51
|
Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, Tsunoda SP, Kandori H. A natural light-driven inward proton pump. Nat Commun 2016; 7:13415. [PMID: 27853152 PMCID: PMC5118547 DOI: 10.1038/ncomms13415] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Light-driven outward H+ pumps are widely distributed in nature, converting sunlight energy into proton motive force. Here we report the characterization of an oppositely directed H+ pump with a similar architecture to outward pumps. A deep-ocean marine bacterium, Parvularcula oceani, contains three rhodopsins, one of which functions as a light-driven inward H+ pump when expressed in Escherichia coli and mouse neural cells. Detailed mechanistic analyses of the purified proteins reveal that small differences in the interactions established at the active centre determine the direction of primary H+ transfer. Outward H+ pumps establish strong electrostatic interactions between the primary H+ donor and the extracellular acceptor. In the inward H+ pump these electrostatic interactions are weaker, inducing a more relaxed chromophore structure that leads to the long-distance transfer of H+ to the cytoplasmic side. These results demonstrate an elaborate molecular design to control the direction of H+ transfers in proteins.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yoshitaka Kato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yurika Nomura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Mikihiro Shibata
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takayuki Uchihashi
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Satoshi P. Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
52
|
Gupta S, Feng J, Chan LJG, Petzold CJ, Ralston CY. Synchrotron X-ray footprinting as a method to visualize water in proteins. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1056-69. [PMID: 27577756 PMCID: PMC5006651 DOI: 10.1107/s1600577516009024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Feng
- Experimental Systems, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G. Chan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
53
|
Yamada D, Yamamoto J, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Iwai S, Kandori H. Structural Changes of the Active Center during the Photoactivation of Xenopus (6-4) Photolyase. Biochemistry 2016; 55:715-23. [PMID: 26719910 DOI: 10.1021/acs.biochem.5b01111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photolyases (PHRs) repair the UV-induced photoproducts, cyclobutane pyrimidine dimer (CPD) or pyrimidine-pyrimidone (6-4) photoproduct [(6-4) PP], restoring normal bases to maintain genetic integrity. CPD and (6-4) PP are repaired by substrate-specific PHRs, CPD PHR and (6-4) PHR, respectively. Flavin adenine dinucleotide (FAD) is the chromophore of both PHRs, and the resting oxidized form (FAD(ox)), at least under in vitro purified conditions, is first photoconverted to the neutral semiquinoid radical (FADH(•)) form, followed by photoconversion into the enzymatically active fully reduced (FADH(-)) form. Previously, we reported light-induced difference Fourier transform infrared (FTIR) spectra corresponding to the photoactivation process of Xenopus (6-4) PHR. Spectral differences between the absence and presence of (6-4) PP were observed in the photoactivation process. To identify the FTIR signals where these differences appeared, we compared the FTIR spectra of photoactivation (i) in the presence and absence of (6-4) PP, (ii) of (13)C labeling, (15)N labeling, and [(14)N]His/(15)N labeling, and (iii) of H354A and H358A mutants. We successfully assigned the vibrational bands for (6-4) PP, the α-helix and neutral His residue(s). In particular, we assigned three bands to the C ═ O groups of (6-4) PP in the three different redox states of FAD. Furthermore, the changed hydrogen bonding environments of C ═ O groups of (6-4) PP suggested restructuring of the binding pocket of the DNA lesion in the process of photoactivation.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Yu Zhang
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Kenichi Hitomi
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States.,Life Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
54
|
Yamada D, Iwata T, Yamamoto J, Hitomi K, Todo T, Iwai S, Getzoff ED, Kandori H. Structural role of two histidines in the (6-4) photolyase reaction. Biophys Physicobiol 2015; 12:139-44. [PMID: 27493863 PMCID: PMC4736838 DOI: 10.2142/biophysico.12.0_139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022] Open
Abstract
Photolyases (PHRs) are DNA repair enzymes that revert UV-induced photoproducts, either cyclobutane pyrimidine dimers (CPD) or (6-4) photoproducts (PPs), into normal bases to maintain genetic integrity. (6-4) PHR must catalyze not only covalent bond cleavage, but also hydroxyl or amino group transfer, yielding a more complex mechanism than that postulated for CPD PHR. Previous mutation analysis revealed the importance of two histidines in the active center, H354 and H358 for Xenopus (6-4) PHR, whose mutations significantly lowered the enzymatic activity. Based upon highly sensitive FTIR analysis of the repair function, here we report that both H354A and H358A mutants of Xenopus (6-4) PHR still maintain their repair activity, although the efficiency is much lower than that of the wild type. Similar difference FTIR spectra between the wild type and mutant proteins suggest a common mechanism of repair in which (6-4) PP binds to the active center of each mutant, and is released after repair, as occurs in the wild type. Similar FTIR spectra also suggest that a decrease in volume by the H-to-A mutation is possibly compensated by the addition of water molecule( s). Such a modified environment is sufficient for the repair function that is probably controlled by proton-coupled electron transfer between the enzyme and substrate. On the other hand, two histidines must work in a concerted manner in the active center of the wild-type enzyme, which significantly raises the repair efficiency.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenichi Hitomi
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
55
|
Feng J, Mertz B. Proteorhodopsin Activation Is Modulated by Dynamic Changes in Internal Hydration. Biochemistry 2015; 54:7132-41. [PMID: 26562497 DOI: 10.1021/acs.biochem.5b00932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteorhodopsin, a member of the microbial rhodopsin family, is a seven-transmembrane α-helical protein that functions as a light-driven proton pump. Understanding the proton-pumping mechanism of proteorhodopsin requires intimate knowledge of the proton transfer pathway via complex hydrogen-bonding networks formed by amino acid residues and internal water molecules. Here we conducted a series of microsecond time scale molecular dynamics simulations on both the dark state and the initial photoactivated state of blue proteorhodopsin to reveal the structural basis for proton transfer with respect to protein internal hydration. A complex series of dynamic hydrogen-bonding networks involving water molecules exists, facilitated by water channels and hydration sites within proteorhodopsin. High levels of hydration were discovered at each proton transfer site-the retinal binding pocket and proton uptake and release sites-underscoring the critical participation of water molecules in the proton-pumping mechanism. Water-bridged interactions and local water channels were also observed and can potentially mediate long-distance proton transfer between each site. The most significant phenomenon is after isomerization of retinal, an increase in water flux occurs that connects the proton release group, a conserved arginine residue, and the retinal binding pocket. Our results provide a detailed description of the internal hydration of the early photointermediates in the proteorhodopsin photocycle under alkaline pH conditions. These results lay the fundamental groundwork for understanding the intimate role that hydration plays in the structure-function relationship underlying the proteorhodopsin proton-pumping mechanism, as well as providing context for the relationship of hydration in proteorhodopsin to other microbial retinal proteins.
