51
|
Beaulieu LM, Whitley BR, Wiesner TF, Rehault SM, Palmieri D, Elkahloun AG, Church FC. Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. Bioessays 2007; 29:1029-38. [PMID: 17876797 PMCID: PMC4046619 DOI: 10.1002/bies.20640] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a physiological inhibitor of urokinase (uPA), a serine protease known to promote cell migration and invasion. Intuitively, increased levels of PAI-1 should be beneficial in downregulating uPA activity, particularly in cancer. By contrast, in vivo, increased levels of PAI-1 are associated with a poor prognosis in breast cancer. This phenomenon is termed the "PAI-1 paradox". Many factors are responsible for the upregulation of PAI-1 in the tumor microenvironment. We hypothesize that there is a breast cancer predisposition to a more aggressive stage when PAI-1 is upregulated as a consequence of Metabolic Syndrome (MetS). MetS exerts a detrimental effect on the breast tumor microenvironment that supports cancer invasion. People with MetS have an increased risk of coronary heart disease, stroke, peripheral vascular disease and hyperinsulinemia. Recently, MetS has also been identified as a risk factor for breast cancer. We hypothesize the existence of the "PAI-1 cycle". Sustained by MetS, adipocytokines alter PAI-1 expression to promote angiogenesis, tumor-cell migration and procoagulant microparticle formation from endothelial cells, which generates thrombin and further propagates PAI-1 synthesis. All of these factors culminate in a chemotherapy-resistant breast tumor microenvironment. The PAI-1 cycle may partly explain the PAI-1 paradox. In this hypothesis paper, we will discuss further how MetS upregulates PAI-1 and how an increased level of PAI-1 can be linked to a poor prognosis.
Collapse
Affiliation(s)
- Lea M. Beaulieu
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Brandi R. Whitley
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Theodore F. Wiesner
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7035
| | - Sophie M. Rehault
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Diane Palmieri
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Abdel G. Elkahloun
- NHGRI-NIH Genome Technology Branch, National Institute of Health, Bethesda, MD 20892
| | - Frank C. Church
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| |
Collapse
|
52
|
Qi L, Higgins SP, Lu Q, Samarakoon R, Wilkins-Port CE, Ye Q, Higgins CE, Staiano-Coico L, Higgins PJ. SERPINE1 (PAI-1) is a prominent member of the early G0 --> G1 transition "wound repair" transcriptome in p53 mutant human keratinocytes. J Invest Dermatol 2007; 128:749-53. [PMID: 17882266 PMCID: PMC2654242 DOI: 10.1038/sj.jid.5701068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Qi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Qi Lu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | - Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | | | - Qunhui Ye
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Lisa Staiano-Coico
- Department of Surgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| |
Collapse
|
53
|
Onwuegbusi BA, Rees JR, Lao-Sirieix P, Fitzgerald RC. Selective loss of TGFbeta Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines. PLoS One 2007; 2:e177. [PMID: 17264880 PMCID: PMC1766472 DOI: 10.1371/journal.pone.0000177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/03/2007] [Indexed: 11/05/2022] Open
Abstract
In cancer, Transforming Growth Factor beta (TGFbeta) increases proliferation and promotes invasion via selective loss of signalling pathways. Oesophageal adenocarcinoma arises from Barrett's oesophagus, progresses rapidly and is usually fatal. The contribution of perturbed TGFbeta signalling in the promotion of metastasis in this disease has not been elucidated. We therefore investigated the role of TGFbeta in Barrett's associated oesophageal adenocarcinoma using a panel of cell lines (OE33, TE7, SEG, BIC, FLO). 4/5 adenocarcinoma cell lines failed to cell cycle arrest, down-regulate c-Myc or induce p21 in response to TGFbeta, and modulation of a Smad3/4 specific promoter was inhibited. These hyperproliferative adenocarcinoma cell lines displayed a TGFbeta induced increase in the expression of the extracellular matrix degrading proteinases, urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor 1 (PAI-1), which correlated with an invasive cell phenotype as measured by in vitro migration, invasion and cell scattering assays. Inhibiting ERK and JNK pathways significantly reduced PAI and uPA induction and inhibited the invasive cell phenotype. These results suggest that TGFbeta Smad-dependent signalling is perturbed in Barrett's carcinogenesis, resulting in failure of growth-arrest. However, TGFbeta can promote PAI and uPA expression and invasion through MAPK pathways. These data would support a dual role for TGFbeta in oesophageal adenocarcinoma.
Collapse
Affiliation(s)
| | - Jonathan R.E. Rees
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom
| | - Pierre Lao-Sirieix
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom
| | | |
Collapse
|
54
|
Maquerlot F, Galiacy S, Malo M, Guignabert C, Lawrence DA, d'Ortho MP, Barlovatz-Meimon G. Dual role for plasminogen activator inhibitor type 1 as soluble and as matricellular regulator of epithelial alveolar cell wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1624-32. [PMID: 17071586 PMCID: PMC1780203 DOI: 10.2353/ajpath.2006.051053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelium repair, crucial for restoration of alveolo-capillary barrier integrity, is orchestrated by various cytokines and growth factors. Among them keratinocyte growth factor plays a pivotal role in both cell proliferation and migration. The urokinase plasminogen activator (uPA) system also influences cell migration through proteolysis during epithelial repair. In addition, the complex formed by uPAR-uPA and matrix-bound plasminogen activator inhibitor type-1 (PAI-1) exerts nonproteolytic roles in various cell types. Here we present new evidence about the dual role of PAI-1 under keratinocyte growth factor stimulation using an in vitro repair model of rat alveolar epithelial cells. Besides proteolytic involvement of the uPA system, the availability of matrix-bound-PAI-1 is also required for an efficient healing. An unexpected decrease of healing was shown when PAI-1 activity was blocked. However, the proteolytic action of uPA and plasmin were still required. Moreover, immediately after wounding, PAI-1 was dramatically increased in the newly deposited matrix at the leading edge of wounds. We thus propose a dual role for PAI-1 in epithelial cell wound healing, both as a soluble inhibitor of proteolysis and also as a matrix-bound regulator of cell migration. Matrix-bound PAI-1 could thus be considered as a new member of the matricellular protein family.
