51
|
Stiffness of MDCK II Cells Depends on Confluency and Cell Size. Biophys J 2019; 116:2204-2211. [PMID: 31126583 DOI: 10.1016/j.bpj.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mechanical phenotyping of adherent cells has become a serious tool in cell biology to understand how cells respond to their environment and eventually to identify disease patterns such as the malignancy of cancer cells. In the steady state, homeostasis is of pivotal importance, and cells strive to maintain their internal stresses even in challenging environments and in response to external chemical and mechanical stimuli. However, a major problem exists in determining mechanical properties because many techniques, such as atomic force microscopy, that assess these properties of adherent cells locally can only address a limited number of cells and provide elastic moduli that vary substantially from cell to cell. The origin of this spread in stiffness values is largely unknown and might limit the significance of measurements. Possible reasons for the disparity are variations in cell shape and size, as well as biological reasons such as the cell cycle or polarization state of the cell. Here, we show that stiffness of adherent epithelial cells rises with increasing projected apical cell area in a nonlinear fashion. This size stiffening not only occurs as a consequence of varying cell-seeding densities, it can also be observed within a small area of a particular cell culture. Experiments with single adherent cells attached to defined areas via microcontact printing show that size stiffening is limited to cells of a confluent monolayer. This leads to the conclusion that cells possibly regulate their size distribution through cortical stress, which is enhanced in larger cells and reduced in smaller cells.
Collapse
|
52
|
Wang SK, Chang HY, Chu YH, Kao WL, Wu CY, Lee YW, You YW, Chu KJ, Hung SH, Shyue JJ. Effect of energy per atom (E/n) on the Ar gas cluster ion beam (Ar-GCIB) and O 2+ cosputter process. Analyst 2019; 144:3323-3333. [PMID: 30968864 DOI: 10.1039/c8an02452a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas cluster ion beam (GCIB) is a promising technique for preserving molecular structures during ion sputtering and successfully profiling biological and soft materials. However, although GCIB yields lower damage accumulation compared with C60+ and monoatomic ion beams, the inevitable alteration of the chemical structure can introduce artifacts into the resulting depth profile. To enhance the ionization yield and further mask damage, a low-energy O2+ (200-500 V) cosputter can be applied. While the energy per atom (E/n) of GCIB is known to be an important factor influencing the sputter process, the manner through which E/n affects the GCIB-O2+ cosputter process remains unclear. In this study, poly(ethylene terephthalate) (PET) was used as a model material to investigate the sputter process of 10-20 kV Ar1000-4000+ (E/n = 2.5-20 eV per atom) with and without O2+ cosputter at different energies and currents. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) with Bi32+ as the primary ion was used to examine surfaces sputtered at different fluences. The sputter craters were also measured by alpha-step and atomic force microscopy in quantitative imaging mode. The SIMS results showed that the steady-state cannot be obtained with E/n values of less than 5 eV per atom due to damage accumulation using single GCIB sputtering. With a moderate E/n value of 5-15 eV per atom, the steady-state can be obtained, but the ∼50% decay in intensity indicated that damage cannot be masked completely despite the higher sputter yield. Furthermore, the surface Young's modulus decreased with increasing E/n, suggesting that depolymerization occurred. At an E/n value of 20 eV per atom, a failed profile was obtained with rapidly decreased sputter rate and secondary ion intensity due to the ion-induced crosslink. With O2+ cosputtering and a moderate E/n value, the oxidized species generated by O2+ enhanced the ionization yield, which led to a higher ion intensity at steady-state in general. Because higher kinetic energy or current density of O2+ led to a larger interaction volume and more structural damage that suppressed molecular ion intensity, the enhancement from O2+ was most apparent with low-energy-high-current (200 V, 80 μA cm-2) or high-energy-low-current (500 V, 5 μA cm-2) O2+ cosputtering with 0.5 μA cm-2 GCIBs. In these cases, little or no intensity drop was observed at the steady-state.
Collapse
Affiliation(s)
- Shin-Kung Wang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dagro AM, Ramesh KT. Nonlinear contact mechanics for the indentation of hyperelastic cylindrical bodies. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42558-019-0006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
54
|
Doss BL, Rahmani Eliato K, Lin KH, Ros R. Quantitative mechanical analysis of indentations on layered, soft elastic materials. SOFT MATTER 2019; 15:1776-1784. [PMID: 30720830 DOI: 10.1039/c8sm02121j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomic force microscopy (AFM) is becoming an increasingly popular method for studying cell mechanics, however the existing analysis tools for determining the elastic modulus from indentation experiments are unable to quantitatively account for mechanical heterogeneity commonly found in biological samples. In this work, we numerically calculated force-indentation curves onto two-layered elastic materials using an analytic model. We found that the effect of the underlying substrate can be quantitatively predicted by the mismatch in elastic moduli and the homogeneous-case contact radius relative to the layer height for all tested probe geometries. The effect is analogous to one-dimensional Hookean springs in series and was phenomenologically modeled to obtain an approximate closed-form equation for the indentation force onto a two-layered elastic material which is accurate for up to two orders of magnitude mismatch in Young's modulus when the contact radius is less than the layer height. We performed finite element analysis simulations to verify the model and AFM microindentation experiments and macroindentation experiments to demonstrate its ability to deconvolute the Young's modulus of each layer. The model can be broadly used to quantify and serve as a guideline for designing and interpreting indentation experiments into mechanically heterogeneous samples.
Collapse
Affiliation(s)
- Bryant L Doss
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
55
|
Sellon JB, Azadi M, Oftadeh R, Nia HT, Ghaffari R, Grodzinsky AJ, Freeman DM. Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections. PHYSICAL REVIEW LETTERS 2019; 122:028101. [PMID: 30720330 PMCID: PMC6813812 DOI: 10.1103/physrevlett.122.028101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/14/2018] [Indexed: 06/09/2023]
Abstract
Stereociliary imprints in the tectorial membrane (TM) have been taken as evidence that outer hair cells are sensitive to shearing displacements of the TM, which plays a key role in shaping cochlear sensitivity and frequency selectivity via resonance and traveling wave mechanisms. However, the TM is highly hydrated (97% water by weight), suggesting that the TM may be flexible even at the level of single hair cells. Here we show that nanoscale oscillatory displacements of microscale spherical probes in contact with the TM are resisted by frequency-dependent forces that are in phase with TM displacement at low and high frequencies, but are in phase with TM velocity at transition frequencies. The phase lead can be as much as a quarter of a cycle, thereby contributing to frequency selectivity and stability of cochlear amplification.