Collapse
Affiliation(s)
- Jun Feng
- The C. Eugene Bennett Department of Chemistry, West Virginia University , 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- The C. Eugene Bennett Department of Chemistry, West Virginia University , 217 Clark Hall, Morgantown, West Virginia 26506, United States
| |
Collapse
|
56
|
Furuse M, Tamogami J, Hosaka T, Kikukawa T, Shinya N, Hato M, Ohsawa N, Kim SY, Jung KH, Demura M, Miyauchi S, Kamo N, Shimono K, Kimura-Someya T, Yokoyama S, Shirouzu M. Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum. ACTA ACUST UNITED AC 2015; 71:2203-16. [DOI: 10.1107/s1399004715015722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022]
Abstract
Although many crystal structures of microbial rhodopsins have been solved, those with sufficient resolution to identify the functional water molecules are very limited. In this study, the Acetabularia rhodopsin I (ARI) protein derived from the marine alga A. acetabulum was synthesized on a large scale by the Escherichia coli cell-free membrane-protein production method, and crystal structures of ARI were determined at the second highest (1.52–1.80 Å) resolution for a microbial rhodopsin, following bacteriorhodopsin (BR). Examinations of the photochemical properties of ARI revealed that the photocycle of ARI is slower than that of BR and that its proton-transfer reactions are different from those of BR. In the present structures, a large cavity containing numerous water molecules exists on the extracellular side of ARI, explaining the relatively low pK
a of Glu206ARI, which cannot function as an initial proton-releasing residue at any pH. An interhelical hydrogen bond exists between Leu97ARI and Tyr221ARI on the cytoplasmic side, which facilitates the slow photocycle and regulates the pK
a of Asp100ARI, a potential proton donor to the Schiff base, in the dark state.
Collapse
|
57
|
Abstract
Rhodopsins are light-sensing proteins used in optogenetics. The word "rhodopsin" originates from the Greek words "rhodo" and "opsis," indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. Ion-transporting proteins can be found in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. Light-driven pumps, such as archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR), were discovered in the 1970s, and their mechanism has been extensively studied. On the other hand, different kinds of H(+) and Cl(-) pumps have been found in marine bacteria, such as proteorhodopsin (PR) and Fulvimarina pelagi rhodopsin (FR), respectively. In addition, a light-driven Na(+) pump was found, Krokinobacter eikastus rhodopsin 2 (KR2). These light-driven ion-pumping microbial rhodopsins are classified as DTD, TSA, DTE, NTQ, and NDQ rhodopsins for BR, HR, PR, FR, and KR2, respectively. Recent understanding of ion-pumping microbial rhodopsins is reviewed in this paper.
Collapse
Affiliation(s)
- Hideki Kandori
- Department of Frontier Materials and OptoBioTechnology Research Center, Nagoya Institute of Technology Nagoya, Japan
| |
Collapse
|
58
|
Furutani Y, Shimizu H, Asai Y, Oiki S, Kandori H. Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy. Biophys Physicobiol 2015; 12:37-45. [PMID: 27493853 PMCID: PMC4736833 DOI: 10.2142/biophysico.12.0_37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023] Open
Abstract
The X-ray structure of KcsA, a eubacterial potassium channel, displays a selectivity filter composed of four parallel peptide strands. The backbone carbonyl oxygen atoms of these strands solvate multiple K(+) ions. KcsA structures show different distributions of ions within the selectivity filter in solutions containing different cations. To assess the interactions of cations with the selectivity filter, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Ion-exchange-induced ATR-FTIR difference spectra were obtained by subtracting the spectrum of KcsA soaked in K(+) solution from that obtained in Li(+), Na(+), Rb(+), and Cs(+) solutions. Large spectral changes in the amide-I and -II regions were observed upon replacing K(+) with smaller-sized cations Li(+) and Na(+) but not with larger-sized cations Rb(+) and Cs(+). These results strongly suggest that the selectivity filter carbonyls coordinating Rb(+) or Cs(+) adopt a conformation similar to those coordinating K(+) (cage configuration), but those coordinating Li(+) or Na(+) adopt a conformation (plane configuration) considerably different from those coordinating K(+). We have identified a cation-type sensitive amide-I band at 1681 cm(-1) and an insensitive amide-I band at 1659 cm(-1). The bands at 1650, 1639, and 1627 cm(-1) observed for Na(+)-coordinating carbonyls were almost identical to those observed in Li(+) solution, suggesting that KcsA forms a similar filter structure in Li(+) and Na(+) solutions. Thus, we conclude that the filter structure adopts a collapsed conformation in Li(+) solution that is similar to that in Na(+) solution but is in clear contrast to the X-ray crystal structure of KcsA with Li(+).
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan
| | - Yusuke Asai
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
59
|
|
60
|
Harris A, Ljumovic M, Bondar AN, Shibata Y, Ito S, Inoue K, Kandori H, Brown LS. A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1518-29. [PMID: 26260121 DOI: 10.1016/j.bbabio.2015.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
One of the main functions of microbial rhodopsins is outward-directed light-driven proton transport across the plasma membrane, which can provide sources of energy alternative to respiration and chlorophyll photosynthesis. Proton-pumping rhodopsins are found in Archaea (Halobacteria), multiple groups of Bacteria, numerous fungi, and some microscopic algae. An overwhelming majority of these proton pumps share the common transport mechanism, in which a proton from the retinal Schiff base is first transferred to the primary proton acceptor (normally an Asp) on the extracellular side of retinal. Next, reprotonation of the Schiff base from the cytoplasmic side is mediated by a carboxylic proton donor (Asp or Glu), which is located on helix C and is usually hydrogen-bonded to Thr or Ser on helix B. The only notable exception from this trend was recently found in Exiguobacterium, where the carboxylic proton donor is replaced by Lys. Here we describe a new group of efficient proteobacterial retinal-binding light-driven proton pumps which lack the carboxylic proton donor on helix C (most often replaced by Gly) but possess a unique His residue on helix B. We characterize the group spectroscopically and propose that this histidine forms a proton-donating complex compensating for the loss of the carboxylic proton donor.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, ON, Canada
| | | | | | - Yohei Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan; PRESTO, Japan Science and Technology Agency, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.
| | - Leonid S Brown
- Department of Physics, University of Guelph, ON, Canada.
| |
Collapse
|
61
|
Wolf S, Freier E, Cui Q, Gerwert K. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein. J Chem Phys 2015; 141:22D524. [PMID: 25494795 DOI: 10.1063/1.4902237] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proton conduction along protein-bound "water wires" is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded ("dangling") O-H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Erik Freier
- Department of Biophysics, Chinese Academy of Sciences, Max-Planck-Gesellschaft Partner Institute for Computational Biology, 320 Yue Yang Road, 200031 Shanghai, China
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
62
|
Lórenz-Fonfría VA, Muders V, Schlesinger R, Heberle J. Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. J Chem Phys 2015; 141:22D507. [PMID: 25494778 DOI: 10.1063/1.4895796] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2(380) intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H2 (18)O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm(-1)) and with the other O-H group medium (3440 cm(-1)) to moderately strongly (3300 cm(-1)) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1.
