibroblasts (Ltk(-) cells), which could be inhibited by an excess of free aptamer but not by tRNA, calf thymus DNA, or transferrin. The RNA aptamer-streptavidin conjugate was mouse-specific, as human cells (293T) did not take it up unless first transfected with the mouse transferrin receptor. Some streptavidin separated from the recycling pathway of transferrin and colocalized with lysosomes. After characterization in the model system, the DNA aptamer was conjugated to a lysosomal enzyme, alpha-l-iduronidase, from which mannose 6-phosphate had been removed. The aptamer had been modified by attachment of terminal glycerol for oxidation by periodate and reaction of the resulting aldehyde with amino groups on the protein. Dephospho-alpha-L-iduronidase-aptamer conjugate was taken up in saturable manner by alpha-L-iduronidase-deficient mouse fibroblasts, with half-maximal uptake estimated as 1.6 nM. Endocytosed enzyme-aptamer conjugate corrected glycosaminoglycan accumulation, indicating that it reached lysosomes and was functional in those organelles. Both uptake and correction were inhibited by unconjugated aptamer, confirming the role of the aptamer in receptor-mediated endocytosis.
Collapse
|
84
|
Deosarkar SP, Malgor R, Fu J, Kohn LD, Hanes J, Goetz DJ. Polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid, and focal adhesion to sites of atherosclerosis. Biotechnol Bioeng 2008; 101:400-7. [PMID: 18428114 DOI: 10.1002/bit.21885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The increased expression of VCAM-1 on endothelial segments within plaque regions could be used as a target to deliver polymeric drug carriers selectively to sites of atherosclerosis. We probed the hypothesis that polymeric particles conjugated with a ligand for VCAM-1 exhibit selective and avid adhesion to sites of atherosclerosis. Particles made from polystyrene or the biodegradable polymer poly(sebacic acid)-block-polyethylene glycol (PSA-PEG) were conjugated with an antibody to VCAM-1 (alpha-VCAM-1) or IgG (negative control). The particles were injected into the jugular vein of ApoE(-/-) (a murine model of atherosclerosis) or wild type mice and their adhesion to the aorta determined. alpha-VCAM-1 particles exhibited significantly greater adhesion to ApoE(-/-) mouse aorta [32 +/- 5 (mean +/- SEM) particles/mm(2) for polystyrene particles and 31 +/- 7 particles/mm(2) for PSA-PEG particles] compared to the level of adhesion to wild type mouse aorta (18 +/- 1 particles/mm(2) for polystyrene particles and 6 +/- 1 particles/mm(2) for PSA-PEG particles). Within ApoE(-/-) mice, the alpha-VCAM-1 particles exhibited significantly greater adhesion to the aorta (32 +/- 5 particles/mm(2) for polystyrene particles and 31 +/- 7 particles/mm(2) for PSA-PEG particles) compared to the adhesion of IgG particles (1 +/- 1 particles/mm(2) for polystyrene particles and 2 +/- 1 particles/mm(2) for PSA-PEG particles). Detailed analysis of the adhesion revealed that alpha-VCAM-1 particles exhibited focal adhesion to plaque regions, in particular the periphery of the plaques, within the ApoE(-/-) mouse aorta. Combined the data demonstrate that polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid and focal adhesion to sites of atherosclerosis providing strong evidence that VCAM-1 ligand bearing polymeric particles could be used for targeting drugs selectively to atherosclerotic tissue.
