51
|
Liu W, Irudayaraj J. Understanding the dynamics and structure of epigenetic states with single-molecule fluorescence microscopy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
52
|
Hennen J, Hur KH, Kohler J, Reddy Karuka S, Angert I, Luxton GWG, Mueller JD. Identifying Heteroprotein Complexes in the Nuclear Envelope. Biophys J 2019; 118:26-35. [PMID: 31839257 DOI: 10.1016/j.bpj.2019.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/02/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
The nucleus is delineated by the nuclear envelope (NE), which is a double membrane barrier composed of the inner and outer nuclear membranes as well as a ∼40-nm wide lumen. In addition to its barrier function, the NE acts as a critical signaling node for a variety of cellular processes, which are mediated by protein complexes within this subcellular compartment. Although fluorescence fluctuation spectroscopy is a powerful tool for characterizing protein complexes in living cells, it was recently demonstrated that conventional fluorescence fluctuation spectroscopy methods are not suitable for applications in the NE because of the presence of slow nuclear membrane undulations. We previously addressed this challenge by developing time-shifted mean-segmented Q (tsMSQ) analysis and applied it to successfully characterize protein homo-oligomerization in the NE. However, many NE complexes, such as the linker of the nucleoskeleton and cytoskeleton complex, are formed by heterotypic interactions, which single-color tsMSQ is unable to characterize. Here, we describe the development of dual-color (DC) tsMSQ to analyze NE heteroprotein complexes built from proteins that carry two spectrally distinct fluorescent labels. Experiments performed on model systems demonstrate that DC tsMSQ properly identifies heteroprotein complexes and their stoichiometry in the NE by accounting for spectral cross talk and local volume fluctuations. Finally, we applied DC tsMSQ to study the assembly of the linker of the nucleoskeleton and cytoskeleton complex, a heteroprotein complex composed of Klarsicht/ANC-1/SYNE homology and Sad1/UNC-84 (SUN) proteins, in the NE of living cells. Using DC tsMSQ, we demonstrate the ability of the SUN protein SUN2 and the Klarsicht/ANC-1/SYNE homology protein nesprin-2 to form a heterocomplex in vivo. Our results are consistent with previously published in vitro studies and demonstrate the utility of the DC tsMSQ technique for characterizing NE heteroprotein complexes.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Isaac Angert
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
53
|
Estimating numbers of intracellular molecules through analysing fluctuations in photobleaching. Sci Rep 2019; 9:15238. [PMID: 31645577 PMCID: PMC6811640 DOI: 10.1038/s41598-019-50921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/18/2019] [Indexed: 01/18/2023] Open
Abstract
The impact of fluorescence microscopy has been limited by the difficulties of expressing measurements of fluorescent proteins in numbers of molecules. Absolute numbers enable the integration of results from different laboratories, empower mathematical modelling, and are the bedrock for a quantitative, predictive biology. Here we propose an estimator to infer numbers of molecules from fluctuations in the photobleaching of proteins tagged with Green Fluorescent Protein. Performing experiments in budding yeast, we show that our estimates of numbers agree, within an order of magnitude, with published biochemical measurements, for all six proteins tested. The experiments we require are straightforward and use only a wide-field fluorescence microscope. As such, our approach has the potential to become standard for those practising quantitative fluorescence microscopy.
Collapse
|
54
|
Hanafusa K, Wada I, Hosokawa N. SDF2-like protein 1 (SDF2L1) regulates the endoplasmic reticulum localization and chaperone activity of ERdj3 protein. J Biol Chem 2019; 294:19335-19348. [PMID: 31624144 DOI: 10.1074/jbc.ra119.009603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/01/2019] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones facilitate protein folding by associating with nascent polypeptides, thereby preventing protein misfolding and aggregation. Endoplasmic reticulum (ER) chaperone BiP, the sole HSP70 chaperone in the ER, is regulated by HSP40 chaperones, including ER-resident protein ERdj3 (DNAJB11). ERdj3 lacks an ER retrieval signal, is secreted under ER stress conditions, and functions as a chaperone in the extracellular space, but how its secretion is regulated remains unclear. We recently showed that ERdj3 forms a complex with ER-resident stromal cell-derived factor 2 (SDF2) and SDF2L1 (SDF2-like protein 1) and thereby prevents protein aggregation during the BiP chaperone cycle. However, the contribution of the ERdj3-SDF2L1 complex to protein quality control is poorly understood. Here, we analyzed the intracellular localization and chaperone activity of ERdj3 in complex with SDF2L1. We found that ERdj3 was retained in the ER by associating with SDF2/SDF2L1. In vitro analyses revealed that the ERdj3 dimer incorporated two SDF2L1 molecules; otherwise, ERdj3 alone formed a homotetramer. The ERdj3-SDF2L1 complex suppressed ER protein aggregation, and this suppression did not require substrate transfer to BiP. The ERdj3-SDF2L1 complex inhibited aggregation of denatured GSH S-transferase (GST) in vitro and maintained GST in a soluble oligomeric state. Both in cellulo and in vitro, the chaperone activities of the ERdj3-SDF2L1 complex were higher than those of ERdj3 alone. These findings suggest that, under normal conditions, ERdj3 functions as an ER chaperone in complex with SDF2/SDF2L1 but is secreted into the extracellular space when it cannot form this complex.