Collapse
Affiliation(s)
- François Maquerlot
- Informatique, Biologie Intégrative et Systèmes Complexes, FRE 2873 Centre National de la Recherche Scientifique, Université d'Evry, Génopole, Evry, France
| | | | | | | | | | | | | |
Collapse
|
55
|
Qi L, Allen RR, Lu Q, Higgins CE, Garone R, Staiano-Coico L, Higgins PJ. PAI-1 transcriptional regulation during the G0 --> G1 transition in human epidermal keratinocytes. J Cell Biochem 2006; 99:495-507. [PMID: 16622840 DOI: 10.1002/jcb.20885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is the major negative regulator of the plasmin-dependent pericellular proteolytic cascade. PAI-1 gene expression is normally growth state regulated but frequently elevated in chronic fibroproliferative and neoplastic diseases affecting both stromal restructuring and cellular migratory activities. Kinetic modeling of cell cycle transit in synchronized human keratinocytes (HaCaT cells) indicated that PAI-1 transcription occurred early after serum stimulation of quiescent (G0) cells and prior to entry into a cycling G1 condition. PAI-1 repression (in G0) was associated with upstream stimulatory factor-1 (USF-1) occupancy of two consensus E box motifs (5'-CACGTG-3') at the PE1 and PE2 domains in the PF1 region (nucleotides -794 to -532) of the PAI-1 promoter. Chromatin immunoprecipitation (ChIP) analysis established that the PE1 and PE2 site E boxes were occupied by USF-1 in quiescent cells and by USF-2 in serum-activated, PAI-1-expressing keratinocytes. This reciprocal and growth state-dependent residence of USF family members (USF-1 vs. USF-2) at PE1/PE2 region chromatin characterized the G0 --> G1 transition period and the transcriptional status of the PAI-1 gene. A consensus E box motif was required for USF/E box interactions, as a CG --> AT substitution at the two central nucleotides inhibited formation of USF/probe complexes. The 5' flanking sites (AAT or AGAC) in the PE2 segment were not necessary for USF binding. USF recognition of the PE1/PE2 region E box sites required phosphorylation with several potential involved residues, including T153, maping to the USF-specific region (USR). A T153A substitution in USF-1 did not repress serum-induced PAI-1 expression whereas the T153D mutant was an effective suppressor. As anticipated from the ChIP results, transfection of wild-type USF-2 failed to inhibit PAI-1 induction. Collectively, these data suggest that USF family members are important regulators of PAI-1 gene control during serum-stimulated recruitment of quiescent human epithelial cells into the growth cycle.
Collapse
Affiliation(s)
- Li Qi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
De Taeye BM, Novitskaya T, Gleaves L, Covington JW, Vaughan DE. Bone Marrow Plasminogen Activator Inhibitor-1 Influences the Development of Obesity. J Biol Chem 2006; 281:32796-805. [PMID: 16931518 DOI: 10.1074/jbc.m606214200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plasma levels of plasminogen activator inhibitor-1 (PAI-1) are elevated in obesity and correlate with body mass index. The increase in PAI-1 associated with obesity likely contributes to increased cardiovascular risk and may predict the development of type 2 diabetes mellitus. Although adipocytes are capable of synthesizing PAI-1, the bulk of evidence indicates that cells residing in the stromal fraction of visceral fat are the primary source of PAI-1. We hypothesized that bone marrow-derived PAI-1, e.g. derived from macrophages located in visceral fat, contributes to the development of diet-induced obesity. To test this hypothesis, male C57BL/6 wild-type mice and C57BL/6 PAI-1 deficient mice were transplanted with either PAI-1(-/-), PAI-1(+/-), or PAI-1(+/+) bone marrow. The transplanted animals were subsequently fed a high fat diet for 24 weeks. Our findings show that only the complete absence of PAI-1 protects from the development of diet-induced obesity, whereas the absence of bone marrow-derived PAI-1 protects against expansion of the visceral fat mass. Remarkably, there is a link between the PAI-1 levels, the degree of inflammation in adipose tissue, and the development of obesity. Based on these findings we suggest that bone marrow-derived PAI-1 has an effect on the development of obesity through its effect on inflammation.
Collapse
Affiliation(s)
- Bart M De Taeye
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
57
|
Chettaoui C, Delaplace F, Manceny M, Malo M. Games network and application to PAs system. Biosystems 2006; 87:136-41. [PMID: 17070987 DOI: 10.1016/j.biosystems.2006.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/08/2006] [Accepted: 07/15/2006] [Indexed: 11/29/2022]
Abstract
In this article, we present a game theory based framework, named games network, for modeling biological interactions. After introducing the theory, we more precisely describe the methodology to model biological interactions. Then we apply it to the plasminogen activator system (PAs) which is a signal transduction pathway involved in cancer cell migration. The games network theory extends game theory by including the locality of interactions. Each game in a games network represents local interactions between biological agents. The PAs system is implicated in cytoskeleton modifications via regulation of actin and microtubules, which in turn favors cell migration. The games network model has enabled us a better understanding of the regulation involved in the PAs system.
Collapse
Affiliation(s)
- C Chettaoui
- DYNAMIC, IBISC-Genopole, Evry FRE 2873, University of Evry, France.
| | | | | | | |
Collapse
|
58
|
Malo M, Charrière-Bertrand C, Chettaoui C, Fabre-Guillevin E, Maquerlot F, Lackmy A, Vallée B, Delaplace F, Barlovatz-Meimon G. [The PAI-1 swing: microenvironment and cancer cell migration]. C R Biol 2006; 329:919-27. [PMID: 17126795 DOI: 10.1016/j.crvi.2006.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 03/22/2006] [Accepted: 03/28/2006] [Indexed: 11/21/2022]
Abstract
Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level.