Collapse
Affiliation(s)
- Jonathan B. Sellon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA 94132, USA
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ramin Oftadeh
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hadi Tavakoli Nia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alan J. Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dennis M. Freeman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
56
|
Gong Z, Fang C, You R, Shao X, Wei X, Chang RCC, Lin Y. Distinct relaxation timescales of neurites revealed by rate-dependent indentation, relaxation and micro-rheology tests. SOFT MATTER 2019; 15:166-174. [PMID: 30420982 DOI: 10.1039/c8sm01747f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the dynamic response of neurites is believed to play crucial roles in processes like axon outgrowth and formation of the neural network, the dynamic mechanical properties of such protrusions remain poorly understood. In this study, by using AFM (atomic force microscopy) indentation, we systematically examined the dynamic behavior of well-developed neurites on primary neurons under different loading modes (step loading, oscillating loading and ramp loading). Interestingly, the response was found to be strongly rate-dependent, with an apparent initial and long-term elastic modulus around 800 and 80 Pa, respectively. To better analyze the measurement data and extract information of key interest, the finite element simulation method (FEM) was also conducted where the neurite was treated as a viscoelastic solid consisting of multiple characteristic relaxation times. It was found that a minimum of three relaxation timescales, i.e. ∼0.01, 0.1 and 1 seconds, are needed to explain the observed relaxation curve as well as fit simulation results to the indentation and rheology data under different loading rates and driving frequencies. We further demonstrated that these three characteristic relaxation times likely originate from the thermal fluctuations of the microtubule, membrane relaxation and cytosol viscosity, respectively. By identifying key parameters describing the time-dependent behavior of neurites, as well as revealing possible physical mechanisms behind, this study could greatly help us understand how neural cells perform their biological duties over a wide spectrum of timescales.
Collapse
Affiliation(s)
- Ze Gong
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
57
|
Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, Rainer A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front Physiol 2018; 9:1449. [PMID: 30498449 PMCID: PMC6249385 DOI: 10.3389/fphys.2018.01449] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico–chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
Collapse
Affiliation(s)
- Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Alessandra Bonfanti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.,Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy
| |
Collapse
|
58
|
Nötzel M, Rosso G, Möllmert S, Seifert A, Schlüßler R, Kim K, Hermann A, Guck J. Axonal Transport, Phase-Separated Compartments, and Neuron Mechanics - A New Approach to Investigate Neurodegenerative Diseases. Front Cell Neurosci 2018; 12:358. [PMID: 30356682 PMCID: PMC6189317 DOI: 10.3389/fncel.2018.00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Many molecular and cellular pathogenic mechanisms of neurodegenerative diseases have been revealed. However, it is unclear what role a putatively impaired neuronal transport with respect to altered mechanical properties of neurons play in the initiation and progression of such diseases. The biochemical aspects of intracellular axonal transport, which is important for molecular movements through the cytoplasm, e.g., mitochondrial movement, has already been studied. Interestingly, transport deficiencies are associated with the emergence of the affliction and potentially linked to disease transmission. Transport along the axon depends on the normal function of the neuronal cytoskeleton, which is also a major contributor to neuronal mechanical properties. By contrast, little attention has been paid to the mechanical properties of neurons and axons impaired by neurodegeneration, and of membraneless, phase-separated organelles such as stress granules (SGs) within neurons. Mechanical changes may indicate cytoskeleton reorganization and function, and thus give information about the transport and other system impairment. Nowadays, several techniques to investigate cellular mechanical properties are available. In this review, we discuss how select biophysical methods to probe material properties could contribute to the general understanding of mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Martin Nötzel
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Gonzalo Rosso
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Stephanie Möllmert
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Anne Seifert
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
59
|
Chim YH, Mason LM, Rath N, Olson MF, Tassieri M, Yin H. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy. Sci Rep 2018; 8:14462. [PMID: 30262873 PMCID: PMC6160452 DOI: 10.1038/s41598-018-32704-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM2) method for measuring the viscoelastic properties in living cells, over a wide range of continuous frequencies (0.005 Hz ~ 200 Hz), from a simple stress-relaxation nanoindentation. Experimental data were directly analysed without the need for pre-conceived viscoelastic models. We show the method had an excellent agreement with conventional oscillatory bulk-rheology measurements in gels, opening a new avenue for viscoelastic characterisation of soft matter using minute quantity of materials (or cells). Using this capability, we investigate the viscoelastic responses of cells in association with cancer cell invasive activity modulated by two important molecular regulators (i.e. mutation of the p53 gene and Rho kinase activity). The analysis of elastic (G′(ω)) and viscous (G″(ω)) moduli of living cells has led to the discovery of a characteristic transitions of the loss tangent (G″(ω)/G′(ω)) in the low frequency range (0.005 Hz ~ 0.1 Hz) that is indicative of the capability for cell restructuring of F-actin network. Our method is ready to be implemented in conventional AFMs, providing a simple yet powerful tool for measuring the viscoelastic properties of living cells.
Collapse
Affiliation(s)
- Ya Hua Chim
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Louise M Mason
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Nicola Rath
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Michael F Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Manlio Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
60
|
Streppa L, Ratti F, Goillot E, Devin A, Schaeffer L, Arneodo A, Argoul F. Prestressed cells are prone to cytoskeleton failures under localized shear strain: an experimental demonstration on muscle precursor cells. Sci Rep 2018; 8:8602. [PMID: 29872100 PMCID: PMC5988700 DOI: 10.1038/s41598-018-26797-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
We report on a wavelet based space-scale decomposition method for analyzing the response of living muscle precursor cells (C2C12 myoblasts and myotubes) upon sharp indentation with an AFM cantilever and quantifying their aptitude to sustain such a local shear strain. Beyond global mechanical parameters which are currently used as markers of cell contractility, we emphasize the necessity of characterizing more closely the local fluctuations of the shear relaxation modulus as they carry important clues about the mechanisms of cytoskeleton strain release. Rupture events encountered during fixed velocity shear strain are interpreted as local disruptions of the actin cytoskeleton structures, the strongest (brittle) ones being produced by the tighter and stiffer stress fibers or actin agglomerates. These local strain induced failures are important characteristics of the resilience of these cells, and their aptitude to maintain their shape via a quick recovery from local strains. This study focuses on the perinuclear region because it can be considered as a master mechanical organizing center of these muscle precursor cells. Using this wavelet-based method, we combine the global and local approaches for a comparative analysis of the mechanical parameters of normal myoblasts, myotubes and myoblasts treated with actomyosin cytoskeleton disruptive agents (ATP depletion, blebbistatin).