Collapse
Affiliation(s)
| | - Vera Muders
- Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
63
|
Terpugov EL, Degtyareva OV. Photo-induced processes and the reaction dynamics of bacteriorhodopsin. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
64
|
Katayama K, Kandori H. FTIR study of primate color visual pigments. Biophysics (Nagoya-shi) 2015; 11:61-6. [PMID: 27493516 PMCID: PMC4736781 DOI: 10.2142/biophysics.11.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/25/2014] [Indexed: 12/01/2022] Open
Abstract
How do we distinguish colors? Humans possess three color pigments; red-, green-, and blue-sensitive proteins, which have maximum absorbance (λmax) at 560, 530, and 420 nm, respectively, and contribute to normal human trichromatic vision (RGB). Each color pigments consists of a different opsin protein bound to a common chromophore molecule, 11-cis-retinal, whereas different chromophore-protein interactions allow preferential absorption of different colors. However, detailed experimental structural data to explain the molecular basis of spectral tuning of color pigments are lacking, mainly because of the difficulty in sample preparation. We thus started structural studies of primate color visual pigments using low-temperature Fourier-transform infrared (FTIR) spectroscopy, which needs only 0.3 mg protein for a single measurement. Here we report the first structural data of monkey red- (MR) and green- (MG) sensitive pigments, in which the information about the protein, retinal chromophore, and internal water molecules is contained. Molecular mechanism of color discrimination between red and green pigments will be discussed based on the structural data by FTIR spectroscopy.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
65
|
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae. Biochemistry 2014; 54:377-88. [PMID: 25469620 PMCID: PMC4303311 DOI: 10.1021/bi501243y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Channelrhodopsins
(ChRs) from green flagellate algae function as
light-gated ion channels when expressed heterologously in mammalian
cells. Considerable interest has focused on understanding the molecular
mechanisms of ChRs to bioengineer their properties for specific optogenetic
applications such as elucidating the function of specific neurons
in brain circuits. While most studies have used channelrhodopsin-2
from Chlamydomonas reinhardtii (CrChR2), in this work low-temperature Fourier transform infrared-difference
spectroscopy is applied to study the conformational changes occurring
during the primary phototransition of the red-shifted ChR1 from Chlamydomonas augustae (CaChR1). Substitution
with isotope-labeled retinals or the retinal analogue A2, site-directed
mutagenesis, hydrogen–deuterium exchange, and H218O exchange were used to assign bands to the retinal
chromophore, protein, and internal water molecules. The primary phototransition
of CaChR1 at 80 K involves, in contrast to that of CrChR2, almost exclusively an all-trans to 13-cis isomerization of the retinal chromophore,
as in the primary phototransition of bacteriorhodopsin (BR). In addition,
significant differences are found for structural changes of the protein
and internal water(s) compared to those of CrChR2,
including the response of several Asp/Glu residues to retinal isomerization.
A negative amide II band is identified in the retinal ethylenic stretch
region of CaChR1, which reflects along with amide
I bands alterations in protein backbone structure early in the photocycle.
A decrease in the hydrogen bond strength of a weakly hydrogen bonded
internal water is detected in both CaChR1 and CrChR2, but the bands are much broader in CrChR2, indicating a more heterogeneous environment. Mutations involving
residues Glu169 and Asp299 (homologues of the Asp85 and Asp212 Schiff
base counterions, respectively, in BR) lead to the conclusion that
Asp299 is protonated during P1 formation and suggest that these residues
interact through a strong hydrogen bond that facilitates the transfer
of a proton from Glu169.
Collapse
Affiliation(s)
- John I Ogren
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Nakashima S, Ogura T, Kitagawa T. Infrared and Raman spectroscopic investigation of the reaction mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:86-97. [PMID: 25135480 DOI: 10.1016/j.bbabio.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/07/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Recent progress in studies on the proton-pumping and O₂reduction mechanisms of cytochrome c oxidase (CcO) elucidated by infrared (IR) and resonance Raman (rR) spectroscopy, is reviewed. CcO is the terminal enzyme of the respiratory chain and its O₂reduction reaction is coupled with H⁺ pumping activity across the inner mitochondrial membrane. The former is catalyzed by heme a3 and its mechanism has been determined using a rR technique, while the latter used the protein moiety and has been investigated with an IR technique. The number of H⁺ relative to e⁻ transferred in the reaction is 1:1, and their coupling is presumably performed by heme a and nearby residues. To perform this function, different parts of the protein need to cooperate with each other spontaneously and sequentially. It is the purpose of this article to describe the structural details on the coupling on the basis of the vibrational spectra of certain specified residues and chromophores involved in the reaction. Recent developments in time-resolved IR and Raman technology concomitant with protein manipulation methods have yielded profound insights into such structural changes. In particular, the new IR techniques that yielded the breakthrough are reviewed and assessed in detail. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Satoru Nakashima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
67
|
Kandori H, Furutani Y, Murata T. Infrared spectroscopic studies on the V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:134-41. [PMID: 25111748 DOI: 10.1016/j.bbabio.2014.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
V-ATPase is an ATP-driven rotary motor that vectorially transports ions. Together with F-ATPase, a homologous protein, several models on the ion transport have been proposed, but their molecular mechanisms are yet unknown. V-ATPase from Enterococcus hirae forms a large supramolecular protein complex (total molecular weight: ~700,000) and physiologically transports Na⁺ and Li⁺ across a hydrophobic lipid bilayer. Stabilization of these cations in the binding site has been discussed on the basis of X-ray crystal structures of a membrane-embedded domain, the K-ring (Na⁺ and Li⁺ bound forms). Sodium or lithium ion binding-induced difference FTIR spectra of the intact E. hirae V-ATPase have been measured in aqueous solution at physiological temperature. The results suggest that sodium or lithium ion binding induces the deprotonation of Glu139, a hydrogen-bonding change in the tyrosine residue and rigid α-helical structures. Identical difference FTIR spectra between the entire V-ATPase complex and K-ring strongly suggest that protein interaction with the I subunit does not cause large structural changes in the K-ring. This result supports the previously proposed Na⁺ transport mechanism by V-ATPase stating that a flip-flop movement of a carboxylate group of Glu139 without large conformational changes in the K-ring accelerates the replacement of a Na⁺ ion in the binding site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takeshi Murata
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
68
|
Lórenz-Fonfría VA, Heberle J. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy. J Vis Exp 2014:e51622. [PMID: 24998200 PMCID: PMC4208678 DOI: 10.3791/51622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as -10(-) (4), sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.