Collapse
Affiliation(s)
- Michel Malo
- Equipe DYNAMIC, Dynamique du Microenvironnement Cellulaire, Informatique, Biologie Intégrative et Systèmes Complexes), FRE 2873 CNRS, Université d'Evry-Val d'Essonne, Université Paris 12, Génopole, France
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Kutz SM, Higgins CE, Samarakoon R, Higgins SP, Allen RR, Qi L, Higgins PJ. TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res 2006; 312:1093-105. [PMID: 16457817 DOI: 10.1016/j.yexcr.2005.12.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 01/06/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) transcriptionally regulates the expression of genes that encode specific proteins (e.g., plasminogen activator inhibitor-1; PAI-1) important in stromal remodeling and cellular invasion. Definition of molecular events underlying TGF-beta1-initiated PAI-1 transcription, therefore, may lead to the identification of new therapeutic targets for diseases associated with elevated PAI-1 synthesis (e.g., tissue fibrosis, vascular disorders, tumor progression). An intact upstream stimulatory factor (USF)-binding E box motif (5'-(-165)CACGTG(-160)-3') at the HRE-2 site in the rat PAI-1 gene was required for PAI-1 transcription in TGF-beta1-treated cells. Mutation of the CA dinucleotide to TC at position -165/-164 in a reporter construct driven by 764 bp of PAI-1 promoter sequence decreased TGF-beta1-dependent CAT activity by >80% indicating the necessity for a consensus hexanucleotide E box motif in induced expression. The same CA --> TC substitution eliminated USF binding to an 18-bp HRE-2 DNA target highlighting the importance of site occupancy to transcriptional activation. Transfection of a dominant-negative USF construct, moreover, completely inhibited formation of USF/HRE-2 probe complexes, attenuated PAI-1 promoter-driven luciferase activity and reduced the response of the endogenous PAI-1 gene to TGF-beta1 (to that approximating quiescent controls). Maximal immediate-early PAI-1 induction upon exposure to TGF-beta1 required EGFR, p21ras, MEK and pp60(c-src) signaling as pharmacologic or dominant-negative inhibition of any of the four intermediates (EGFR, p21ras, MEK, pp60(c-src)) virtually eliminated TGF-beta1-augmented PAI-1 levels. U0126 titering experiments, furthermore, revealed that the same MEK inhibitor concentration that blocked the TGF-beta1 increase in ERK1/2 phosphorylation (20 microM) also effectively attenuated the PAI-1 inductive response suggesting a requirement for stimulated ERK signaling in TGF-beta1-mediated PAI-1 expression. These data suggest a model whereby TGF-beta1 activates a complex signaling cascade to affect PAI-1 gene control and involves USF occupancy of a critical E box motif at the HRE-2 site in the PAI-1 gene.
Collapse
Affiliation(s)
- Stacie M Kutz
- Center for Cell Biology and Cancer Research, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Sid B, Dedieu S, Delorme N, Sartelet H, Rath GM, Bellon G, Martiny L. Human thyroid carcinoma cell invasion is controlled by the low density lipoprotein receptor-related protein-mediated clearance of urokinase plasminogen activator. Int J Biochem Cell Biol 2006; 38:1729-40. [PMID: 16807059 DOI: 10.1016/j.biocel.2006.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/13/2022]
Abstract
The low density lipoprotein receptor-related protein (LRP), a large scavenger receptor reported to mediate the uptake and degradation of various ligands, emerges as a promising receptor for targeting the invasive behaviour of human cancer cells. However, the accurate function of LRP during tumor invasion seems to be highly dependent on cellular context and remains controversial. The expression patterns of both this receptor and the main proteolytic systems involved in cell invasion were examined in two follicular thyroid carcinoma cell lines exhibiting different invasive phenotypes. We established that a low expression of LRP at the cell surface was associated to elevated extracellular MMP2 and urokinase plasminogen activator (uPA) activities as well as to high invasiveness properties. Surprisingly, neither exogenously added receptor-associated protein, an antagonist of LRP, nor LRP blocking antibodies significantly modified the amount of extracellular MMP2. Furthermore, the invasive phenotype of thyroid carcinoma cells was not related to their matrix metalloproteinases amount since different specific inhibitors of these proteases failed to affect the invasive properties of both cell lines. Additionally, blocking LRP-mediated clearance led to a further increase of the uPA amount and activities and to increased invasiveness in both cell lines. Finally thyroid carcinoma cells aggressiveness was widely increased by exogenous uPA; and anti-uPA antibodies treatments abolished both basal and receptor-associated protein-induced thyroid cell invasion. Overall our results identified the LRP-mediated clearance of uPA as one of the mechanisms involved during the control of human thyroid carcinoma cell invasion.
Collapse
Affiliation(s)
- Brice Sid
- Laboratoire de Biochimie, UMR CNRS 6198, Faculté des Sciences, 51687 Reims, France
| | | | | | | | | | | | | |
Collapse
|
61
|
Allen RR, Qi L, Higgins PJ. Upstream stimulatory factor regulates E box-dependent PAI-1 transcription in human epidermal keratinocytes. J Cell Physiol 2005; 203:156-65. [PMID: 15372465 DOI: 10.1002/jcp.20211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Certain growth factors (e.g., TGF-beta1) initiate a "plastic" response in human keratinocytes (HaCaT cells) characterized by changes in gene expression and increased cell motility. While microarray analyses identified a number of involved genes, plasminogen activator inhibitor type 1 (PAI-1) is among the subset most highly responsive to TGF-beta1. Previous antisense attenuation of PAI-1 synthesis confirmed an essential role for this protease inhibitor in cell motility (Providence et al., 2002, J Cell Sci 115:3767-3777; Providence and Higgins, 2004, J Cell Physiol 200:297-308). It was important, therefore, to clarify molecular mechanisms underlying PAI-1 expression control in human keratinocytes. A consensus E box motif (5'-CACGTG-3') at nucleotides -566 to -561 in the PE2 region of the PAI-1 gene was required for TGF-beta1-induced transcription of a PAI-1 promoter-driven luceriferase reporter. Truncation of the PE2 E box or mutation of the CACGTG hexanucleotide to CAATTG inhibited growth factor-stimulated promoter function confirming the importance of this site in inducible expression. A similar mutation at the PE1 E box (nucleotides -682 to -677), in contrast, did not result in reduced luciferase activity. Competing CACGTG-containing DNAs, regardless of the presence or absence of PAI-1-specific flanking sequences or lacking accessory sequences (i.e., Smad-binding sites, AAT trinucleotide spacer), inhibited complex formation between HaCaT cell nuclear factors and a 45-mer PE2 region probe. A deoxyoligonucleotide that differed from the consensus E box by a CG --> AT substitution (the same base change incorporated into the PAI-1p806-lucerifase reporter by site-directed mutagenesis) but with random (i.e., non-PAI-1) flanking sequences also failed to compete with the PE2 region probe for protein binding whereas the same construct with an intact CACGTG motif was an effective competitor. The major protein/DNA interactions in the PE2 segment, therefore, are E box-dependent. USF-1, a member of the upstream stimulatory factor family, bound the PE2 construct suggesting a role for USF proteins in E box residence and PAI-1 gene expression. Chromatin immunoprecipitation, using primers designed to amplify a 300-bp PE2-associated promoter fragment and containing no other E box motifs except the target CACGTG at nucleotides -566 to -561, confirmed that this site was occupied by USF-1 or a USF-1-containing complex in both quiescent and TGF-beta1-stimulated cells. Transfection of a dominant-negative USF construct effectively attenuated serum- and TGF-beta1-induced PAI-1 synthesis as well as TGF-beta1-stimulated Matrigel barrier invasion. Dominant-negative USF-expressing keratinocytes, moreover, specifically had a reduced capacity for Matrigel barrier invasion. USF elements, therefore, are important regulators of growth factor-initiated PAI-1 transcription (as predicted from the identification of PAI-1 as a direct USF target gene) and the associated epithelial migratory response.