Collapse
Affiliation(s)
- Laura Streppa
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR5672, F-69007, Lyon, France.,Université de Lyon 1, F-69100, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, CNRS, LBMC, UMR5239, F-69007, Lyon, France
| | - Francesca Ratti
- Université de Lyon 1, F-69100, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, CNRS, LBMC, UMR5239, F-69007, Lyon, France
| | - Evelyne Goillot
- Université de Lyon 1, F-69100, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, CNRS, LBMC, UMR5239, F-69007, Lyon, France
| | - Anne Devin
- Université de Bordeaux, CNRS, IBGC, UMR5095, F-33077, Bordeaux, France
| | - Laurent Schaeffer
- Université de Lyon 1, F-69100, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, CNRS, LBMC, UMR5239, F-69007, Lyon, France
| | - Alain Arneodo
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR5672, F-69007, Lyon, France.,Université de Lyon 1, F-69100, Villeurbanne, France.,Université de Bordeaux, CNRS, LOMA, UMR5798, F-33405, Talence, France
| | - Françoise Argoul
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR5672, F-69007, Lyon, France. .,Université de Lyon 1, F-69100, Villeurbanne, France. .,Université de Bordeaux, CNRS, LOMA, UMR5798, F-33405, Talence, France.
| |
Collapse
|
61
|
Quan FS, Jeong KH, Lee GJ. Ultrastructural and mechanical changes in tubular epithelial cells by angiotensin II and aldosterone as observed with atomic force microscopy. Micron 2018; 110:50-56. [PMID: 29734020 DOI: 10.1016/j.micron.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Tubular epithelial cells (TECs) play an important pathophysiological role in the promotion of renal fibrosis. Quantitative analysis of the mechanical changes in TECs may be helpful in evaluating novel pharmacological strategies. Atomic force microscopy (AFM) is a common nanotechnology tool used for imaging and measuring interaction forces in biological systems. In this study, we used AFM to study ultrastructural and mechanical changes in TECs mediated by the renin-angiotensin-aldosterone system. We quantitatively analyzed changes in the mechanical properties of TECs using three extrinsic factors, namely, chemical fixation, angiotensin II (AT II), and aldosterone (AD). Fixed TECs were 11 times stiffer at the cell body and 3 times stiffer at the cell-cell junction compared to live TECs. After stimulation with AT II, live TECs were four times stiffer at the junctional area than at the cell body, while fixed TECs after AT II stimulation were approximately two times stiffer at the both cell body and cell-cell junction compared to fixed unstimulated TECs. Fixed TECs also reflected changes in the mechanical properties of TECs at the cell body region after AD stimulation. Together, our results suggest that cell stiffness at the cell body region may serve as an effective index for evaluating drugs and stimulation, regardless of whether the cells are live or fixed at the time of analysis. In addition, studying the changes to the intrinsic mechanical property of TECs after application of external stimuli may be useful for investigating pathophysiologic mechanisms and effective therapeutic strategies for renal injury.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, College of Medicine, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
62
|
Yang R, Broussard JA, Green KJ, Espinosa HD. Techniques to stimulate and interrogate cell-cell adhesion mechanics. EXTREME MECHANICS LETTERS 2018; 20:125-139. [PMID: 30320194 PMCID: PMC6181239 DOI: 10.1016/j.eml.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell-cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell-extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell-cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell-cell adhesive junctions. This review covers established experimental techniques for stimulation and interrogation of cell-cell adhesion from cell pairs to monolayers.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Kathleen J. Green
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, United States
- Institute for Cellular Engineering Technologies, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
63
|
Wang J, Liu M, Shen Y, Sun J, Shao Z, Czajkowsky DM. Compressive Force Spectroscopy: From Living Cells to Single Proteins. Int J Mol Sci 2018; 19:E960. [PMID: 29570665 PMCID: PMC5979447 DOI: 10.3390/ijms19040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Collapse
Affiliation(s)
- Jiabin Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Meijun Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daniel Mark Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
64
|
Managuli V, Roy S. Simultaneous Analysis of Elastic and Nonspecific Adhesive Properties of Thin Sample and Biological Cell Considering Bottom Substrate Effect. J Biomech Eng 2018; 139:2645058. [PMID: 28715542 DOI: 10.1115/1.4037289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 12/28/2022]
Abstract
A new asymptotically correct contact model has been developed for conical tip based atomic force microscopy (AFM) nanoindentation. This new model provides both elastic and nonspecific adhesion properties of cells and soft gels by taking sample thickness at the point of indentation and its depth of indentation into consideration. The bottom substrate effect (BSE) is the most common source of error in the study of "AFM force maps" of the cellular sample. The present model incorporates an asymptotically correct correction term as a function of depth of indentation to eliminate the substrate effect in the analysis. Later, the model is extended to analyze the unloading portion of the indentation curve to extract the stiffness and adhesive properties simultaneously. A comparative study of the estimated material properties using other established contact models shows that the provided corrections effectively curb the errors coming from infinite thickness assumption. Nonspecific adhesive nature of a cell is represented in terms of adhesion parameter (γa) based on the "work of adhesion," this is an alternative to the peak value of tip-sample attractive (negative) force commonly used as representative adhesion measurement. The simple analytical expression of the model can help in estimating more realistic and accurate biomechanical properties of cells from atomic force microscopy based indentation technique.
Collapse
Affiliation(s)
- Vishwanath Managuli
- Applied Mechanics Department, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail:
| | - Sitikantha Roy
- Applied Mechanics Department, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail:
| |
Collapse
|
65
|
Kandel J, Picard M, Wallace DC, Eckmann DM. Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics. J R Soc Interface 2018; 14:rsif.2017.0071. [PMID: 28592659 DOI: 10.1098/rsif.2017.0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions.
Collapse
Affiliation(s)
- Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA .,Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
66
|
Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat Commun 2018; 9:732. [PMID: 29467364 PMCID: PMC5821895 DOI: 10.1038/s41467-018-03127-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
T cells have a central function in mounting immune responses. However, mechanisms of their early activation by cognate antigens remain incompletely understood. Here we use live-cell multi-colour single-molecule localization microscopy to study the dynamic separation between TCRs and CD45 glycoprotein phosphatases in early cell contacts under TCR-activating and non-activating conditions. Using atomic force microscopy, we identify these cell contacts with engaged microvilli and characterize their morphology, rigidity and dynamics. Physical modelling and simulations of the imaged cell interfaces quantitatively capture the TCR-CD45 separation. Surprisingly, TCR phosphorylation negatively correlates with TCR-CD45 separation. These data support a refined kinetic-segregation model. First, kinetic-segregation occurs within seconds from TCR activation in engaged microvilli. Second, TCRs should be segregated, yet not removed too far, from CD45 for their optimal and localized activation within clusters. Our combined imaging and computational approach prove an important tool in the study of dynamic protein organization in cell interfaces.
Collapse
|
67
|
Lins MP, Silva ECO, Silva GR, Souza ST, Medeiros NC, Fonseca EJS, Smaniotto S. Association between biomechanical alterations and migratory ability of semaphorin-3A-treated thymocytes. Biochim Biophys Acta Gen Subj 2018; 1862:816-824. [PMID: 29305907 DOI: 10.1016/j.bbagen.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/14/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Class 3 semaphorins are soluble proteins involved in cell adhesion and migration. Semaphorin-3A (Sema3A) was initially shown to be involved in neuronal guidance, and it has also been reported to be associated with immune disorders. Both Sema3A and its receptors are expressed by most immune cells, including monocytes, macrophages, and lymphocytes, and these proteins regulate cell function. Here, we studied the correlation between Sema3A-induced changes in biophysical parameters of thymocytes, and the subsequent repercussions on cell function. METHODS Thymocytes from mice were treated in vitro with Sema3A for 30min. Scanning electron microscopy was performed to assess cell morphology. Atomic force microscopy was performed to further evaluate cell morphology, membrane roughness, and elasticity. Flow cytometry and/or fluorescence microscopy were performed to assess the F-actin cytoskeleton and ROCK2. Cell adhesion to a bovine serum albumin substrate and transwell migration assays were used to assess cell migration. RESULTS Sema3A induced filopodia formation in thymocytes, increased membrane stiffness and roughness, and caused a cortical distribution of the cytoskeleton without changes in F-actin levels. Sema3A-treated thymocytes showed reduced substrate adhesion and migratory ability, without changes in cell viability. In addition, Sema3A was able to down-regulate ROCK2. CONCLUSIONS Sema3A promotes cytoskeletal rearrangement, leading to membrane modifications, including increased stiffness and roughness. This effect in turn affects the adhesion and migration of thymocytes, possibly due to a reduction in ROCK2 expression. GENERAL SIGNIFICANCE Sema3A treatment impairs thymocyte migration due to biomechanical alterations in cell membranes.