Collapse
Affiliation(s)
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin;
| |
Collapse
|
69
|
Ono H, Inoue K, Abe-Yoshizumi R, Kandori H. FTIR Spectroscopy of a Light-Driven Compatible Sodium Ion-Proton Pumping Rhodopsin at 77 K. J Phys Chem B 2014; 118:4784-92. [DOI: 10.1021/jp500756f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | | |
Collapse
|
70
|
Debus RJ. Evidence from FTIR Difference Spectroscopy That D1-Asp61 Influences the Water Reactions of the Oxygen-Evolving Mn4CaO5 Cluster of Photosystem II. Biochemistry 2014; 53:2941-55. [DOI: 10.1021/bi500309f] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
71
|
Wang T, Oppawsky C, Duan Y, Tittor J, Oesterhelt D, Facciotti MT. Stable closure of the cytoplasmic half-channel is required for efficient proton transport at physiological membrane potentials in the bacteriorhodopsin catalytic cycle. Biochemistry 2014; 53:2380-90. [PMID: 24660845 PMCID: PMC4004217 DOI: 10.1021/bi4013808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The bacteriorhodopsin (BR) Asp96Gly/Phe171Cys/Phe219Leu
triple
mutant has been shown to translocate protons 66% as efficiently as
the wild-type protein. Light-dependent ATP synthesis in haloarchaeal
cells expressing the triple mutant is 85% that of the wild-type BR
expressing cells. Therefore, the functional activity of BR seems to
be largely preserved in the triple mutant despite the observations
that its ground-state structure resembles that of the wild-type M
state (i.e., the so-called cytoplasmically open state) and that the
mutant shows no significant structural changes during its photocycle,
in sharp contrast to what occurs in the wild-type protein in which
a large structural opening and closing occurs on the cytoplasmic side.
To resolve the contradiction between the apparent functional robustness
of the triple mutant and the presumed importance of the opening and
closing that occurs in the wild-type protein, we conducted additional
experiments to compare the behavior of wild-type and mutant proteins
under different operational loads. Specifically, we characterized
the ability of the two proteins to generate light-driven proton currents
against a range of membrane potentials. The wild-type protein showed
maximal conductance between −150 and −50 mV, whereas
the mutant showed maximal conductance at membrane potentials >+50
mV. Molecular dynamics (MD) simulations of the triple mutant were
also conducted to characterize structural changes in the protein and
in solvent accessibility that might help to functionally contextualize
the current–voltage data. These simulations revealed that the
cytoplasmic half-channel of the triple mutant is constitutively open
and dynamically exchanges water with the bulk. Collectively, the data
and simulations help to explain why this mutant BR does not mediate
photosynthetic growth of haloarchaeal cells, and they suggest that
the structural closing observed in the wild-type protein likely plays
a key role in minimizing substrate back flow in the face of electrochemical
driving forces present at physiological membrane potentials.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biomedical Engineering and Genome Center, 451 East Health Science Drive, University of California , Davis, California 95616-8816, United States
| | | | | | | | | | | |
Collapse
|
72
|
Ito S, Kato HE, Taniguchi R, Iwata T, Nureki O, Kandori H. Water-containing hydrogen-bonding network in the active center of channelrhodopsin. J Am Chem Soc 2014; 136:3475-82. [PMID: 24512107 DOI: 10.1021/ja410836g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel.
Collapse
Affiliation(s)
- Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|
73
|
Sudo Y, Mizuno M, Wei Z, Takeuchi S, Tahara T, Mizutani Y. The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I from Salinibacter ruber. J Phys Chem B 2014; 118:1510-8. [DOI: 10.1021/jp4112662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuki Sudo
- Division
of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Department
of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Zhengrong Wei
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
74
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 793] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
75
|
Abstract
Light-induced difference Fourier transform infrared (FTIR) spectroscopy is a powerful, sensitive, and informative method to study structure-function relationships in photoreceptive proteins. Strong absorption of water in the IR region is always problematic in this method, but if water content in the sample is controlled during measurements, this method can provide useful information on a single protein-bound water molecule. We established three kinds of sample preparations: hydrated film, redissolved sample, and concentrated solution. Hydrated films were used for the measurements of LOV and BLUF domains, where accurate difference FTIR spectra were obtained in the whole mid-IR region (4,000-800 cm(-1)). Vibrations of S-H stretch of cysteine, O-H stretch of water, and O-H stretch of tyrosine provide important information on hydrogen bonds in these proteins. Redissolved samples were used for the measurements of (6-4) photolyase, in which enzymatic turnover takes place. From the illumination time-dependence of excess amount of substrate, it is possible to isolate the signal originating from the binding of enzyme to substrate. If proteins are less tolerant to drying, as for example cryptochromes of the DASH type, concentrated solution is used. Detailed methodological aspects in light-induced difference FTIR spectroscopy are reviewed by mainly focusing on our results.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | | |
Collapse
|
76
|
Fukuda T, Muroda K, Kandori H. Detection of a protein-bound water vibration of halorhodopsin in aqueous solution. Biophysics (Nagoya-shi) 2013; 9:167-72. [PMID: 27493555 PMCID: PMC4629683 DOI: 10.2142/biophysics.9.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 01/14/2023] Open
Abstract
Protein-bound water molecules play crucial roles in their structure and function, but their detection is an experimental challenge, particularly in aqueous solution at room temperature. By applying attenuated total reflection (ATR) Fourier-transform infrared (FTIR) spectroscopy to a light-driven Cl(-) pump pharaonis halorhodopsin (pHR), here we detected an O-H stretching vibration of protein-bound water molecules in the active center. The pHR(Cl(-)) minus pHR(Br(-)) ATR-FTIR spectra show random fluctuation at 3600-3000 cm(-1), frequency window of water vibration, which can be interpreted in terms of dynamical fluctuation of aqueous water at room temperature. On the other hand, we observed a reproducible spectral feature at 3617 (+)/3630 (-) cm(-1) in the pHR(Cl(-)) minus pHR(Br(-)) spectrum, which is absent in the pHR(Cl(-)) minus pHR(Cl(-)) and in the pHR(Br(-)) minus pHR(Br(-)) spectra. The water O-H stretching vibrations of pHR(Cl(-)) and pHR(Br(-)) at 3617 and 3630 cm(-1), respectively, are confirmed by light-induced difference FTIR spectra in isotope water (H2 (18)O) at 77 K. The observed water molecule presumably binds to the active center of pHR, and alter its hydrogen bond during the Cl(-) pumping photocycle.