Collapse
Affiliation(s)
- Sudhir P Deosarkar
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | | | |
Collapse
|
85
|
Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008; 16:1450-8. [PMID: 18560419 DOI: 10.1038/mt.2008.127] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Endocytosis in endothelial cells (ECs) is important for many biomedical applications, including drug delivery by nano- and microscale carriers. However, little is known about how carrier geometry influences endothelial drug targeting, intracellular trafficking, and effects. We studied this using prototype polymer carriers of various sizes (0.1-10 mum) and shapes (spheres versus elliptical disks). Carriers were targeted to intercellular adhesion molecule 1 (ICAM-1), a transmembrane glycoprotein that is upregulated in many pathologies and used as a target for intraendothelial drug delivery. ECs internalized anti-ICAM-coated carriers of up to several microns in size via cell adhesion molecule-mediated endocytosis. This pathway is distinct from caveolar and clathrin endocytosis that operate for submicron-size objects. Carrier geometry was found to influence endothelial targeting in the vasculature, and the rate of endocytosis and lysosomal transport within ECs. Disks had longer half-lives in circulation and higher targeting specificity in mice, whereas spheres were endocytosed more rapidly. Micron-size carriers had prolonged residency in prelysosomal compartments, beneficial for endothelial antioxidant protection by delivered catalase. Submicron carriers trafficked to lysosomes more readily, optimizing effects of acid sphingomyelinase (ASM) enzyme replacement in a model of lysosomal storage disease. Therefore, rational design of carrier geometry will help optimize endothelium-targeted therapeutics.
Collapse
Affiliation(s)
- Silvia Muro
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
UNLABELLED Gaucher disease is a multisystemic metabolic disorder arising from a deficiency of lysosomal glucocerebrosidase. The predominant clinical manifestations of the disease are hepatosplenomegaly, peripheral blood cytopenias and skeletal disease. Treatment with enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) has been shown to be effective in improving organ volume, anaemia, thrombocytopenia, bone markers and biomarkers in patients with Gaucher disease. However, some patient needs remain unmet because of the limited availability of treatment, the inaccessibility of certain disease sites and emerging disease manifestations. An increase in haematological, lymphoreticular and immune system malignancies has been observed in patients with Gaucher disease, but mechanisms underlying the development of these are not fully understood. Mild neurological manifestations may also affect patients with type 1 Gaucher disease, but treatment with ERT or SRT does not improve neurological function. Potential new treatments for Gaucher disease include small molecules, which may penetrate tissues that are not accessible by ERT. CONCLUSION ERT currently remains the most effective treatment for Gaucher disease. New treatments are emerging, but deficiencies in understanding basic pathophysiological mechanisms hinder progress.
Collapse
Affiliation(s)
- Atul Mehta
- Lysosomal Storage Disorders Unit, Department of Haematology, Royal Free Hospital and University College Medical School, London, UK.
| |
Collapse
|
87
|
Garnacho C, Dhami R, Simone E, Dziubla T, Leferovich J, Schuchman EH, Muzykantov V, Muro S. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J Pharmacol Exp Ther 2008; 325:400-8. [PMID: 18287213 DOI: 10.1124/jpet.107.133298] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.
Collapse
Affiliation(s)
- Carmen Garnacho
- Department of Pharmacology, John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Rossin R, Muro S, Welch MJ, Muzykantov VR, Schuster DP. In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium. J Nucl Med 2007; 49:103-11. [PMID: 18077519 DOI: 10.2967/jnumed.107.045302] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Nanoparticles (NPs) targeting the intercellular adhesion molecule 1 (ICAM-1) hold promise as a mean of delivering therapeutics to the pulmonary endothelium in patients with acute and chronic respiratory diseases. As these new materials become available, strategies are needed to understand their behavior in vivo. We have evaluated the use of (64)Cu and PET to noninvasively image the lung uptake and distribution of NPs coated with an anti-ICAM antibody. METHODS Model fluorescent NPs were coated with a mixture of an anti-ICAM antibody (or nonspecific IgG) and (64)Cu-DOTA-IgG (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Biodistribution and small-animal PET and CT studies were performed in healthy mice and in mice pretreated with lipopolysaccharides (LPSs). Metabolism studies were also performed to evaluate the stability of (64)Cu-labeled NPs in lungs in vivo. RESULTS The lungs of mice administered anti-ICAM NPs labeled with (64)Cu were clearly imaged by small-animal PET 1, 4, and 24 h after administration. Both biodistribution and small-animal imaging showed a 3- to 4-fold higher uptake in the lungs of mice injected with ICAM-targeted NPs relative to that of the control group. Lung uptake was further enhanced by pretreating the mice with LPS, presumably because of ICAM-1 upregulation. However, an approximately 2-fold decrease in lung signal was observed in each experimental group over 24 h. Metabolism studies in lung tissues harvested from mice injected with (64)Cu-labeled anti-ICAM NPs showed considerable release of a small (64)Cu-radiometabolite from the NPs beginning as early as 1 h after injection. A decrease in lung fluorescence was also observed, most likely reflecting partial release of NPs from the lungs in vivo. CONCLUSION The use of small-animal PET to track (64)Cu-labeled nanostructures in vivo shows potential as a strategy for the preclinical screening of new NP drug delivery agents targeting the lung endothelium and other tissues. Future design optimization to prolong the stability of the radiolabel in vivo will further improve this promising approach.
