51
|
Spiering MJ, Urban LA, Nuss DL, Gopalan V, Stoltzfus A, Eisenstein E. Gene identification in black cohosh (Actaea racemosa L.): expressed sequence tag profiling and genetic screening yields candidate genes for production of bioactive secondary metabolites. PLANT CELL REPORTS 2011; 30:613-629. [PMID: 21188383 DOI: 10.1007/s00299-010-0979-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
Black cohosh (Actaea racemosa L., syn. Cimicifuga racemosa, Nutt., Ranunculaceae) is a popular herb used for relieving menopausal discomforts. A variety of secondary metabolites, including triterpenoids, phenolic dimers, and serotonin derivatives have been associated with its biological activity, but the genes and metabolic pathways as well as the tissue distribution of their production in this plant are unknown. A gene discovery effort was initiated in A. racemosa by partial sequencing of cDNA libraries constructed from young leaf, rhizome, and root tissues. In total, 2,066 expressed sequence tags (ESTs) were assembled into 1,590 unique genes (unigenes). Most of the unigenes were predicted to encode primary metabolism genes, but about 70 were identified as putative secondary metabolism genes. Several of these candidates were analyzed further and full-length cDNA and genomic sequences for a putative 2,3 oxidosqualene cyclase (CAS1) and two BAHD-type acyltransferases (ACT1 and HCT1) were obtained. Homology-based PCR screening for the central gene in plant serotonin biosynthesis, tryptophan decarboxylase (TDC), identified two TDC-related sequences in A. racemosa. CAS1, ACT1, and HCT1 were expressed in most plant tissues, whereas expression of TDC genes was detected only sporadically in immature flower heads and some very young leaf tissues. The cDNA libraries described and assorted genes identified provide initial insight into gene content and diversity in black cohosh, and provide tools and resources for detailed investigations of secondary metabolite genes and enzymes in this important medicinal plant.
Collapse
Affiliation(s)
- Martin J Spiering
- Fischell Department of Bioengineering, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
52
|
Shepherd LD, McLay TGB. Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. JOURNAL OF PLANT RESEARCH 2011; 124:311-4. [PMID: 20927638 DOI: 10.1007/s10265-010-0379-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/06/2010] [Indexed: 05/08/2023]
Abstract
The high polysaccharide content of some plant species hinders the successful isolation of their DNA. As an alternative to the macro-extraction methods previously published for polysaccharide-rich plants, we present two techniques (STE/CTAB and HEPES/CTAB), which are performed in microcentrifuge tubes. These protocols are suitable for small amounts of silica gel-preserved plant tissue such as are commonly available from endangered plants. The critical step to remove polysaccharides was performing initial washes in either STE (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA) or HEPES (2% β-mercaptoethanol, 0.2% PVP, 0.1 M HEPES, pH 8.0) buffer. Precipitating the DNA at room temperature with isopropanol also aided in decreasing polysaccharide co-precipitation. Of the two protocols we present the STE/CTAB method has the advantages of being more cost-effective and avoiding the use of the hazardous chemical β-mercaptoethanol.
Collapse
Affiliation(s)
- Lara D Shepherd
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | |
Collapse
|
53
|
Calderón-Cortés N, Quesada M, Cano-Camacho H, Zavala-Páramo G. A simple and rapid method for DNA isolation from xylophagous insects. Int J Mol Sci 2010; 11:5056-64. [PMID: 21614191 PMCID: PMC3100841 DOI: 10.3390/ijms11125056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/22/2010] [Accepted: 11/30/2010] [Indexed: 11/16/2022] Open
Abstract
Published methods to isolate DNA from insects are not always effective in xylophagous insects because they have high concentrations of phenolics and other secondary plant compounds in their digestive tracts. A simple, reliable and labor-effective cetyltrimethylammonium bromide-polyvinylpyrrolidone (CTAB-PVP) method for isolation of high quality DNA from xylophagous insects is described. This method was successfully applied to PCR and restriction analysis, indicating removal of common inhibitors. DNA isolated by the CTAB-PVP method could be used in most molecular analyses.