Collapse
Affiliation(s)
- Tetsuya Fukuda
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kosuke Muroda
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
77
|
Ishikita H, Saito K. Proton transfer reactions and hydrogen-bond networks in protein environments. J R Soc Interface 2013; 11:20130518. [PMID: 24284891 DOI: 10.1098/rsif.2013.0518] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Biological Sciences, Graduate School of Science, Osaka University, , Machikaneyama-cho 1-1, Toyonaka 560-0043, Japan
| | | |
Collapse
|
78
|
Service RJ, Yano J, Dilbeck PL, Burnap RL, Hillier W, Debus RJ. Participation of glutamate-333 of the D1 polypeptide in the ligation of the Mn₄CaO₅ cluster in photosystem II. Biochemistry 2013; 52:8452-64. [PMID: 24168467 DOI: 10.1021/bi401339f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the 1.9 Å structural model of photosystem II (PDB: 3ARC), the amino acid residue Glu333 of the D1 polypeptide coordinates to the oxygen-evolving Mn₄CaO₅ cluster. This residue appears to be highly significant in that it bridges the two Mn ions (Mn(B3) and the "dangling" Mn(A4)) that are also bridged by the oxygen atom O5. This oxygen atom has been proposed to be derived from one of two substrate water molecules and to become incorporated into the product dioxygen molecule during the final step in the catalytic cycle. In addition, the backbone nitrogen of D1-Glu333 interacts directly with a nearby Cl⁻ atom. To further explore the influence of this structurally unique residue on the properties of the Mn₄CaO₅ cluster, the D1-E333Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, and FTIR difference spectroscopy. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild-type. In addition, the oxygen flash yields exhibited normal period-four oscillations having normal S state parameters, although the yields were lower, indicative of the mutant's lower steady-state dioxygen evolution rate of approximately 30% compared to that of the wild-type. The S₁ state Mn-XANES and Mn-EXAFS and S₂ state multiline EPR signals of purified D1-E333Q PSII core complexes closely resembled those of wild-type, aside from having lower amplitudes. The S(n+1)-minus-S(n) FTIR difference spectra showed only minor alterations to the carbonyl, amide, and carboxylate stretching regions. However, the mutation eliminated a negative peak at 3663 cm⁻¹ in the weakly H-bonding O-H stretching region of the S₂-minus-S₁ FTIR difference spectrum and caused an approximately 9 cm⁻¹ downshift of the negative feature in this region of the S₁-minus-S₀ FTIR difference spectrum. We conclude that fully functional Mn₄CaO₅ clusters assemble in the presence of the D1-E333Q mutation but that the mutation decreases the yield of assembled clusters and alters the H-bonding properties of one or more water molecules or hydroxide groups that are located on or near the Mn₄CaO₅ cluster and that either deprotonate or form stronger hydrogen bonds during the S₀ to S₁ and S₁ to S₂ transitions.
Collapse
Affiliation(s)
- Rachel J Service
- Department of Biochemistry, University of California , Riverside California 92521, United States
| | | | | | | | | | | |
Collapse
|
79
|
Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:626-42. [PMID: 24212055 DOI: 10.1016/j.bbabio.2013.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10(-12)s to 10(-3)s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
80
|
Gerwert K, Freier E, Wolf S. The role of protein-bound water molecules in microbial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:606-13. [PMID: 24055285 DOI: 10.1016/j.bbabio.2013.09.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023]
Abstract
Protein-bound internal water molecules are essential features of the structure and function of microbial rhodopsins. Besides structural stabilization, they act as proton conductors and even proton storage sites. Currently, the most understood model system exhibiting such features is bacteriorhodopsin (bR). During the last 20 years, the importance of water molecules for proton transport has been revealed through this protein. It has been shown that water molecules are as essential as amino acids for proton transport and biological function. In this review, we present an overview of the historical development of this research on bR. We furthermore summarize the recently discovered protein-bound water features associated with proton transport. Specifically, we discuss a pentameric water/amino acid arrangement close to the protonated Schiff base as central proton-binding site, a protonated water cluster as proton storage site at the proton-release site, and a transient linear water chain at the proton uptake site. We highlight how protein conformational changes reposition or reorient internal water molecules, thereby guiding proton transport. Last, we compare the water positions in bR with those in other microbial rhodopsins to elucidate how protein-bound water molecules guide the function of microbial rhodopsins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Klaus Gerwert
- Department of Biophysics, University of Bochum, ND 04 North, 44780 Bochum, Germany; Department of Biophysics, Chinese Academy of Sciences-Max-Planck Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences (SIBS), 320 Yue Yang Lu, 200031 Shanghai, PR China.
| | - Erik Freier
- Department of Biophysics, University of Bochum, ND 04 North, 44780 Bochum, Germany
| | - Steffen Wolf
- Department of Biophysics, Chinese Academy of Sciences-Max-Planck Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences (SIBS), 320 Yue Yang Lu, 200031 Shanghai, PR China
| |
Collapse
|
81
|
Furutani Y, Kandori H. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:598-605. [PMID: 24041645 DOI: 10.1016/j.bbabio.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
Microbial rhodopsins are classified into type-I rhodopsins, which utilize light energy to perform wide varieties of function, such as proton pumping, ion pumping, light sensing, cation channels, and so on. The crystal structures of several type-I rhodopsins were solved and the molecular mechanisms have been investigated based on the atomic structures. However, the crystal structures of proteins of interest are not always available and the basic architectures are sometimes quite similar, which obscures how the proteins achieve different functions. Stimulus-induced difference FTIR spectroscopy is a powerful tool to detect minute structural changes providing a clue for elucidating the molecular mechanisms. In this review, the studies on type-I rhodopsins from fungi and marine bacteria, whose crystal structures have not been solved yet, were summarized. Neurospora rhodopsin and Leptosphaeria rhodopsin found from Fungi have sequence similarity. The former has no proton pumping function, while the latter has. Proteorhodopsin is another example, whose proton pumping machinery is altered at alkaline and acidic conditions. We described how the structural changes of protein were different and how water molecules were involved in them. We reviewed the results on dynamics of the internal water molecules in pharaonis halorhodopsin as well. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
82
|
Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system. J Biol Chem 2013; 288:30259-30269. [PMID: 23996000 DOI: 10.1074/jbc.m113.473983] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray structural and mutational analyses have shown that bovine heart cytochrome c oxidase (CcO) pumps protons electrostatically through a hydrogen bond network using net positive charges created upon oxidation of a heme iron (located near the hydrogen bond network) for O2 reduction. Pumping protons are transferred by mobile water molecules from the negative side of the mitochondrial inner membrane through a water channel into the hydrogen bond network. For blockage of spontaneous proton back-leak, the water channel is closed upon O2 binding to the second heme (heme a3) after complete collection of the pumping protons in the hydrogen bond network. For elucidation of the structural bases for the mechanism of the proton collection and timely closure of the water channel, conformational dynamics after photolysis of CO (an O2 analog)-bound CcO was examined using a newly developed time-resolved infrared system feasible for accurate detection of a single C=O stretch band of α-helices of CcO in H2O medium. The present results indicate that migration of CO from heme a3 to CuB in the O2 reduction site induces an intermediate state in which a bulge conformation at Ser-382 in a transmembrane helix is eliminated to open the water channel. The structural changes suggest that, using a conformational relay system, including CuB, O2, heme a3, and two helix turns extending to Ser-382, CuB induces the conformational changes of the water channel that stimulate the proton collection, and senses complete proton loading into the hydrogen bond network to trigger the timely channel closure by O2 transfer from CuB to heme a3.