Collapse
Affiliation(s)
- Rosalie R Allen
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
62
|
Wang Z, Sosne G, Kurpakus-Wheater M. Plasminogen activator inhibitor-1 (PAI-1) stimulates human corneal epithelial cell adhesion and migration in vitro. Exp Eye Res 2005; 80:1-8. [PMID: 15652520 DOI: 10.1016/j.exer.2004.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
In addition to its role as an inhibitor of urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) is hypothesized to regulate epithelial cell adhesion and migration. We have previously reported that PAI-1 may be an important regulatory factor of the uPA system in cornea. The purpose of this study was to extend those observations by determining the effect of exogenous PAI-1 on the migration and adhesion of human corneal epithelial cells (HCEC) in vitro. The expression of PAI-1 in non-transformed early passage HCEC was confirmed by immunofluorescence microscopy and Western blot analysis. Colorimetric assays coupled with function-inhibiting antibody studies using the matrix assembled in situ by cultured cells demonstrate that immobilized PAI-1 serves as an efficient substrate for HCEC adhesion. HCEC attachment to PAI-1 is comparable to that of laminin-10, a known strong adhesion protein for epithelial cells. In addition to serving as an adhesion substrate, PAI-1 also functions as a chemotactic agent for corneal epithelium. Additionally it promotes the random migration of HCEC, from an initial cell cluster, along a culture substrate. Our results in corneal epithelium are consistent with reports from other investigators showing that PAI-1 facilitates both epithelial adhesion and migration. From our studies we conclude that PAI-1 may play a dual role in corneal wound healing. Initially PAI-1 may function to stimulate migration and facilitate the reepithelialization of the wound bed. Post-reepithelization, PAI-1 may ensure corneal epithelial cell adhesion to matrix to promote successful wound healing.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
63
|
Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. J Cell Physiol 2005; 204:236-46. [PMID: 15622520 DOI: 10.1002/jcp.20279] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) stimulates expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of stromal barrier proteolysis and cell-to-matrix adhesion. Pharmacologic agents that target MEK (PD98059, U0126) or src family (PP1) kinases attenuated TGF-beta1-dependent PAI-1 transcription in R22 aortic smooth muscle cells. Pretreatment with PP1 at concentrations that inhibited TGF-beta1-dependent PAI-1 expression also blocked ERK1/2 activation/nuclear accumulation suggesting that the required src kinase activity is upstream of ERK1/2 in the TGF-beta1-initiated signaling cascade. The IC(50) of the PP1-sensitive kinase, furthermore, specifically implied involvement of pp60(c-src) in PAI-1 induction. Indeed, addition of TGF-beta1 to quiescent R22 cells resulted in a 3-fold increase in pp60(c-src) autophosphorylation and kinase activity. Transfection of a dominant-negative pp60(c-src) construct, moreover, reduced TGF-beta1-induced PAI-1 expression levels to that of unstimulated controls or PP1-pretreated cells. A >/=170 kDa protein that co-immunoprecipitated with TGF-beta1-activated pp60(c-src) was also phosphorylated transiently in response to TGF-beta1. TGF-beta1 is known to transactivate the 170 kDa EGF receptor (EGFR) by autocrine HB-EGF or TGF-alpha mechanisms suggesting involvement of EGFR activation in certain TGF-beta1-initiated responses. Incubation of quiescent R22 cells with the EGFR-specific inhibitor AG1478 prior to growth factor (EGF or TGF-beta1) addition effectively blocked EGFR activation as determined by direct visualization of receptor internalization. AG1478 suppressed (in a dose-dependent fashion) EGF-induced PAI-1 protein levels and, at a final concentration of 2.5 muM, virtually eliminated EGF-dependent PAI-1 synthesis. More importantly, AG1478 similarly repressed inducible PAI-1 levels in TGF-beta1-stimulated R22 cultures. PP1, PD98059, and U0126 also inhibited TGF-beta1-dependent cell motility at concentrations that significantly attenuated PAI-1 expression. Consistent with the AG1478-associated reductions in EGF- and TGF-beta1-stimulated PAI-1 expression, pretreatment of R22 cell cultures with AG1478 effectively suppressed growth factor-stimulated cell motility. These data indicate that two major phenotypic characteristics of TGF-beta1-exposure (i.e., transcription of specific target genes [e.g., PAI-1], increased cell motility) are linked in the R22 vascular smooth muscle cell system, require pp60(c-src) kinase activity and MEK signaling and involve activation of an AG1478-sensitive (likely EGFR-dependent) pathway.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
64
|
Lafuste P, Sonnet C, Chazaud B, Dreyfus PA, Gherardi RK, Wewer UM, Authier FJ. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation. Mol Biol Cell 2004; 16:861-70. [PMID: 15574885 PMCID: PMC545917 DOI: 10.1091/mbc.e04-03-0226] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Knowledge on molecular systems involved in myogenic precursor cell (mpc) fusion into myotubes is fragmentary. Previous studies have implicated the a disintegrin and metalloproteinase (ADAM) family in most mammalian cell fusion processes. ADAM12 is likely involved in fusion of murine mpc and human rhabdomyosarcoma cells, but it requires yet unknown molecular partners to launch myogenic cell fusion. ADAM12 was shown able to mediate cell-to-cell attachment through binding alpha9beta1 integrin. We report that normal human mpc express both ADAM12 and alpha9beta1 integrin during their differentiation. Expression of alpha9 parallels that of ADAM12 and culminates at time of fusion. alpha9 and ADAM12 coimmunoprecipitate and participate to mpc adhesion. Inhibition of ADAM12/alpha9beta1 integrin interplay, by either ADAM12 antisense oligonucleotides or blocking antibody to alpha9beta1, inhibited overall mpc fusion by 47-48%, with combination of both strategies increasing inhibition up to 62%. By contrast with blockade of vascular cell adhesion molecule-1/alpha4beta1, which also reduced fusion, exposure to ADAM12 antisense oligonucleotides or anti-alpha9beta1 antibody did not induce detachment of mpc from extracellular matrix, suggesting specific involvement of ADAM12-alpha9beta1 interaction in the fusion process. Evaluation of the fusion rate with regard to the size of myotubes showed that both ADAM12 antisense oligonucleotides and alpha9beta1 blockade inhibited more importantly formation of large (> or =5 nuclei) myotubes than that of small (2-4 nuclei) myotubes. We conclude that both ADAM12 and alpha9beta1 integrin are expressed during postnatal human myogenic differentiation and that their interaction is mainly operative in nascent myotube growth.