Collapse
Affiliation(s)
- Raffaella Rossin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
89
|
Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C. PLGA nanoparticle--peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 2007; 19:145-52. [PMID: 17997512 DOI: 10.1021/bc700227z] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted delivery of therapeutics possesses the potential to localize therapeutic agents to a specific tissue as a mechanism to enhance treatment efficacy and abrogate side effects. Antibodies have been used clinically as therapeutic agents and are currently being explored for targeting drug-loaded nanoparticles. Peptides such as RGD peptides are also being developed as an inexpensive and stable alternative to antibodies. In this study, cyclo(1,12)PenITDGEATDSGC (cLABL) peptide was used to target nanoparticles to human umbilical cord vascular endothelial cell (HUVEC) monolayers that have upregulated intercellular cell-adhesion molecule-1 (ICAM-1) expression. The cLABL peptide has been previously demonstrated to possess high avidity for ICAM-1 receptors on the cell surface. Poly( dl-lactic-coglycolic acid) nanoparticles conjugated with polyethylene glycol and cLABL demonstrated rapid binding to HUVEC with upregulated ICAM-1, which was induced by treating cells with the proinflammatory cytokine, interferon-gamma. Binding of the nanoparticles could be efficiently blocked by preincubating cells with free peptide suggesting that the binding of the nanoparticles is specifically mediated by surface peptide binding to ICAM-1 on HUVEC. The targeted nanoparticles were rapidly endocytosed and trafficked to lysosomes to a greater extent than the untargeted PLGA-PEG nanoparticles. Verification of peptide-mediated nanoparticle targeting to ICAM-1 may ultimately lead to targeting therapeutic agents to inflammatory sites expressing upregulated ICAM-1.