Collapse
Affiliation(s)
| | | | - Satoru Yamaguchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297 and
| | - Takashi Ogura
- From the Picobiology Institute,; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297 and; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Masaru Tateno
- From the Picobiology Institute,; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Shinya Yoshikawa
- From the Picobiology Institute,; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
83
|
Dioumaev AK, Petrovskaya LE, Wang JM, Balashov SP, Dolgikh DA, Kirpichnikov MP, Lanyi JK. Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible. J Phys Chem B 2013; 117:7235-53. [PMID: 23718558 DOI: 10.1021/jp402430w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photocycle of the retinal protein from Exiguobacterium sibiricum, which differs from bacteriorhodopsin in both its primary donor and acceptor, is characterized by visible and infrared spectroscopy. At pH above pKa ~6.5, we find a bacteriorhodopsin-like photocycle, which originates from excitation of the all-trans retinal chromophore with K-, L-, M-, and N-like intermediates. At pH below pKa ~6.5, the M state, which reflects Schiff base deprotonation during proton pumping, is not accumulated. However, using the infrared band at ~1760 cm(-1) as a marker for transient protonation of the primary acceptor, we find that Schiff base deprotonation must have occurred at pH not only above but also below the pKa ~6.5. Thus, the M state is formed but not accumulated for kinetic reasons. Further, chromophore reisomerization from the 13-cis to the all-trans conformation occurs very late in the photocycle. The strongly red-shifted states that dominate the second half of the cycle are produced before the reisomerization step, and by this criterion, they are not O-like but rather N-like states. The assignment of photocycle intermediates enables reevaluation of the photocycle; its specific features are discussed in relation to the general mechanism of proton transport in retinal proteins.
Collapse
Affiliation(s)
- Andrei K Dioumaev
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Distortion of the amide-I and -II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
85
|
Zhang G, Li H, Zhao F, Hu H, Huang H, Li H, Han X, Liu R, Dong H, Liu Y, Kang Z. A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Trans 2013; 42:9423-7. [DOI: 10.1039/c3dt50747e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
86
|
Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:328-39. [PMID: 23103449 DOI: 10.1016/j.bbabio.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.
Collapse
|
87
|
Furutani Y, Fujiwara K, Kimura T, Kikukawa T, Demura M, Kandori H. Dynamics of Dangling Bonds of Water Molecules in pharaonis Halorhodopsin during Chloride Ion Transportation. J Phys Chem Lett 2012; 3:2964-2969. [PMID: 26292234 DOI: 10.1021/jz301287n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion transportation via the chloride ion pump protein pharaonis halorhodopsin (pHR) occurs through the sequential formation of several intermediates during a photocyclic reaction. Although the structural details of each intermediate state have been studied, the role of water molecules in the translocation of chloride ions inside of the protein at physiological temperatures remains unclear. To analyze the structural dynamics of water inside of the protein, we performed time-resolved Fourier transform infrared (FTIR) spectroscopy under H2O or H2(18)O hydration and successfully assigned water O-H stretching bands. We found that a dangling water band at 3626 cm(-1) in pHR disappears in the L1 and L2 states. On the other hand, relatively intense positive bands at 3605 and 3608 cm(-1) emerged upon the formation of the X(N) and O states, respectively, suggesting that the chloride transportation is accompanied by dynamic rearrangement of the hydrogen-bonding network of the internal water molecules in pHR.
Collapse
Affiliation(s)
- Yuji Furutani
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Kuniyo Fujiwara
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Tetsunari Kimura
- †Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- ‡Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Kikukawa
- ¶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- ¶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideki Kandori
- #Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
88
|
Ito H, Sumii M, Kawanabe A, Fan Y, Furutani Y, Brown LS, Kandori H. Comparative FTIR study of a new fungal rhodopsin. J Phys Chem B 2012; 116:11881-9. [PMID: 22973982 DOI: 10.1021/jp306993a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriorhodopsin (BR) is a light-driven proton pump of halophilic Archaea , and BR-like proton-pumping rhodopsins have been discovered in Bacteria and Eucarya as well. Leptosphaeria rhodopsin (LR) and Phaeosphaeria Rhodopsin 2 (PhaeoRD2) are both fungal rhodopsins in such a functional class, even though they belong to different branches of the phylogenetic tree. In this study, we compared light-induced structural changes in the K, L, and M photointermediates for PhaeoRD2, LR, and BR using low-temperature Fourier transform infrared (FTIR) spectroscopy. We observed a strongly hydrogen-bonded water molecule in PhaeoRD2 (water O-D stretch in D(2)O at 2258 cm(-1)) as well as in LR and BR. This observation provided additional experimental evidence to the concept that strongly hydrogen-bonded water molecule is the functional determinant of light-driven proton pumping. The difference FTIR spectra for all the K, L, and M states are surprisingly similar between PhaeoRD2 and LR, but not for BR. PhaeoRD2 is more homologous to LR than to BR, but the difference is small. The amino acid identities between PhaeoRD2 and LR, and between PhaeoRD2 and BR are 34.5% and 30.2%, respectively. In addition, the amino acids uniquely identical for the fungal rhodopsins are located rather far from the retinal chromophore. In fact, the amino acid identities within 4 Å from retinal are the same among PhaeoRD2, LR, and BR. For more than 100 amino acids located within 12 Å from retinal, the identities are 48.7% between PhaeoRD2 and LR, 46.0% between PhaeoRD2 and BR, and 47.8% between LR and BR. These results suggest that protein core structures are equally different among the three rhodopsins. Thus, the identical FTIR spectra between PhaeoRD2 and LR (but not BR), even for the K state, indicate that fungal rhodopsins possess some common structural motif and dynamics not obvious from the amino acid sequences.