Collapse
Affiliation(s)
- Peggy Lafuste
- Institut National de la Santé et de la Recherche Médicale EMI 0011, Faculty of Medicine, Paris XII University, Creteil 94010, France
| | | | | | | | | | | | | |
Collapse
|
65
|
Providence KM, Higgins PJ. PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. J Cell Physiol 2004; 200:297-308. [PMID: 15174100 DOI: 10.1002/jcp.20016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several proteases and their specific inhibitors modulate the interdependent processes of cell migration and matrix proteolysis as part of the global program of trauma repair. Expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of barrier proteolysis and cell-to-matrix adhesion, for example, is spatially-temporally regulated following epithelial denudation injury in vitro as well as in vivo. PAI-1 mRNA/protein synthesis was induced early after epidermal monolayer scraping and restricted to keratinocytes comprising the motile cohort closely recapitulating, thereby, similar events during cutaneous healing. The time course of PAI-1 promoter-driven PAI-1-GFP fusion "reporter" expression in wound-juxtaposed cells approximated that of the endogenous PAI-1 gene confirming the location-specificity of gene regulation in this model. ERK activation was evident within 5 min after injury and particularly prominent in cells residing at the scrape-edge (suggesting a possible role in PAI-1 induction and/or the motile response) as was myosin light chain (MLC) phosphorylation. Indeed, MEK blockade with PD98059 or U0126 attenuated keratinocyte migration (by > or =60%), as did transient transfection of a dominant-negative ERK1 construct (40% decrease in monolayer repair), and completely inhibited PAI-1 transcript expression. Anti-sense down-regulation of PAI-1 synthesis (by 80-85%), or addition of PAI-1 neutralizing antibodies also inhibited injury site closure over a 24 h period establishing that PAI-1 was required for efficient long-term planar motility in this system. PAI-1 anti-sense transfection or actinomycin D transcriptional blockade, in contrast, did not affect the initial migratory response suggesting that residual PAI-1 protein levels (at least in transfectant cells and actinomycin D-treated cultures) may be sufficient to support early cell movement. Pharmacologic inhibition of keratinocyte MEK signaling effectively ablated scrape-induced PAI-1 mRNA expression but failed to attenuate wound-associated increases in cellular PAI-1 protein levels soon after monolayer injury. Collectively, these data suggest that basal PAI-1 transcripts may be mobilized for initial PAI-1 synthesis and, perhaps, the early motile response while maintenance of the normal rate of migration requires the prolonged PAI-1 expression that typically accompanies the repair response. To assess this possibility, scrape site closure studies were designed using keratinocytes isolated from PAI-1-/- mice. PAI-1-/- keratinocytes, in fact, had a significant wound healing defect evident even within the first 6 h following monolayer denudation injury. Addition of active PAI-1 protein to PAI-/- keratinocytes rescued the migratory phenotype that that approximating wild-type cells. These findings validate use of the present keratinocyte model to investigate injury-related controls on PAI-1 gene regulation and, collectively, implicate participation of PAI-1 in two distinct phases of epidermal wound repair.
Collapse
Affiliation(s)
- Kirwin M Providence
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
66
|
Whitley BR, Palmieri D, Twerdi CD, Church FC. Expression of active plasminogen activator inhibitor-1 reduces cell migration and invasion in breast and gynecological cancer cells. Exp Cell Res 2004; 296:151-62. [PMID: 15149846 DOI: 10.1016/j.yexcr.2004.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Urokinase-type (uPA) plasminogen activator is regulated by serine protease inhibitors (serpins), especially plasminogen activator inhibitor-1 (PAI-1). In many cancers, uPA and PAI-1 contribute to the invasive phenotype. We examined the in vitro migration and invasive capabilities of breast, ovarian, endometrial, and cervical cancer cell lines compared to their plasminogen activator system profiles. We then overexpressed active wild-type PAI-1 and an inactive "substrate" P14 form of PAI-1 (T333R) using stable transfection and adenoviral gene delivery. We also upregulated endogenous uPA and PAI-1 in these cells by treatment with transforming growth factor-beta. Some breast and ovarian cancer cell lines with natural expression of uPA, PAI-1, and urokinase receptor showed substantial migration and invasion compared to other cell lines that lack expression of these proteins. However, overexpression of active wild-type PAI-1, but not P14-PAI-1 (T333R), in these cell lines showed reduced migration and invasion. Since vitronectin binding by both forms of PAI-1 is equivalent, these results imply that PAI-1-vitronectin interactions are less critical in altering migration and invasion. Our results show that the in vitro migratory and invasive phenotype in these breast and ovarian cancer cell lines is reduced by active PAI-1 due to its ability to inhibit plasminogen activation.