Collapse
Affiliation(s)
- Na Zhang
- Departments of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
90
|
Schuchman EH. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis 2007; 30:654-63. [PMID: 17632693 DOI: 10.1007/s10545-007-0632-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 01/17/2023]
Abstract
Patients with types A and B Niemann-Pick disease (NPD) have an inherited deficiency of acid sphingomyelinase (ASM) activity. The clinical spectrum of this disorder ranges from the infantile, neurological form that results in death by 3 years of age (type A NPD) to the non-neurological form (type B NPD) that is compatible with survival into adulthood. Intermediate cases also have been reported, and the disease is best thought of as a single entity with a spectrum of phenotypes. ASM deficiency is panethnic, but appears to be more frequent in individuals of Middle Eastern and North African descent. Current estimates of the disease incidence range from approximately 0.5 to 1 per 100,000 births. However, these approximations likely under estimate the true frequency of the disorder since they are based solely on cases referred to biochemical testing laboratories for enzymatic confirmation. The gene encoding ASM (SMPD1) has been studied extensively; it resides within an imprinted region on chromosome 11, and is preferentially expressed from the maternal chromosome. Over 100 SMPD1 mutations causing ASM-deficient NPD have been described, and some useful genotype-phenotype correlations have been made. Based on these findings, DNA-based carrier screening has been implemented in the Ashkenazi Jewish community. ASM 'knockout' mouse models also have been constructed and used to investigate disease pathogenesis and treatment. Based on these studies in the mouse model, an enzyme replacement therapy clinical trial has recently begun in adult patients with non-neurological ASM-deficient NPD.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Bronchoalveolar Lavage
- Disease Models, Animal
- Enzyme Inhibitors/therapeutic use
- Genetic Testing
- Genetic Therapy
- Genotype
- Humans
- Mice
- Mice, Knockout
- Mutation
- Niemann-Pick Disease, Type A/diagnosis
- Niemann-Pick Disease, Type A/enzymology
- Niemann-Pick Disease, Type A/ethnology
- Niemann-Pick Disease, Type A/genetics
- Niemann-Pick Disease, Type A/therapy
- Niemann-Pick Disease, Type B/diagnosis
- Niemann-Pick Disease, Type B/enzymology
- Niemann-Pick Disease, Type B/ethnology
- Niemann-Pick Disease, Type B/genetics
- Niemann-Pick Disease, Type B/therapy
- Phenotype
- Recombinant Proteins/therapeutic use
- Sphingomyelin Phosphodiesterase/deficiency
- Sphingomyelin Phosphodiesterase/genetics
- Sphingomyelin Phosphodiesterase/therapeutic use
- Splenectomy
Collapse
Affiliation(s)
- E H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-20A, New York, NY 10029, USA.
| |
Collapse
|
91
|
Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 2007; 59:748-58. [PMID: 17659804 PMCID: PMC2000329 DOI: 10.1016/j.addr.2007.06.008] [Citation(s) in RCA: 742] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 06/12/2007] [Indexed: 01/01/2023]
Abstract
Advances in the delivery of targeted drug systems have evolved to enable highly regulated site specific localization to subcellular organelles. Targeting therapeutics to individual intracellular compartments has resulted in benefits to therapies associated with these unique organelles. Endocytosis, a mechanism common to all cells in the body, internalizes macromolecules and retains them in transport vesicles which traffic along the endolysosomal scaffold. An array of vesicular internalization mechanisms exist, therefore understanding the key players specific to each pathway has allowed researchers to bioengineer macromolecular complexes for highly specialized delivery. Membrane specific receptors most frequently enter the cell through endocytosis following the binding of a high affinity ligand. High affinity ligands interact with membrane receptors, internalize in membrane bound vesicles, and traffic through cells in different manners to allow for accumulation in early endosomal fractions or lysosomally associated fractions. Although most drug delivery complexes aim to avoid lysosomal degradation, more recent studies have shown the clinical utility in directed protein delivery to this environment for the enzymatic release of therapeutics. Targeting nanomedicine complexes to the endolysosomal pathway has serious potential for improving drug delivery for the treatment of lysosomal storage diseases, cancer, and Alzheimer's disease. Although several issues remain for receptor specific targeting, current work is investigating a synthetic receptor approach for high affinity binding of targeted macromolecules.