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Saito K, Kandori H, Ishikita H. Factors that differentiate the H-bond strengths of water near the Schiff bases in bacteriorhodopsin and Anabaena sensory rhodopsin. J Biol Chem 2012; 287:34009-18. [PMID: 22865888 DOI: 10.1074/jbc.m112.388348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump, whereas Anabaena sensory rhodopsin (ASR) is believed to function as a photosensor despite the high similarity in their protein sequences. In Fourier transform infrared (FTIR) spectroscopic studies, the lowest O-D stretch for D(2)O was observed at ∼2200 cm(-1) in BR but was significantly higher in ASR (>2500 cm(-1)), which was previously attributed to a water molecule near the Schiff base (W402) that is H-bonded to Asp-85 in BR and Asp-75 in ASR. We investigated the factors that differentiate the lowest O-D stretches of W402 in BR and ASR. Quantum mechanical/molecular mechanical calculations reproduced the H-bond geometries of the crystal structures, and the calculated O-D stretching frequencies were corroborated by the FTIR band assignments. The potential energy profiles indicate that the smaller O-D stretching frequency in BR originates from the significantly higher pK(a)(Asp-85) in BR relative to the pK(a)(Asp-75) in ASR, which were calculated to be 1.5 and -5.1, respectively. The difference is mostly due to the influences of Ala-53, Arg-82, Glu-194-Glu-204, and Asp-212 on pK(a)(Asp-85) in BR and the corresponding residues Ser-47, Arg-72, Ser-188-Asp-198, and Pro-206 on pK(a)(Asp-75) in ASR. Because these residues participate in proton transfer pathways in BR but not in ASR, the presence of a strongly H-bonded water molecule near the Schiff base ultimately results from the proton-pumping activity in BR.
Collapse
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
90
|
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase. Biochemistry 2012; 51:5774-83. [PMID: 22747528 DOI: 10.1021/bi300530x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Photolyases (PHRs) are blue light-activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The flavin adenine dinucleotide (FAD) chromophore of PHRs has four different redox states: oxidized (FAD(ox)), anion radical (FAD(•-)), neutral radical (FADH(•)), and fully reduced (FADH(-)). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FAD(ox) is converted to semiquinone via light-induced one-electron and one-proton transfers and then to FADH(-) by light-induced one-electron transfer. We successfully trapped FAD(•-) at 200 K, where electron transfer occurs but proton transfer does not. UV-visible spectroscopy following 450 nm illumination of FAD(ox) at 277 K defined the FADH(•)/FADH(-) mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested by UV-visible and FTIR analysis of FAD(•-) at 200 K. Spectral analysis of amide I vibrations revealed structural perturbation of the protein's β-sheet during initial electron transfer (FAD(•-) formation), a transient increase in α-helicity during proton transfer (FADH(•) formation), and reversion to the initial amide I signal following subsequent electron transfer (FADH(-) formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH(-) did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of these FTIR observations.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Muroda K, Nakashima K, Shibata M, Demura M, Kandori H. Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 2012; 51:4677-84. [PMID: 22583333 DOI: 10.1021/bi300485r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteriorhodopsin (BR) and halorhodopsin (HR) are light-driven outward proton and inward chloride pumps, respectively. They have similar protein architecture, being composed of seven-transmembrane helices that bind an all-trans-retinal. BR can be converted into a chloride pump by a single amino acid replacement at position 85, suggesting that BR and HR share a common transport mechanism, and the ionic specificity is determined by the amino acid at that position. However, HR cannot be converted into a proton pump by the corresponding reverse mutation. Here we mutated 6 and 10 amino acids of HR into BR-like, whereas such multiple HR mutants never pump protons. Light-induced Fourier transform infrared spectroscopy revealed that hydrogen bonds of the retinal Schiff base and water are both strong for BR and both weak for HR. Multiple HR mutants exhibit strong hydrogen bonds of the Schiff base, but the hydrogen bond of water is still weak. We concluded that the cause of nonfunctional conversion of HR is the lack of strongly hydrogen-bonded water, the functional determinant of the proton pump.
Collapse
Affiliation(s)
- Kosuke Muroda
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
92
|
Yamada K, Kawanabe A, Yoshizawa S, Inoue K, Kogure K, Kandori H. Anomalous pH Effect of Blue Proteorhodopsin. J Phys Chem Lett 2012; 3:800-804. [PMID: 26286400 DOI: 10.1021/jz3000257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified into blue-absorbing PR (B-PR; λmax ≈ 490 nm) and green-absorbing PR (G-PR; λmax ≈ 525 nm). In this report, we present conversion of B-PR into G-PR using anomalous pH effect. B-PR in LC1-200, marine γ-proteobacteria, absorbs 497 and 513 nm maximally at pH 7 and 4, respectively, whose pH titration was reversible (pKa = 4.8). When pH was lowered from 4, the λmax was further red-shifted (528 nm at pH 2). This is unusual because blue shift occurs by chloride binding in the case of bacteriorhodopsin. Surprisingly, when pH was increased from 2 to 7, the λmax of this B-PR was further red-shifted to 540 nm, indicating that green-absorbing PR (PR540) is created only by changing pH. The present study reports the conformational flexibility of microbial rhodopsins, leading to the switch of absorbing color by a simple pH change.
Collapse
Affiliation(s)
- Keisuke Yamada
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Akira Kawanabe
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Susumu Yoshizawa
- ‡Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba 277-8564, Japan
| | - Kentaro Inoue
- ‡Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba 277-8564, Japan
| | - Kazuhiro Kogure
- ‡Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba 277-8564, Japan
| | - Hideki Kandori
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
93
|
Katayama K, Furutani Y, Imai H, Kandori H. Protein-bound water molecules in primate red- and green-sensitive visual pigments. Biochemistry 2012; 51:1126-33. [PMID: 22260165 DOI: 10.1021/bi201676y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-bound water molecules play crucial roles in the structure and function of proteins. The functional role of water molecules has been discussed for rhodopsin, the light sensor for twilight vision, on the basis of X-ray crystallography, Fourier transform infrared (FTIR) spectroscopy, and a radiolytic labeling method, but nothing is known about the protein-bound waters in our color visual pigments. Here we apply low-temperature FTIR spectroscopy to monkey red (MR)- and green (MG)-sensitive color pigments at 77 K and successfully identify water vibrations using D(2)O and D(2)(18)O in the whole midinfrared region. The observed water vibrations are 6-8 for MR and MG, indicating that several water molecules are present near the retinal chromophore and change their hydrogen bonds upon retinal photoisomerization. In this sense, color visual pigments possess protein-bound water molecules essentially similar to those of rhodopsin. The absence of strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) is common between rhodopsin and color pigments, which greatly contrasts with the case of proton-pumping microbial rhodopsins. On the other hand, two important differences are observed in water signal between rhodopsin and color pigments. First, the water vibrations are identical between the 11-cis and 9-cis forms of rhodopsin, but different vibrational bands are observed at >2550 cm(-1) for both MR and MG. Second, strongly hydrogen-bonded water molecules (2303 cm(-1) for MR and 2308 cm(-1) for MG) are observed for the all-trans form after retinal photoisomerization, which is not the case for rhodopsin. These specific features of MR and MG can be explained by the presence of water molecules in the Cl(-)-biding site, which are located near positions C11 and C9 of the retinal chromophore. The averaged frequencies of the observed water O-D stretching vibrations for MR and MG are lower as the λ(max) is red-shifted, suggesting that water molecules are involved in the color tuning of our vision.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
94
|
Clair ECS, Ogren JI, Mamaev S, Kralj JM, Rothschild KJ. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. J Biol Phys 2011; 38:153-68. [PMID: 23277676 DOI: 10.1007/s10867-011-9246-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022] Open
Abstract
Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing.