Collapse
Affiliation(s)
- M P Lins
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - E C O Silva
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - G R Silva
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - S T Souza
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - N C Medeiros
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - E J S Fonseca
- Grupo de Óptica e Nanoscopia (GON), Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
| | - S Smaniotto
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| |
Collapse
|
68
|
Abi Ghanem M, Dehoux T, Liu L, Le Saux G, Plawinski L, Durrieu MC, Audoin B. Opto-acoustic microscopy reveals adhesion mechanics of single cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:014901. [PMID: 29390675 DOI: 10.1063/1.5019807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.
Collapse
Affiliation(s)
| | - Thomas Dehoux
- University Bordeaux, CNRS, UMR 5295, I2M, F-33400 Talence, France
| | - Liwang Liu
- University Bordeaux, CNRS, UMR 5295, I2M, F-33400 Talence, France
| | - Guillaume Le Saux
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR 5248 CBMN)-CNRS-University Bordeaux-Bordeaux INP, Pessac, France
| | - Laurent Plawinski
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR 5248 CBMN)-CNRS-University Bordeaux-Bordeaux INP, Pessac, France
| | - Marie-Christine Durrieu
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR 5248 CBMN)-CNRS-University Bordeaux-Bordeaux INP, Pessac, France
| | - Bertrand Audoin
- University Bordeaux, CNRS, UMR 5295, I2M, F-33400 Talence, France
| |
Collapse
|
69
|
Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration. IEEE Trans Biomed Eng 2017; 64:2771-2780. [DOI: 10.1109/tbme.2017.2674663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
70
|
Yan B, Ren J, Liu Y, Huang H, Zheng X, Zou Q. Study of Cholesterol Repletion Effect on Nanomechanical Properties of Human Umbilical Vein Endothelial Cell Via Rapid Broadband Atomic Force Microscopy. J Biomech Eng 2017; 139:2588202. [PMID: 27893051 DOI: 10.1115/1.4035260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 02/04/2023]
Abstract
Abnormalities of blood cholesterol concentration are associated with increased risks for vascular disease, especially heart attacks and strokes. As one of the main lipid components of plasma membrane in all mammalian cells, cholesterol has a major impact on the mechanical properties of the membrane of endothelial cells. Although the effect of cholesterol depletion on cell mechanical properties has been studied, no results yet have been reported on quantitative investigation of cholesterol repletion effect. In this study, the cholesterol repletion effect on the nanomechanical properties of human umbilical vein endothelial cell (EA.hy926) was studied using a control-based atomic force microscope (AFM) nanomechanical measurement protocol. The viscoelasticity of EA.hy926 cells were measured over a large frequency range (0.1-100 Hz) using both constant-rate excitation force with different loading rates and a broadband excitation force. The viscoelasticity oscillation of the cell membranes under the cholesterol effect was also monitored in real-time. The experiment results showed that under the effect of cholesterol repletion, both the Young's modulus and the complex modulus of EA.hy926 cell were increased over 30%, respectively, and moreover, the amplitudes of both the elasticity oscillation and the viscosity oscillation at a period of around 200 s were increased over 70%, respectively. Therefore, this work is among the first to investigate the mechanical properties, particularly, the broadband viscoelasticity variations of EA.hy926 cells under cholesterol repletion treatment. The results revealed that cholesterol repletion may reinforce the coupling of F-actin to plasma membrane by increasing actin stability, and the cholesterol might have modified the submembrane cytoskeletal organization of EA.hy926 cell by causing the involvement of the motor protein nonmuscle myosin II.
Collapse
Affiliation(s)
- Bo Yan
- School of Electrical Engineering, University of Electrical Science and Engineering, Chengdu 60054, China
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Yue Liu
- Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Huarong Huang
- Allan H. Conney Laboratory, Guangdong University of Technology, Guangzhou 510006, China
| | - Xi Zheng
- Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| |
Collapse
|
71
|
Fessel A, Döbereiner HG. Nonlinear compliance of elastic layers to indentation. Biomech Model Mechanobiol 2017; 17:419-438. [PMID: 29094275 DOI: 10.1007/s10237-017-0969-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 11/26/2022]
Abstract
Thin samples adherent to a rigid substrate are considerably less compliant to indentation when compared to specimens that are not geometrically confined. Analytical corrections to this so-called substrate effect exist for various types of indenters but are not applicable when large deformations are possible, as is the case in biological materials. To overcome this limitation, we construct a nonlinear scaling model characterized by one single exponent, which we explore employing a parametric finite element analysis. The model is based on asymptotes of two length scales in relation to the sample thickness, i.e., indentation depth and radius of the contact area. For small indentation depth, we require agreement with analytical, linear models, whereas for large indentation depth and extensive contact area, we recognize similarity to uniaxial deformation, indicating a divergent force required to indent nonlinear materials. In contrast, we find linear materials not to be influenced by the substrate effect beyond first order, implying that nonlinear effects originating from either the material or geometric confinement are clearly separated only in thin samples. Furthermore, in this regime the scaling model can be derived by following a heuristic argument extending a linear model to large indentation depths. Lastly, in a large indentation setting where the contact is small in comparison with sample thickness, we observe nonlinear effects independent of material type that we attribute to a higher-order influence of geometrical confinement. In this regime, we define a scalar as the ratio of strains along principal axes as obtained by comparison with the case of a point force on a half-space. We find this scalar to be in quantitative agreement with the scaling exponent, indicating an approach to distinguish between nonlinear effects in the scaling model. While we conjecture our findings to be applicable to other flat-ended indenters, we focus on the case of a flat-ended cylinder in normal contact with a thin layer. The analytical solution for small indentation associated with this problem has been given by Hayes et al. (J Biomech 5:541-551, 1972), for which we provide a convenient numerical implementation.
Collapse
Affiliation(s)
- Adrian Fessel
- Institut für Biophysik, Universität Bremen, Bremen, Germany.
| | | |
Collapse
|
72
|
Cai P, Takahashi R, Kuribayashi-Shigetomi K, Subagyo A, Sueoka K, Maloney JM, Van Vliet KJ, Okajima T. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population. Biophys J 2017; 113:671-678. [PMID: 28793221 DOI: 10.1016/j.bpj.2017.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023] Open
Abstract
Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G∗). Although the ensemble variation in G∗ of single cells has been elucidated, the detailed temporal variation of G∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale.