Collapse
Affiliation(s)
- Brandi R Whitley
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7035, USA
| | | | | | | |
Collapse
|
67
|
Sato M, Tanaka T, Maemura K, Uchiyama T, Sato H, Maeno T, Suga T, Iso T, Ohyama Y, Arai M, Tamura J, Sakamoto H, Nagai R, Kurabayashi M. The PAI-1 gene as a direct target of endothelial PAS domain protein-1 in adenocarcinoma A549 cells. Am J Respir Cell Mol Biol 2004; 31:209-15. [PMID: 15039136 DOI: 10.1165/rcmb.2003-0296oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endothelial PAS domain protein-1 (EPAS1) regulates transcription of the genes encoding erythropoietin and vascular endothelial growth factor, which are important for maintaining oxygen homeostasis. We have previously shown that plasminogen activator inhibitor-1 (PAI-1) gene expression is induced by hypoxia. In this study, we sought to determine whether PAI-1 gene expression is directly regulated by EPAS1 in cancer cells because activities of proteases and their inhibitors are tightly regulated for tumor invasion. Hypoxia increased the PAI-1 mRNA levels in human adenocarcinoma A549 cells. Overexpression of EPAS1 significantly increased the PAI-1 mRNA and protein levels. Transient transfection assays revealed that EPAS1 increased PAI-1 gene transcription through a sequence containing 5'-CACGTACA-3' located at -194 (we refer to it as site HREPAI-1) and GT-box located at -78. Electrophoretic gel mobility shift assays revealed that HREPAI-1 serves as a binding site for EPAS1, and Sp1 constitutively binds to GT-box. In conclusion, PAI-1 expression is induced by EPAS1 through HREPAI-1 and through an Sp1-binding site. These results indicate that the PAI-1 gene is a direct target of EPAS1 and suggest the role of EPAS1 and Sp1 in the hypoxic response of cancer cells.
Collapse
Affiliation(s)
- Mahito Sato
- Second Department of Internal Medicine, Gunma University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Horrevoets AJG. Plasminogen activator inhibitor 1 (PAI-1):in vitroactivities and clinical relevance. Br J Haematol 2004; 125:12-23. [PMID: 15015963 DOI: 10.1111/j.1365-2141.2004.04844.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anton J G Horrevoets
- Department of Biochemistry K1-161, Academic Medical Centre, Meibergdreef, Amsterdam, The Netherlands.
| |
Collapse
|
69
|
Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. ACTA ACUST UNITED AC 2004; 163:1133-43. [PMID: 14662751 PMCID: PMC2173611 DOI: 10.1083/jcb.200212046] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth.
Collapse
Affiliation(s)
- Bénédicte Chazaud
- Institut National de la Santé et de la Recherche Médicale, EMI 00-11, Faculté de Médecine, 8 rue du Général Sarrail, 94000 Créteil, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Li Y, Lu W, Bu G. Essential role of the low density lipoprotein receptor-related protein in vascular smooth muscle cell migration. FEBS Lett 2004; 555:346-50. [PMID: 14644440 DOI: 10.1016/s0014-5793(03)01272-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The low density lipoprotein receptor-related protein (LRP) is a multifunctional cell surface receptor highly expressed in human aortic smooth muscle cells. In the present study, we used the short interfering RNA (siRNA) technique to explore the role of LRP in smooth muscle cell migration. We identified an LRP-specific siRNA that selective silences LRP expression in human aortic smooth muscle cells. As a consequence, LRP-mediated ligand degradation was significantly reduced. More important, we found that platelet-derived growth factor-dependent cell migration was inhibited in cells transfected with LRP siRNA. These results demonstrate an important role of LRP in smooth muscle cell migration.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
71
|
Gallicchio MA, Kaun C, Wojta J, Binder B, Bach LA. Urokinase type plasminogen activator receptor is involved in insulin-like growth factor-induced migration of rhabdomyosarcoma cells in vitro. J Cell Physiol 2003; 197:131-8. [PMID: 12942549 DOI: 10.1002/jcp.10352] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Urokinase-type plasminogen activator (uPA) binds to its receptor, uPAR, on the surface of cancer cells, leading to the formation of plasmin. Rhabdomyosarcoma (RMS) cell lines secrete high levels of insulin-like growth factor II (IGF-II), suggesting autocrine IGFs play a major role in the unregulated growth and metastasis of RMS. In vitro, IGF-II and IGF-I increased migration of RD cells to 124+/-9% (P<0.01) and 131+/-8% (P<0.05) of control, respectively. IGF-II-induced migration was abolished by insulin-like growth factor binding protein-6 (IGFBP-6) (P<0.01), a relatively specific inhibitor of IGF-II, and by plasminogen activator inhibitor type 1 (PAI-1) (P<0.05). Aprotinin, a plasmin inhibitor, and mannosamine, which inhibits the synthesis of glycosylphosphatidylinositol (GPI), thereby preventing anchorage of GPI-linked proteins such as uPAR to the cell membrane, also decreased IGF-II- (P<0.05 for both) but not IGF-I-induced migration. [Arg54,Arg55]IGF-II and [Leu27]IGF-II, which preferentially bind to the IGF-I and IGF-II/mannose-6-phosphate receptors (IGF-II/M6PR), respectively, both induced RD cell migration to 146+/-8% (P<0.01) and 120+/-7% (P<0.05) of control, respectively. An anti-uPAR anti-serum reduced IGF-II- and IGF-I-induced migration (P<0.05 for both). An anti-low density lipoprotein-related protein (LRP) anti-serum reduced IGF-I-induced migration (P<0.05). IGF-I and -II both increased specific 125I-single chain uPA (scuPA) binding to RD cells in a dose-dependent manner (P<0.01). These results suggest involvement of the PA/plasmin system in IGF-induced migration and indicate important roles these systems may have in RMS metastasis.