Collapse
Affiliation(s)
- Erica C Saint Clair
- Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, MA 02215 USA
| | | | | | | | | |
Collapse
|
95
|
Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc Natl Acad Sci U S A 2011; 108:11435-9. [PMID: 21709261 DOI: 10.1073/pnas.1104735108] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution protein ground-state structures of proton pumps and channels have revealed internal protein-bound water molecules. Their possible active involvement in protein function has recently come into focus. An illustration of the formation of a protonated protein-bound water cluster that is actively involved in proton transfer was described for the membrane protein bacteriorhodopsin (bR) [Garczarek F, Gerwert K (2006) Nature 439:109-112]. Here we show through a combination of time-resolved FTIR spectroscopy and molecular dynamics simulations that three protein-bound water molecules are rearranged by a protein conformational change that resulted in a transient Grotthuss-type proton-transfer chain extending through a hydrophobic protein region of bR. This transient linear water chain facilitates proton transfer at an intermediate conformation only, thereby directing proton transfer within the protein. The rearrangement of protein-bound water molecules that we describe, from inactive positions in the ground state to an active chain in an intermediate state, appears to be energetically favored relative to transient incorporation of water molecules from the bulk. Our discovery provides insight into proton-transfer mechanisms through hydrophobic core regions of ubiquitous membrane spanning proteins such as G-protein coupled receptors or cytochrome C oxidases.
Collapse
|
96
|
Lórenz-Fonfría VA, Kandori H, Padrós E. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle. J Phys Chem B 2011; 115:7972-85. [PMID: 21615095 DOI: 10.1021/jp201739w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.
| | | | | |
Collapse
|
97
|
Irieda H, Reissig L, Kawanabe A, Homma M, Kandori H, Sudo Y. Structural Characteristics around the β-Ionone Ring of the Retinal Chromophore in Salinibacter Sensory Rhodopsin I. Biochemistry 2011; 50:4912-22. [DOI: 10.1021/bi200284s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Louisa Reissig
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Kawanabe
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
98
|
Water molecule reorganization in cytochrome c oxidase revealed by FTIR spectroscopy. Proc Natl Acad Sci U S A 2011; 108:8634-8. [PMID: 21543712 DOI: 10.1073/pnas.1019419108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although internal electron transfer and oxygen reduction chemistry in cytochrome c oxidase are fairly well understood, the associated groups and pathways that couple these processes to gated proton translocation across the membrane remain unclear. Several possible pathways have been identified from crystallographic structural models; these involve hydrophilic residues in combination with structured waters that might reorganize to form transient proton transfer pathways during the catalytic cycle. To date, however, comparisons of atomic structures of different oxidases in different redox or ligation states have not provided a consistent answer as to which pathways are operative or the details of their dynamic changes during catalysis. In order to provide an experimental means to address this issue, FTIR spectroscopy in the 3,560-3,800 cm(-1) range has been used to detect weakly H-bonded water molecules in bovine cytochrome c oxidase that might change during catalysis. Full redox spectra exhibited at least four signals at 3,674(+), 3,638(+), 3,620(-), and 3,607(+) cm(-1). A more complex set of signals was observed in spectra of photolysis of the ferrous-CO compound, a reaction that mimics the catalytic oxygen binding step, and their D(2)O and H(2)(18)O sensitivities confirmed that they arose from water molecule rearrangements. Fitting with Gaussian components indicated the involvement of up to eight waters in the photolysis transition. Similar signals were also observed in photolysis spectra of the ferrous-CO compound of bacterial CcO from Paracoccus denitrificans. Such water changes are discussed in relation to roles in hydrophilic channels and proton/electron coupling mechanism.
Collapse
|
99
|
Zhang Y, Iwata T, Yamamoto J, Hitomi K, Iwai S, Todo T, Getzoff ED, Kandori H. FTIR study of light-dependent activation and DNA repair processes of (6-4) photolyase. Biochemistry 2011; 50:3591-8. [PMID: 21462921 DOI: 10.1021/bi1019397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The UV component of sunlight threatens all life on the earth by damaging DNA. The photolyase (PHR) DNA repair proteins maintain genetic integrity by harnessing blue light to restore intact bases from the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPD), and (6-4) photoproducts ((6-4) PPs). The (6-4) PHR must catalyze not only covalent bond cleavage between two pyrmidine bases but also hydroxyl or amino group transfer from the 5'- to 3'-pyrimidine base, requiring a more complex mechanism than that postulated for CPD PHR. In this paper, we apply Fourier transform infrared (FTIR) spectroscopy to (6-4) PHR and report difference FTIR spectra that correspond to its photoactivation, substrate binding, and light-dependent DNA repair processes. The presence of DNA carrying a single (6-4) PP uniquely influences vibrations of the protein backbone and a protonated carboxylic acid, whereas photoactivation produces IR spectral changes for the FAD cofactor and the surrounding protein. Difference FTIR spectra for the light-dependent DNA damage repair reaction directly show significant DNA structural changes in the (6-4) lesion and the neighboring phosphate group. Time-dependent illumination of samples with different enzyme:substrate stoichiometries successfully distinguished signals characteristic of structural changes in the protein and the DNA resulting from binding and catalysis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Sage JT, Zhang Y, McGeehan J, Ravelli RBG, Weik M, van Thor JJ. Infrared protein crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:760-77. [PMID: 21376143 DOI: 10.1016/j.bbapap.2011.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
Abstract
We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO(2). Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- J Timothy Sage
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|