Collapse
Affiliation(s)
- PingGen Cai
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Ryosuke Takahashi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | - Agus Subagyo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazuhisa Sueoka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
73
|
Even C, Abramovici G, Delort F, Rigato AF, Bailleux V, de Sousa Moreira A, Vicart P, Rico F, Batonnet-Pichon S, Briki F. Mutation in the Core Structure of Desmin Intermediate Filaments Affects Myoblast Elasticity. Biophys J 2017; 113:627-636. [PMID: 28793217 DOI: 10.1016/j.bpj.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022] Open
Abstract
Elastic properties of cells are mainly derived from the actin cytoskeleton. However, intermediate filaments are emerging as major contributors to the mechanical properties of cells. Using atomic force microscopy, we studied the elasticity of mouse myoblasts expressing a mutant form of the gene encoding for desmin intermediate filaments, p.D399Y. This variant produces desmin aggregates, the main pathological symptom of myofibrillar myopathies. Here we show that desmin-mutated cells display a 39% increased median elastic modulus compared to wild-type cells. Desmin-mutated cells required higher forces than wild-type cells to reach high indentation depths, where desmin intermediate filaments are typically located. In addition, heat-shock treatment increased the proportion of cells with aggregates and induced a secondary peak in the distribution of Young's moduli. By performing atomic force microscopy mechanical mapping combined with fluorescence microscopy, we show that higher Young's moduli were measured where desmin aggregates were located, indicating that desmin aggregates are rigid. Therefore, we provide evidence that p.D399Y stiffens mouse myoblasts. Based on these results, we suggest that p.D399Y-related myofibrillar myopathy is at least partly due to altered mechanical properties at the single-cell scale, which are propagated to the tissue scale.
Collapse
Affiliation(s)
- Catherine Even
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| | - Gilles Abramovici
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Florence Delort
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anna F Rigato
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Virginie Bailleux
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Abel de Sousa Moreira
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Patrick Vicart
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Felix Rico
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Sabrina Batonnet-Pichon
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fatma Briki
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
74
|
Lherbette M, Dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 2017; 7:8116. [PMID: 28808261 PMCID: PMC5556037 DOI: 10.1038/s41598-017-08517-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.
Collapse
Affiliation(s)
- Michael Lherbette
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ália Dos Santos
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Natalia Fili
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Iwan A T Schaap
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. .,SmarAct GmbH, D26135, Oldenburg, Germany.
| |
Collapse
|
75
|
Nguyen NM, Angely C, Andre Dias S, Planus E, Filoche M, Pelle G, Louis B, Isabey D. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells. Biol Cell 2017; 109:255-272. [DOI: 10.1111/boc.201600080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Ngoc-Minh Nguyen
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
| | - Christelle Angely
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
| | - Sofia Andre Dias
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
| | - Emmanuelle Planus
- Institute for Advanced Biosciences (IAB); Centre de Recherche UGA/Inserm U1209/CNRS UMR 5309; La Tronche 38700 France
| | - Marcel Filoche
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
- Laboratoire de Physique de la Matière Condensée; Ecole Polytechnique; CNRS; Université Paris Saclay; Palaiseau 91128 France
| | - Gabriel Pelle
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
- AP-HP; Groupe Hospitalier H. Mondor - A. Chenevier; Service des Explorations Fonctionnelles; Créteil Cedex F-94010 France
| | - Bruno Louis
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
| | - Daniel Isabey
- Inserm; U955; Equipe 13; Biomécanique & Appareil Respiratoire; Créteil Cedex F-94010 France
- Université Paris Est; UMR S955, UPEC Créteil Cedex F-94010 France
- CNRS; ERL 7240 Créteil Cedex F-94010 France
| |
Collapse
|
76
|
Nelson SL, Proctor DT, Ghasemloonia A, Lama S, Zareinia K, Ahn Y, Al-Saiedy MR, Green FHY, Amrein MW, Sutherland GR. Vibrational Profiling of Brain Tumors and Cells. Theranostics 2017; 7:2417-2430. [PMID: 28744324 PMCID: PMC5525746 DOI: 10.7150/thno.19172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
Abstract
This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex.
Collapse
Affiliation(s)
- Sultan L Nelson
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Dustin T Proctor
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Ahmad Ghasemloonia
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Sanju Lama
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Kourosh Zareinia
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Younghee Ahn
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mustafa R Al-Saiedy
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Francis HY Green
- Department of Pathology and Laboratory Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Garnette R Sutherland
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
77
|
Abstract
A single cell can be regarded as a complex network that contains thousands of overlapping signaling pathways. The traditional methods for describing the dynamics of this network are extremely complicated. The mechanical properties of a cell reflect the cytoskeletal structure and composition and are closely related to the cellular biological functions and physiological activities. Therefore, modeling the mechanical properties of single cells provides the basis for analyzing and controlling the cellular state. In this study, we developed a dynamical model with cellular viscoelasticity properties as the system parameters to describe the stress-relaxation phenomenon of a single cell indented by an atomic force microscope (AFM). The system order and parameters were identified and analyzed. Our results demonstrated that the parameters identified using this model represent the cellular mechanical elasticity and viscosity and can be used to classify cell types.
Collapse
|
78
|
Zhang Z, Chen X, Jiang C, Fang Z, Feng Y, Jiang W. The effect and mechanism of inhibiting glucose-6-phosphate dehydrogenase activity on the proliferation of Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:771-781. [DOI: 10.1016/j.bbamcr.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/16/2023]
|
79
|
Sancho A, Vandersmissen I, Craps S, Luttun A, Groll J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 2017; 7:46152. [PMID: 28393890 PMCID: PMC5385528 DOI: 10.1038/srep46152] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/10/2017] [Indexed: 01/11/2023] Open
Abstract
Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis.
Collapse
Affiliation(s)
- Ana Sancho
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070 Würzburg, Germany
| | - Ine Vandersmissen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sander Craps
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
80
|
Li Z, Gao S, Brand U, Hiller K, Wollschläger N, Pohlenz F. Note: Nanomechanical characterization of soft materials using a micro-machined nanoforce transducer with an FIB-made pyramidal tip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:036104. [PMID: 28372387 DOI: 10.1063/1.4977474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The quantitative nanomechanical characterization of soft materials using the nanoindentation tech-nique requires further improvements in the performances of instruments, including their force resolution in particular. A micro-machined silicon nanoforce transducer based upon electrostatic comb drives featuring the force and depth resolutions down to ∼1 nN and 0.2 nm, respectively, is described. At the end of the MEMS transducer's main shaft, a pyramidal tip is fabricated using a focused ion beam facility. A proof-of-principle setup with this MEMS nanoindenter has been established to measure the mechanical properties of soft polydimethylsiloxane. First measurement results demonstrate that the prototype measurement system is able to quantitatively characterize soft materials with elastic moduli down to a few MPa.