Collapse
Affiliation(s)
- Marisa A Gallicchio
- Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre (Austin Campus), Heidelberg, Victoria, Australia
| | | | | | | | | |
Collapse
|
72
|
Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE. Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 2003; 116:2917-27. [PMID: 12808019 DOI: 10.1242/jcs.00600] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The matricellular extracellular matrix protein thrombospondin-1 (TSP1) stimulates focal adhesion disassembly through a sequence (known as the hep I peptide) in its heparin-binding domain. This mediates signaling through a receptor co-complex involving calreticulin and low-density lipoprotein (LDL) receptor-related protein (LRP). We postulate that this transition to an intermediate adhesive state enhances cellular responses to dynamic environmental conditions. Since cell adhesion dynamics affect cell motility, we asked whether TSP1/hep I-induced intermediate adhesion alters cell migration. Using both transwell and Dunn chamber assays, we demonstrate that TSP1 and hep I gradients stimulate endothelial cell chemotaxis. Treatment with focal adhesion-labilizing concentrations of TSP1/hep I in the absence of a gradient enhances endothelial cell random migration, or chemokinesis, associated with an increase in cells migrating, migration speed, and total cellular displacement. Calreticulin-null and LRP-null fibroblasts do not migrate in response to TSP1/hep I, nor do endothelial cells treated with the LRP inhibitor receptor-associated protein (RAP). Furthermore, TSP1/hep I-induced focal adhesion disassembly is associated with reduced chemotaxis to basic fibroblast growth factor (bFGF) but enhanced chemotaxis to acidic (a)FGF, suggesting differential modulation of growth factor-induced migration. Thus, TSP1/hep I stimulation of intermediate adhesion regulates the migratory phenotype of endothelial cells and fibroblasts, suggesting a role for TSP1 in remodeling responses.
Collapse
Affiliation(s)
- A Wayne Orr
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
73
|
Stefansson S, Lawrence DA. Old dogs and new tricks: proteases, inhibitors, and cell migration. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe24. [PMID: 12837933 DOI: 10.1126/stke.2003.189.pe24] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A new model for the actions of plasminogen activator inhibitors (PAIs) on cell migration may resolve the conflicting research data on these proteins in metastasis and angiogenesis. Results from two groups reveal a role for PAI-1 in promoting cycles of attachment and detachment of the cell from the extracellular matrix that is independent of its role as an enzymatic inhibitor of urokinase-type plasminogen activator (uPA). Through the formation of a complex of integrins, uPA and its receptor, and the clearance receptors of the low-density lipoprotein family, PAI-1 may promote endocytosis and recycling of these adhesion-controlling proteins, allowing cycling of cellular attachment and detachment.
Collapse
Affiliation(s)
- Steingrimur Stefansson
- Vascular Biology Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | |
Collapse
|
74
|
Stefansson S, Lawrence DA. Old Dogs and New Tricks, Proteases, Inhibitors, and Cell Migration. Sci Signal 2003. [DOI: 10.1126/scisignal.1892003pe24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
75
|
Schneider J, Pollán M, Tejerina A, Sánchez J, Lucas AR. Accumulation of uPA-PAI-1 complexes inside the tumour cells is associated with axillary nodal invasion in progesterone-receptor-positive early breast cancer. Br J Cancer 2003; 88:96-101. [PMID: 12556966 PMCID: PMC2376772 DOI: 10.1038/sj.bjc.6600656] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Both urokinase-like plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor (PAI-1), as well as uPA-PAI-1 complexes, have been identified as important prognostic factors in breast cancer. We have recently reported that the latter are identifiable inside breast cancer cells by means of immunohistochemistry. Using this technique, we have studied a series of 212 early (pT1) unifocal breast cancers and have correlated the expression of uPA-PAI-1 complexes, together with other clinical and biological features (histologic variety, histologic and nuclear grade, hormone receptors, Ki67 labelling index, c-erb-B2-, p53- and CD44std-expression) with or without the occurrence of axillary node invasion. In a logistic regression model, looking for associations with axillary metastasis, we found a statistically significant interaction between the presence of uPA-PAI-1 complexes and progesterone receptor positivity (P=0.04). A final model showed that the presence of uPA-PAI-1 complexes was a determinant factor for axillary metastasis among women carrying tumours expressing progesterone receptors. In these cases, the presence of uPA-PAI-1 complexes carried with it a nearly 14-fold risk of axillary node invasion (P=0.009). These results may indicate that small, hormone-receptor-positive breast cancers (with a theoretical good prognosis) may carry an elevated risk of nodal involvement if accumulation of uPA-PAI-1 complexes is shown inside their tumour cells by means of immunohistochemistry.
Collapse
Affiliation(s)
- J Schneider
- Fundación Tejerina-Centro de Patología de la Mama, Madrid, Spain.
| | | | | | | | | |
Collapse
|
76
|
Beneš P, Jurajda M, Žaloudík J, Izakovičová-Hollá L, Vácha J. C766T low-density lipoprotein receptor-related protein 1 (LRP1) gene polymorphism and susceptibility to breast cancer. Breast Cancer Res 2003; 5:R77-81. [PMID: 12793904 PMCID: PMC165006 DOI: 10.1186/bcr591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 02/25/2003] [Accepted: 02/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor with an important role in regulating the activity of proteinases in extracellular matrix. Several studies have also described its role in intracellular signaling. Previous studies showed that the expression of LRP1 is related to invasiveness of cancer cells. However, recent data on LRP1 suggest that this receptor can also be involved in tumor establishment and progression. METHODS We investigated an association between the C766T polymorphism of the third exon of the LRP1 gene and breast cancer in a sample of women of Caucasian origin. Allele and genotype frequencies of this polymorphism were assessed in 164 women with breast cancer and in 183 age-compatible women without a history of any cancer disease. RESULTS An increase in LRP1 T allele frequency in subjects with breast cancer was observed compared with controls (0.21 versus 0.15, P = 0.01963). A significant excess of genotypes with the T allele (homozygotes plus heterozygotes) was also observed (odds ratio 1.743, 95% confidence interval 1.112-2.732). CONCLUSION The T allele of the C766T polymorphism in the LRP1 gene is associated with an increased risk of breast cancer development in women of Caucasian origin.