Collapse
Affiliation(s)
- Nancy Calderón-Cortés
- Center for Ecosystems Research (CIEco), National Autonomous University of Mexico (UNAM), Morelia, Mexico; E-Mail: (M.Q.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +52-(555)-6-23-27-19
| | - Mauricio Quesada
- Center for Ecosystems Research (CIEco), National Autonomous University of Mexico (UNAM), Morelia, Mexico; E-Mail: (M.Q.)
| | - Horacio Cano-Camacho
- Multidisciplinary Center of Biotechnology Studies (CMEB), Michoacan University of San Nicolas of Hidalgo (UMSNH), Morelia, Mexico; E-Mails: (H.C.-C.); (G.Z.-P.)
| | - Guadalupe Zavala-Páramo
- Multidisciplinary Center of Biotechnology Studies (CMEB), Michoacan University of San Nicolas of Hidalgo (UMSNH), Morelia, Mexico; E-Mails: (H.C.-C.); (G.Z.-P.)
| |
Collapse
|
54
|
Qin A, Shi Q, Yu X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 2010; 38:1557-66. [PMID: 20857222 DOI: 10.1007/s11033-010-0264-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 09/02/2010] [Indexed: 01/03/2023]
Abstract
Ascorbic acid (AsA, vitamin C) is one of the most important nutritional quality factors in many horticultural crops and has many biological activities in the human body. Dehydroascorbate reductase (EC 1.8.5.1; DHAR) plays an important role in maintaining the normal level of ascorbic acid (AsA) by recycling oxidized ascorbic acid. To increase AsA content of potato, we isolated and characterized the cDNAs encoding two isoform DHARs localized in cytosol and chloroplast from potato, and developed two types of transgenic potato plants overexpressing cytosolic DHAR gene and chloroplastic DHAR, respectively. Incorporation of the transgene in the genome of potato was confirmed by PCR and real time RT-PCR. The overexpression of cytosolic DHAR significantly increased DHAR activities and AsA contents in potato leaves and tubers, whereas chloroplastic DHAR overexpression only increased DHAR activities and AsA contents in leaves, and did not change them in tubers. These results indicated that AsA content of potato can be elevated by enhancing recycling ascorbate via DHAR overexpression, moreover, cytosolic DHAR might play main important roles in improving the AsA contents of potato tubers.
Collapse
Affiliation(s)
- Aiguo Qin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | |
Collapse
|
55
|
Li JF, Li L, Sheen J. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. PLANT METHODS 2010; 6:1. [PMID: 20180960 PMCID: PMC2829548 DOI: 10.1186/1746-4811-6-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 05/21/2023]
Abstract
Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 mul water, leading to high DNA concentrations (>1 mug/mul) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA
| | - Li Li
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA
| |
Collapse
|
56
|
Farías FR, Williamson JS, Rodríguez SV, Angeles G, Portugal VO. Bark anatomy in Croton draco var. draco (Euphorbiaceae). AMERICAN JOURNAL OF BOTANY 2009; 96:2155-2167. [PMID: 21622332 DOI: 10.3732/ajb.0900035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many arboreal forms of the genus Croton (ca. 800 spp.), amply distributed in the Americas, have latex-producing cells in their bark, which is widely used in traditional medicine to treat skin infections and some forms of cancer. Studies validate its ethnomedicinal use-more than 20 pharmaceutically important secondary metabolites have been reported for its latex and bark-but anatomical and ecological studies are scarce. Given this species' ample distribution, laticifer abundance could be affected by the environment. We tested this for genetically similar trees growing in two types of vegetation in Veracruz, Mexico at sites commonly visited by traditional doctors. We describe the bark anatomy of C. draco, focusing on the laticifers, histochemically characterize the bark and the latex extracted from it, and document differences in laticifer abundance in the two environments. We have also identified another cell type (what we call type B) in the secretory latex system and describe it histochemically and microscopically. The location of bark cells that contain essential oils is reported here for the first time. Given the genetic similarity of the trees at both sites, the between-site variation in the number of laticifers in stem and branch bark appears to be an effect of the environment.