Collapse
Affiliation(s)
- Z Li
- Phyikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - S Gao
- Phyikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - U Brand
- Phyikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - K Hiller
- Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - N Wollschläger
- Bundesanstalt für Materialforschung und -Prüfung, 12205 Berlin, Germany
| | - F Pohlenz
- Phyikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| |
Collapse
|
81
|
Wang K, He X, Linthicum W, Mezan R, Wang L, Rojanasakul Y, Wen Q, Yang Y. Carbon Nanotubes Induced Fibrogenesis on Nanostructured Substrates. ENVIRONMENTAL SCIENCE. NANO 2017; 4:689-699. [PMID: 28944063 PMCID: PMC5608452 DOI: 10.1039/c6en00402d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While the rapidly evolving nanotechnology has shown promise in electronics, energy, healthcare and many other fields, there is an increasing concern about the adverse health consequences of engineered nanomaterials. To accurately evaluate the toxicity of nanomaterials, in vitro models incorporated with in vivo microenvironment characteristics are desirable. This study aims to delineate the influence of nanotopography on fibrogenic response of normal human lung fibroblasts to multi-walled carbon nanotubes (MWCNTs). Nanoscale gratings and pillars of various heights were fabricated on polydimethylsiloxane substrates. Cell spreading and biomechanics were measured, and fibrogenic responses including proliferation, collagen production and reactive oxygen species generation of the fibroblasts grown on the nanostructured substrates in response to MWCNTs were assessed. It was observed that the cells could be largely stretched on shallow nanogratings, leading to stiffer cytoskeleton and nucleus, enhanced cell proliferation and collagen production, and consequently, toxic response sensitivity of the fibroblasts was undermined. In contrast, the cell spreading and stiffness could be reduced using tall, isotropic nanopillars, which significantly improved the cell toxic sensitivity to the MWCNTs. In addition to highlighting the significant influence of cell-nanotopography interactions on cell sensing CNTs, this study contributed to development of physiologically relevant in vitro models for nanotoxicology study.
Collapse
Affiliation(s)
- Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA, 26506
| | - Xiaoqing He
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA, 26506
| | - Will Linthicum
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA, 01609
| | - Ryan Mezan
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA, 26506
| | - Liying Wang
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA, 26505
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA, 26506
| | - Qi Wen
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA, 01609
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts, USA, 01609
| | - Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA, 26506
| |
Collapse
|
82
|
Lee D, Ryu S. A Validation Study of the Repeatability and Accuracy of Atomic Force Microscopy Indentation Using Polyacrylamide Gels and Colloidal Probes. J Biomech Eng 2017; 139:2595195. [DOI: 10.1115/1.4035536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 01/06/2023]
Abstract
The elasticity of soft biological materials is a critical property to understand their biomechanical behaviors. Atomic force microscopy (AFM) indentation method has been widely employed to measure the Young's modulus (E) of such materials. Although the accuracy of the method has been recently evaluated based on comparisons with macroscale E measurements, the repeatability of the method has yet to be validated for rigorous biomechanical studies of soft elastic materials. We tested the AFM indentation method using colloidal probes and polyacrylamide (PAAM) gels of E < 20 kPa as a model soft elastic material after having identified optimal trigger force and probe speed. AFM indentations repeated with time intervals show that the method is well repeatable when performed carefully. Compared with the rheometric method and the confocal microscopy indentation method, the AFM indentation method is evaluated to have comparable accuracy and better precision, although these elasticity measurements appear to rely on the compositions of PAAM gels and the length scale of measurement. Therefore, we have confirmed that the AFM indentation method can reliably measure the elasticity of soft elastic materials.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 e-mail:
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 e-mail:
| |
Collapse
|
83
|
Ayala YA, Pontes B, Hissa B, Monteiro ACM, Farina M, Moura-Neto V, Viana NB, Nussenzveig HM. Effects of cytoskeletal drugs on actin cortex elasticity. Exp Cell Res 2017; 351:173-181. [DOI: 10.1016/j.yexcr.2016.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
|
84
|
Connizzo BK, Grodzinsky AJ. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech 2017; 54:11-18. [PMID: 28233551 DOI: 10.1016/j.jbiomech.2017.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
85
|
Haase K, Shendruk TN, Pelling AE. Rapid dynamics of cell-shape recovery in response to local deformations. SOFT MATTER 2017; 13:567-577. [PMID: 27942684 DOI: 10.1039/c6sm02560a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is vital that cells respond rapidly to mechanical cues within their microenvironment through changes in cell shape and volume, which rely upon the mechanical properties of cells' highly interconnected cytoskeletal networks and intracellular fluid redistributions. While previous research has largely investigated deformation mechanics, we now focus on the immediate cell-shape recovery response following mechanical perturbation by inducing large, local, and reproducible cellular deformations using AFM. By continuous imaging within the plane of deformation, we characterize the membrane and cortical response of HeLa cells to unloading, and model the recovery via overdamped viscoelastic dynamics. Importantly, the majority (90%) of HeLa cells recover their cell shape in <1 s. Despite actin remodelling on this time scale, we show that cell-shape recovery time is not affected by load duration, nor magnitude for untreated cells. To further explore this rapid recovery response, we expose cells to cytoskeletal destabilizers and osmotic shock conditions, which uncovers the interplay between actin and osmotic pressure. We show that the rapid dynamics of recovery depend crucially on intracellular pressure, and provide strong evidence that cortical actin is the key regulator in the cell-shape recovery processes, in both cancerous and non-cancerous epithelial cells.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Canada.
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK
| | - Andrew E Pelling
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Canada. and Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Canada and Institute for Science, Society and Policy, University of Ottawa, Simard Hall, 60 University, Ottawa, ON K1N 6N5, Canada and SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
86
|
Todinova S, Komsa-Penkova R, Krumova S, Taneva SG, Golemanov G, Georgieva G, Tonchev P, Tsankov B, Beshev L, Balashev K, Andreeva TD. PlA2 Polymorphism in Glycoprotein IIb/IIIa Modulates the Morphology and Nanomechanics of Platelets. Clin Appl Thromb Hemost 2017; 23:951-960. [PMID: 28081621 DOI: 10.1177/1076029616687847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glycoprotein IIb/IIIa (GPIIb/IIIa) is the most abundant platelet surface receptor for fibrinogen and von Willebrand factor. Polymorphism PlA1/A2 in the gene of GPIIb/IIIa is among the risk factors for the development of arterial and venous thrombosis. The aim of this study is to evaluate the effect of the carriage of PlA1/A2 on the size, topographic features, and membrane stiffness of platelets from healthy controls and patients with deep venous thrombosis (DVT). Atomic force microscopy (AFM) imaging and nanoindentation (force-distance curves) were applied to investigate the morphological and nanomechanical properties (Young's modulus) of platelets immobilized on glass surface. The surface roughness ( Ra) and height ( h) of platelets from patients with DVT, carriers of mutant allele PlA2 ( Ra = 30.2 ± 6 nm; h = 766 ± 182 nm) and noncarriers ( Ra = 28.6 ± 6 nm; h = 865 ± 290 nm), were lower than those of healthy carriers of allele PlA2 ( Ra = 48.1 ± 12 nm; h = 1072 ± 338 nm) and healthy noncarriers ( Ra = 49.7 ± 14 nm; h = 1021 ± 433 nm), respectively. Platelets isolated from patients with DVT, both carriers and noncarriers, exhibit much higher degree of stiffness at the stage of spreading ( E = 327 ± 85 kPa and 341 ± 102 kPa, respectively) compared to healthy noncarriers ( E = 198 ± 50 kPa). In addition, more pronounced level of platelet activation was found in polymorphism carriers. In conclusion, the carriage of PlA2 allele modulates the activation state, morphology, and membrane elasticity of platelets.