Collapse
Affiliation(s)
- Petr Beneš
- Department of Molecular Biology and Genetics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Jurajda
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Žaloudík
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lydie Izakovičová-Hollá
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Vácha
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
77
|
Li Y, Knisely JM, Lu W, McCormick LM, Wang J, Henkin J, Schwartz AL, Bu G. Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J Biol Chem 2002; 277:42366-71. [PMID: 12194987 DOI: 10.1074/jbc.m207705200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family and is closely related to LRP. It was discovered as a putative tumor suppressor and is frequently inactivated in lung cancer cells. In the present study, we used an LRP1B minireceptor (mLRP1B4), which mimics the function and trafficking of LRP1B, to explore the roles of LRP1B on the plasminogen activation system. We found that mLRP1B4 and urokinase plasminogen activator receptor (uPAR) form immunoprecipitable complexes on the cell surface in the presence of complexes of uPA and its inhibitor, plasminogen activator inhibitor type-1 (PAI-1). However, compared with cells expressing the analogous LRP minireceptor (mLRP4), cells expressing mLRP1B4 display a substantially slower rate of uPA.PAI-1 complex internalization. Expression of mLRP1B4, or an mLRP4 mutant deficient in endocytosis, leads to an accumulation of uPAR at the cell surface and increased cell-associated uPA and PAI-1 when compared with cells expressing mLRP4. In addition, we found that expression of mLRP1B or the mLRP4 endocytosis mutant impairs the regeneration of unoccupied uPAR on the cell surface and that this correlates with a diminished rate of cell migration. Taken together, these results demonstrate that LRP1B can function as a negative regulator of uPAR regeneration and cell migration.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Palmieri D, Lee JW, Juliano RL, Church FC. Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells. J Biol Chem 2002; 277:40950-7. [PMID: 12176977 DOI: 10.1074/jbc.m202333200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), an inhibitor of urokinase plasminogen activator, is paradoxically associated with a poor prognosis in breast cancer. PAI-1 is linked to several processes in the metastatic cascade. However, the role of PAI-1 in metastatic processes, which may be independent of protease inhibitory activity, is not fully understood. We report herein that PAI-1, when added exogenously to or stably transfected in human MDA-MB-435 breast carcinoma cells, had disparate effects on adhesion to extracellular matrix proteins and motility in vitro. Specifically, exogenously added PAI-1 inhibited cell adhesion to vitronectin but not fibronectin, in agreement with the literature. By contrast, stably transfected PAI-1 stimulated adhesion to both proteins. Wild-type PAI-1 was required for this stimulation, because expression of a non-protease inhibitory P14 (T333R) PAI-1 mutant failed to enhance adhesion. Compared with non-inhibitory PAI-1, wild-type PAI-1 also increased cell motility in chemotaxic assays. Furthermore, stable transfection of a related serine protease inhibitor, plasminogen activator inhibitor-3 (PAI-3, or protein C inhibitor) gave results similar to wild-type PAI-1. The stimulatory activity of PAI-3 was not seen with a non-protease inhibitory P14 PAI-3 mutant (T341R). We show that a downstream effect of endogenous wild-type PAI-1 and PAI-3 overexpression, but not their non-inhibitory counterparts, was the altered expression of alpha(2), alpha(3), alpha(4), alpha(5), and beta(1) integrin subunits. Additionally, blocking antibodies to beta(1) integrin inhibited PAI-1-induced adhesion. Our data provide experimental support for the stimulatory and inhibitory effects of PAI-1 in metastasis and introduce PAI-3 as another serpin potentially important in malignant disease.
Collapse
Affiliation(s)
- Diane Palmieri
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27759-7035, USA
| | | | | | | |
Collapse
|
79
|
|
80
|
Providence KM, White LA, Tang J, Gonclaves J, Staiano-Coico L, Higgins PJ. Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the plasminogen activator inhibitor type 1 gene. J Cell Sci 2002; 115:3767-77. [PMID: 12235287 DOI: 10.1242/jcs.00051] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several proteases and their co-expressed inhibitors modulate the interdependent processes of cell migration and matrix proteolysis during wound repair. Transcription of the gene encoding plasminogen activator inhibitor type 1 (PAI-1), a serine protease inhibitor important in the control of barrier proteolysis and cell-to-matrix adhesion, is spatially-temporally regulated following epithelial denudation injury in vitro as well as in vivo. Using a well-defined culture model of acute epidermal wounding and reepithelialization, PAI-1 mRNA/protein synthesis was induced early after monolayer scraping and restricted to cells comprising the motile cohort. PAI-1 levels in locomoting cells remained elevated (relative to the distal, contact-inhibited monolayer regions) throughout the time course of trauma repair. Targeted PAI-1 downregulation by transfection of antisense PAI-1 expression constructs significantly impaired keratinocyte migration and monolayer scrape wound closure. Injury-induced PAI-1 transcription closely paralleled growth state-dependent controls on the PAI-1 gene. An E-box motif (CACGTG) in the PAI-1 proximal promoter (located at nucleotides -160 to -165), previously shown to be necessary for serum-induced PAI-1 expression, was bound by nuclear factors from wound-stimulated but not quiescent, contact-inhibited, keratinocytes. UV crosslinking approaches to identify E-box-binding factors coupled with deoxyoligonucleotide affinity chromatography and gel retardation assays confirmed at least one major E-box-binding protein in both serum- and wound-activated cells to be USF-1, a member of the helix-loop-helix family of transcription factors. An intact hexanucleotide E-box motif was necessary and sufficient for USF-1 binding using nuclear extracts from both serum- and wound-simulated cells. Two species of immunoreactive USF-1 were identified by western blotting of total cellular lysates that corresponded to the previously characterized phosphorylated and non-phosphorylated forms of the protein. USF-1 isolated by PAI-1 promoter-DNA affinity chromatography was almost exclusively phosphorylated. Only a fraction of the total cellular USF-1 in proliferating cultures, by comparison, was phosphorylated at any given time. PAI-1 E-box binding activity, assessed by probe mobility shift criteria, increased within 2 hours of monolayer scrape injury, a time frame consistent with wound-stimulated increases in PAI-1 transcription. Relative to intact cultures, scrape site-juxtaposed cells had significantly greater cytoplasmic and nuclear USF-1 immunoreactivity correlating with the specific in situ-restricted expression of PAI-1 transcripts/protein in the wound-edge cohort. USF-1 immunocytochemical staining declined significantly with increasing distance from the denudation site. These data are the first to indicate that binding of USF-1 to its target motif can be induced by 'tissue' injury in vitro and implicate USF-1 as a transcriptional regulator of genes (e.g. PAI-1) involved in wound repair.
Collapse
Affiliation(s)
- Kirwin M Providence
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|