Collapse
Affiliation(s)
- Lisa M. Bareford
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Center for Nanomedicine and Cellular Drug Delivery, 20 Penn Street, Baltimore, MD 21201, USA
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Center for Nanomedicine and Cellular Drug Delivery, 20 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|
92
|
Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, Muzykantov VR. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 2006; 317:1161-9. [PMID: 16505161 DOI: 10.1124/jpet.105.098970] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Targeting of diagnostic and therapeutic agents to endothelial cells (ECs) provides an avenue to improve treatment of many maladies. For example, intercellular adhesion molecule 1 (ICAM-1), a constitutive endothelial cell adhesion molecule up-regulated in many diseases, is a good determinant for endothelial targeting of therapeutic enzymes and polymer nanocarriers (PNCs) conjugated with anti-ICAM (anti-ICAM/PNCs). However, intrinsic and extrinsic factors that control targeting of anti-ICAM/PNCs to ECs (e.g., anti-ICAM affinity and PNC valency and flow) have not been defined. In this study we tested in vitro and in vivo parameters of targeting to ECs of anti-ICAM/PNCs consisting of either prototype polystyrene or biodegradable poly(lactic-coglycolic) acid polymers (approximately 200 nm diameter spheres carrying approximately 200 anti-ICAM molecules). Anti-ICAM/PNCs, but not control IgG/PNCs 1) rapidly (t1/2 approximately 5 min) and specifically bound to tumor necrosis factor-activated ECs in a dose-dependent manner (Bmax approximately 350 PNC/cell) at both static and physiological shear stress conditions and 2) bound to ECs and accumulated in the pulmonary vasculature after i.v. injection in mice. Anti-ICAM/PNCs displayed markedly higher EC affinity versus naked anti-ICAM (Kd approximately 80 pM versus approximately 8 nM) in cell culture and, probably because of this factor, higher value (185.3 +/- 24.2 versus 50.5 +/- 1.5% injected dose/g) and selectivity (lung/blood ratio 81.0 +/- 10.9 versus 2.1 +/- 0.02, in part due to faster blood clearance) of pulmonary targeting. These results 1) show that reformatting monomolecular anti-ICAM into high-affinity multivalent PNCs boosts their vascular immuno-targeting, which withstands physiological hydrodynamics and 2) support potential anti-ICAM/PNCs utility for medical applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Environmental Medicine, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Muro S, Mateescu M, Gajewski C, Robinson M, Muzykantov VR, Koval M. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am J Physiol Lung Cell Mol Physiol 2005; 290:L809-17. [PMID: 16299052 DOI: 10.1152/ajplung.00311.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Targeting nanocarriers (NC) loaded by antioxidant enzymes (e.g., catalase) to endothelial cell adhesion molecules (CAM) alleviates oxidative stress in the pulmonary vasculature. However, antioxidant protection is transient, since CAM-targeted catalase is internalized, delivered to lysosomes, and degraded. To design means to modulate the metabolism and longevity of endothelial cell (EC)-targeted drugs, we identified and manipulated cellular elements controlling the uptake and intracellular trafficking of NC targeted to ICAM-1 (anti-ICAM/NC). BAPTA, thapsigargin, amiloride, and EIPA inhibited anti-ICAM/NC uptake by EC and actin rearrangements induced by anti-ICAM/NC (required for uptake), suggesting that member(s) of Na(+)/H(+) exchanger family proteins (NHE) regulate these processes. Consistent with this hypothesis, an siRNA specific for the plasmalemma NHE1, but not the endosome-associated NHE6, inhibited actin remodeling induced by anti-ICAM/NC and internalization. Anti-ICAM/NC binding to EC stimulated formation of a transient ICAM-1/NHE1 complex. One hour after uptake, ICAM-1 dissociated from NHE1, and anti-ICAM/NC were transported to NHE6-positive vesicles en route to lysosomes. Inhibition of PKC (an activator of intracellular NHE) accelerated nanocarrier lysosomal trafficking. In contrast, monensin, which enhances the endosomal sodium influx and proton efflux maintained by NHE6, inhibited delivery of anti-ICAM/NC to lysosomes by switching their trafficking to a plasma membrane recycling pathway. This markedly prolonged the protective effect of catalase-coated anti-ICAM/NC. Therefore, 1) NHE1 and NHE6 regulate distinct phases of anti-ICAM/NC uptake and trafficking; 2) pharmacological agents affecting these regulatory elements alter the itinerary of anti-ICAM/NC intracellular trafficking; and 3) these agents modulate duration of the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan/6068, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|