Collapse
Affiliation(s)
- Svetla Todinova
- 1 Department of Biomacromolecules and Biomolecular Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Sashka Krumova
- 1 Department of Biomacromolecules and Biomolecular Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefka G Taneva
- 1 Department of Biomacromolecules and Biomolecular Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Georgy Golemanov
- 2 Department of Biochemistry, Medical University, Pleven, Bulgaria
| | - Galia Georgieva
- 2 Department of Biochemistry, Medical University, Pleven, Bulgaria
| | - Pencho Tonchev
- 3 Department of Surgery, University Hospital, Pleven, Bulgaria
| | - Boris Tsankov
- 3 Department of Surgery, University Hospital, Pleven, Bulgaria
| | - Lyubomir Beshev
- 3 Department of Surgery, University Hospital, Pleven, Bulgaria
| | - Konstantin Balashev
- 4 Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Tonya D Andreeva
- 1 Department of Biomacromolecules and Biomolecular Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
87
|
Abstract
Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.
Collapse
Affiliation(s)
- Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Ruihe Lv
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Junji Jia
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| |
Collapse
|
88
|
Stylianou A, Gkretsi V, Patrickios CS, Stylianopoulos T. Exploring the Nano-Surface of Collagenous and Other Fibrotic Tissues with AFM. Methods Mol Biol 2017; 1627:453-489. [PMID: 28836219 DOI: 10.1007/978-1-4939-7113-8_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atomic force microscope (AFM) is a powerful and invaluable tool for imaging and probing the mechanical properties of biological samples at the nanometric scale. The importance of nano-scale characterization and nanomechanics of soft biological tissues is becoming widely appreciated, and AFM offers unique advantages in this direction. In this chapter, we describe the procedure to collect data sets (imaging and mechanical properties measurement) of collagen gels and tumor tissues. We provide step-by-step instructions throughout the procedure, from sample preparation to cantilever calibration, data acquisition, analysis, and visualization, using two commercial AFM systems (PicoPlus and Cypher ES) and software that accompanied the AFM systems and/or are freeware available (WSxM, AtomicJ). Our protocols are written specifically for these two systems and the mentioned software; however, most of the general concepts can be readily translated to other AFM systems and software.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus, Greece.
| | - Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus, Greece
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus, Greece.
| |
Collapse
|
89
|
Kamm RD, Lammerding J, Mofrad MRK. Cellular Nanomechanics. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
90
|
Qiu J, Li FF. Mechanical behavior of an individual adherent MLO-Y4 osteocyte under shear flow. Biomech Model Mechanobiol 2016; 16:63-74. [PMID: 27752793 DOI: 10.1007/s10237-016-0802-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
Mechanical properties of a single cell and its mechanical response under stimulation play an important role in regulating interactions between cell and extracellular matrix and affecting mechanotransduction. Osteocytes exhibit solid-like viscoelastic behavior in response to the interstitial fluid shear resulting from tissue matrix deformation. This study intends to quantitatively describe the mechanical behavior of osteocytes combining in vitro experiment and fluid-structure interaction (FSI) finite element (FE) model. The cell is configured in the FSI FE model using the observed data from quasi-3D images. Instead of simply assigning the cellular viscoelastic parameters by statistical data, the mechanical parameters are determined by an iterative algorithm comparing the experimental and the computational results from the FE model. The viscoelastic parameters of osteocytes are obtained as: the equilibrium elasticity modulus [Formula: see text], instantaneous elasticity modulus [Formula: see text], viscosity coefficient [Formula: see text]. A novel index to quantify the cell adhesion is also put forward. In addition, an interesting competition phenomenon is revealed on the cell surface concerning stress and strain, i.e., the place with high stress has low strain and that with low stress has high strain. The proposed method provides a novel technique to study the mechanical behavior of individual adherent cell in vitro. It is believed that this quantitative technique not only determines cell mechanical behavior but also helps elucidate the mechanism of mechanotransduction in various types of cells.
Collapse
Affiliation(s)
- Jun Qiu
- Institute for Aero-Engine, School of Aerospace Engineering, Tsinghua University, Mailbox H18, Meng Minwei Science and Technology Building, Beijing, 100084, People's Republic of China.
| | - Fang-Fang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| |
Collapse
|
91
|
Wei F, Yang H, Liu L, Li G. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy. Comput Methods Biomech Biomed Engin 2016; 20:373-384. [PMID: 27627026 DOI: 10.1080/10255842.2016.1233403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.
Collapse
Affiliation(s)
- Fanan Wei
- a State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences , Shenyang , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Haitao Yang
- c Department of Electrical and Computer Engineering , University of Pittsburgh , Pittsburgh , PA , USA
| | - Lianqing Liu
- a State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences , Shenyang , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Guangyong Li
- c Department of Electrical and Computer Engineering , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
92
|
Roan E, Wilhelm KR, Waters CM. Kymographic Imaging of the Elastic Modulus of Epithelial Cells during the Onset of Migration. Biophys J 2016; 109:2051-7. [PMID: 26588564 DOI: 10.1016/j.bpj.2015.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/11/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Epithelial cell migration during wound repair involves a complex interplay of intracellular processes that enable motility while preserving contact among the cells. Recent evidence suggests that fluctuations of the intracellular biophysical state of cells generate traction forces at the basal side of the cells that are necessary for the cells to migrate. However, less is known about the biophysical and structural changes throughout the cells that accompany these fluctuations. Here, we utilized, to our knowledge, a novel kymographic nanoindentation method to obtain spatiotemporal measurements of the elastic moduli of living cells during migration after wounding. At the onset of migration, the elastic modulus increased near the migration front. In addition, the intensity of fluctuations in the elastic modulus changed at the migration front, and these changes were dependent upon f-actin, one of the major components of the cytoskeleton. These results demonstrate the unique biophysical changes that occur at the onset of migration as cells transition from a stationary to a migratory state.