Collapse
Affiliation(s)
- Feliza Ramón Farías
- Centro de Investigación y Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Campus Guanajuato, Km 9.6 Libramiento Norte Carretera León-Guanajuato, Irapuato, Guanajuato, México
| | | | | | | | | |
Collapse
|
57
|
Davey MW, Graham NS, Vanholme B, Swennen R, May ST, Keulemans J. Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa. BMC Genomics 2009; 10:436. [PMID: 19758430 PMCID: PMC2761422 DOI: 10.1186/1471-2164-10-436] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/16/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip(R) microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts. RESULTS Following cross-hybridisation of Musa gDNA to the Rice GeneChip(R) Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments. CONCLUSION Our results demonstrate that despite the general paucity of nucleotide sequence data in Musa and only distant phylogenetic relations to rice, gDNA probe-based cross-hybridisation to the Rice GeneChip(R) is a highly promising strategy to study complex biological responses and illustrates the potential of such strategies for gene discovery in non-model species.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Katholieke Universiteit Leuven, Box 2747, Willem De Croylaan 42, B-3001, Heverlee, Leuven, Belgium
| | - Neil S Graham
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Universiteit Gent, Technologiepark 927, B-9052 Gent, Belgium
| | - Rony Swennen
- Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13 Box 2455, B - 3001 Leuven, Belgium
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Johan Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Katholieke Universiteit Leuven, Box 2747, Willem De Croylaan 42, B-3001, Heverlee, Leuven, Belgium
| |
Collapse
|
58
|
Haque I, Bandopadhy R, Mukhopadhy K. An Optimised Protocol for Fast Genomic DNA Isolation from High Secondary Metabolites and Gum Containing Plants. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajps.2008.304.308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
59
|
Abstract
Isolating quality DNA from tissues/cells presents a variety of problems in particular when plants are used as the source material. The specific characteristics of plants like the presence of rigid polysaccharide cell wall, pigments, chemical heterogeneity of secondary metabolites found in diverse species of plants, etc., necessitate special consideration and skill during isolation procedure. Until now, numerous protocols have been published for the purpose, but none is found to be universally applicable. Various factors starting from the selection of source material to the concentration of metabolites present in the plant decide the course of the isolation procedure. The present review is an update of various methods used for plant genomic DNA isolation, and it epitomizes the various problems faced and the solutions made to contend with them during DNA isolation from plant cells.
Collapse
Affiliation(s)
- Astha Varma
- B. V. Patel Pharmaceutical Education and Research Development Centre, Department of Pharmacognosy and Phytochemistry, Ahmedabad, Gujarat, India
| | | | | |
Collapse
|
60
|
Dehestani A, Tabar SK. A Rapid Efficient Method for DNA Isolation from Plants with High Levels of Secondary Metabolites. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/ajps.2007.977.981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
61
|
Maximova SN, Marelli JP, Young A, Pishak S, Verica JA, Guiltinan MJ. Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. PLANTA 2006; 224:740-9. [PMID: 16362326 DOI: 10.1007/s00425-005-0188-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/16/2005] [Indexed: 05/05/2023]
Abstract
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.
Collapse
Affiliation(s)
- Siela N Maximova
- The Department of Horticulture, The Pennsylvania State University, University Park, Chester, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
62
|
Michiels A, Van Laere A, Van den Ende W, Tucker M. Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1325-33. [PMID: 15133058 DOI: 10.1093/jxb/erh153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gene for a recently identified cDNA, 1-FEH IIa, encoding a fructan 1-exohydrolase was isolated and cloned from Cichorium intybus and a 1149 bp promoter fragment was characterized. An analysis of the genomic 1-FEH IIa sequence indicated that the gene (FEHIIa) consists of six introns and seven exons, which is similar to plant invertase genes. Like invertase genes, FEHIIa also contains the 9 nt mini-exon encoding the tripeptide DPN. A database search for cis-acting response elements within its promoter identified multiple elements that appear to have relevance to cold-induced expression of the gene in field-grown roots. Promoter analysis by transient expression assay demonstrated that the FEHIIa gene promoter is highly expressed in etiolated Cichorium leaves and cold-stored roots, which correlated well with the high level expression detected by RNA blot analysis. Cold also enhanced FEHIIa reporter gene expression in green leaves, however, the reporter gene activity was much lower compared with similar induction experiments in etiolated leaves. Promoter deletion analysis demonstrated the presence of potential cold-responsive ABRE and/or CRT/DRE elements in the -22 to -172 region, while regions -933 to -717 and -493 to -278 contain elements that can down-regulate expression at the conditions used. Characterization of the FEHIIa promoter may provide tools to study cold-induced expression and to increase freezing tolerance in agricultural crops.
Collapse
Affiliation(s)
- An Michiels
- Laboratory for Molecular Plant Physiology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
63
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2003; 14:328-335. [PMID: 14627054 DOI: 10.1002/pca.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
64
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447285 DOI: 10.1002/cfg.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|