Collapse
Affiliation(s)
- Esra Roan
- Biomedical Engineering Department, University of Memphis, Memphis, Tennessee.
| | - Kristina R Wilhelm
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
93
|
Ayala YA, Pontes B, Ether DS, Pires LB, Araujo GR, Frases S, Romão LF, Farina M, Moura-Neto V, Viana NB, Nussenzveig HM. Rheological properties of cells measured by optical tweezers. BMC BIOPHYSICS 2016; 9:5. [PMID: 27340552 PMCID: PMC4917937 DOI: 10.1186/s13628-016-0031-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/10/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The viscoelastic properties of cells have been investigated by a variety of techniques. However, the experimental data reported in literature for viscoelastic moduli differ by up to three orders of magnitude. This has been attributed to differences in techniques and models for cell response as well as to the natural variability of cells. RESULTS In this work we develop and apply a new methodology based on optical tweezers to investigate the rheological behavior of fibroblasts, neurons and astrocytes in the frequency range from 1Hz to 35Hz, determining the storage and loss moduli of their membrane-cortex complex. To avoid distortions associated with cell probing techniques, we use a previously developed method that takes into account the influence of under bead cell thickness and bead immersion. These two parameters were carefully measured for the three cell types used. Employing the soft glass rheology model, we obtain the scaling exponent and the Young's modulus for each cell type. The obtained viscoelastic moduli are in the order of Pa. Among the three cell types, astrocytes have the lowest elastic modulus, while neurons and fibroblasts exhibit a more solid-like behavior. CONCLUSIONS Although some discrepancies with previous results remain and may be inevitable in view of natural variability, the methodology developed in this work allows us to explore the viscoelastic behavior of the membrane-cortex complex of different cell types as well as to compare their viscous and elastic moduli, obtained under identical and well-defined experimental conditions, relating them to the cell functions.
Collapse
Affiliation(s)
- Yareni A Ayala
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Diney S Ether
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - Luis B Pires
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - Glauber R Araujo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Luciana F Romão
- Universidade Federal do Rio de Janeiro - Pólo de Xerém, Duque de Caxias, Rio de Janeiro 25245-390 Brazil
| | - Marcos Farina
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro 20231-092 Brazil
| | - Nathan B Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - H Moysés Nussenzveig
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| |
Collapse
|
94
|
Luo Q, Kuang D, Zhang B, Song G. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochim Biophys Acta Gen Subj 2016; 1860:1953-60. [PMID: 27288584 DOI: 10.1016/j.bbagen.2016.06.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. SCOPE OF REVIEW In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. MAJOR CONCLUSIONS The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. GENERAL SIGNIFICANCE This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Dongdong Kuang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Bingyu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
95
|
Eghiaian F, Rigato A, Scheuring S. Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J 2016; 108:1330-1340. [PMID: 25809247 DOI: 10.1016/j.bpj.2015.01.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/18/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022] Open
Abstract
In eukaryotic cells, an actin-based cortex lines the inner leaflet of the plasma membrane, endowing the cells with crucial mechanical and functional properties. Unfortunately, it has not been possible to study the structural dynamics of the actin cortex at high lateral resolution in living cells. Here, we performed atomic force microscopy time-lapse imaging and mechanical mapping of actin in the cortex of living cells at high lateral and temporal resolution. Cortical actin filaments adopted discernible arrangements, ranging from large parallel bundles with low connectivity to a tight meshwork of short filaments. Mixing of these architectures resulted in attuned cortex networks with specific connectivity, mechanical responses, and marked differences in their dynamic behavior.
Collapse
Affiliation(s)
- Frédéric Eghiaian
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Annafrancesca Rigato
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France.
| |
Collapse
|
96
|
Biomechanics of cell membrane under low-frequency time-varying magnetic field: a shell model. Med Biol Eng Comput 2016; 54:1871-1881. [DOI: 10.1007/s11517-016-1478-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
|
97
|
Abstract
Polysialic acid (polySia) is an important carbohydrate bio-polymer that is commonly over-expressed on tumours of neuroendocrine origin and plays a key role in tumour progression. polySia exclusively decorates the neural cell adhesion molecule (NCAM) on tumour cell membranes, modulating cell-cell interactions, motility and invasion. In this preliminary study, we examine the nano-mechanical properties of isogenic C6 rat glioma cells-transfected cells engineered to express the enzyme polysialyltransferase ST8SiaII, which synthesises polySia (C6-STX cells) and wild-type cells (C6-WT). We demonstrate that polySia expression leads to reduced elastic and adhesive properties but also more viscoelastic compared to non-expressing wild-type cells. Whilst differences in cell elasticity between healthy and cancer cells are regularly assigned to changes in the cytoskeleton, we show that in this model system, the change in properties at the nano-level is due to the polySia on the transfected cell membrane surface.
Collapse
|
98
|
Guillou L, Babataheri A, Puech PH, Barakat AI, Husson J. Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 2016; 6:21529. [PMID: 26857265 PMCID: PMC4746699 DOI: 10.1038/srep21529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells' actin is depolymerized using cytochalasin-D.
Collapse
Affiliation(s)
- L Guillou
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - A Babataheri
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - P-H Puech
- Aix Marseille University, LAI UM 61, Marseille, F-13288, France.,Inserm, UMR_S 1067, Marseille, F-13288, France.,CNRS, UMR 7333, Marseille, F-13288, France
| | - A I Barakat
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - J Husson
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
99
|
Abstract
Currently, biomechanics of living cells is in the focus of interest due to noticeable capability of such techniques like atomic force microscopy (AFM) to probe cellular properties at the single cell level directly on living cells. The research carried out, so far, delivered data showing, on the one hand, the use of cellular mechanics as a biomarker of various pathological changes, which, on the other hand, reveal relative nature of biomechanics. In the AFM, the elastic properties of living cells are delivered from indentation experiments and described quantitatively by Young's modulus defined here as a measure of cellular deformability. Here, the AFM studies directly comparing the mechanical properties of normal and cancerous cells are summarized and presented together with a few important issues related to the relativeness of Young's modulus.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Institute of Nuclear Physics, PAS, Radzikowskiego 152, 31-342 Kraków, Poland
| |
Collapse
|
100
|
Gultekinoglu M, Oh YJ, Hinterdorfer P, Duman M, Çatçat D, Ulubayram K. Nanoscale characteristics of antibacterial cationic polymeric brushes and single bacterium interactions probed by force microscopy. RSC Adv 2016. [DOI: 10.1039/c5ra22434a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A direct probing technique was applied to PEI brushes to investigate bacteria–PEI brush interactions in a single bacterium resolution.
Collapse
Affiliation(s)
- Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences
- Faculty of Pharmacy
- Hacettepe University
- Ankara 06100
- Turkey
| | - Yoo Jin Oh
- Institute for Biophysics
- Johannes Kepler University
- Linz A-4020
- Austria
| | | | - Memed Duman
- Graduate Department of Nanotechnology and Nanomedicine
- Institute for Graduate Studies in Science and Engineering
- Hacettepe University
- Ankara 06640
- Turkey
| | - Demet Çatçat
- Graduate Department of Nanotechnology and Nanomedicine
- Institute for Graduate Studies in Science and Engineering
- Hacettepe University
- Ankara 06640
- Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences
- Faculty of Pharmacy
- Hacettepe University
- Ankara 06100
- Turkey
| |
Collapse
|