Collapse
Affiliation(s)
- Ken Hanafusa
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuo Wada
- Department of Cell Sciences, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Nobuko Hosokawa
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
55
|
Two-Color Spatial Cumulant Analysis Detects Heteromeric Interactions between Membrane Proteins. Biophys J 2019; 117:1764-1777. [PMID: 31606123 DOI: 10.1016/j.bpj.2019.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/19/2019] [Accepted: 09/19/2019] [Indexed: 11/19/2022] Open
Abstract
Fluorescence fluctuation spectroscopy can be used to measure the aggregation of fluorescently labeled molecules and is typically performed using time series data. Spatial intensity distribution analysis and fluorescence moment image analysis are established tools for measuring molecular brightnesses from single-color images collected with laser scanning microscopes. We have extended these tools for analysis of two-color images to resolve heteromeric interactions between molecules labeled with spectrally distinct chromophores. We call these new methods two-color spatial intensity distribution analysis and two-color spatial cumulant analysis (2c-SpCA). To implement these techniques on a hyperspectral imaging system, we developed a spectral shift filtering technique to remove artifacts due to intrinsic cross talk between detector bins. We determined that 2c-SpCA provides better resolution from samples containing multiple fluorescent species; hence, this technique was carried forward to study images of living cells. We used fluorescent heterodimers labeled with enhanced green fluorescent protein and mApple to quantify the effects of resonance energy transfer and incomplete maturation of mApple on brightness measurements. We show that 2c-SpCA can detect the interaction between two components of trimeric G-protein complexes. Thus, 2c-SpCA presents a robust and computationally expedient means of measuring heteromeric interactions in cellular environments.
Collapse
|
56
|
An alternative framework for fluorescence correlation spectroscopy. Nat Commun 2019; 10:3662. [PMID: 31413259 PMCID: PMC6694112 DOI: 10.1038/s41467-019-11574-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS), is a widely used tool routinely exploited for in vivo and in vitro applications. While FCS provides estimates of dynamical quantities, such as diffusion coefficients, it demands high signal to noise ratios and long time traces, typically in the minute range. In principle, the same information can be extracted from microseconds to seconds long time traces; however, an appropriate analysis method is missing. To overcome these limitations, we adapt novel tools inspired by Bayesian non-parametrics, which starts from the direct analysis of the observed photon counts. With this approach, we are able to analyze time traces, which are too short to be analyzed by existing methods, including FCS. Our new analysis extends the capability of single molecule fluorescence confocal microscopy approaches to probe processes several orders of magnitude faster and permits a reduction of photo-toxic effects on living samples induced by long periods of light exposure. Fluorescence correlation spectroscopy is widely used for in vivo and in vitro applications, yet extracting information from experiments still requires long acquisition times. Here, the authors exploit Bayesian non-parametrics to directly analyze the output of confocal fluorescence experiments thereby probing physical processes on much faster timescales.
Collapse
|
57
|
Ng XW, Sampath K, Wohland T. Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish. Methods Mol Biol 2019; 1863:67-105. [PMID: 30324593 DOI: 10.1007/978-1-4939-8772-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There has been increasing interest in biophysical studies on live organisms to gain better insights into physiologically relevant biological events at the molecular level. Zebrafish (Danio rerio) is a viable vertebrate model to study such events due to its genetic and evolutionary similarities to humans, amenability to less invasive fluorescence techniques owing to its transparency and well-characterized genetic manipulation techniques. Fluorescence techniques used to probe biomolecular dynamics and interactions of molecules in live zebrafish embryos are therefore highly sought-after to bridge molecular and developmental events. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are two robust techniques that provide molecular level information on dynamics and interactions respectively. Here, we detail the steps for applying confocal FCS and FCCS, in particular single-wavelength FCCS (SW-FCCS), in live zebrafish embryos, beginning with sample preparation, instrumentation, calibration, and measurements on the FCS/FCCS instrument and ending with data analysis.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thorsten Wohland
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
58
|
Fluorescence fluctuation spectroscopy: an invaluable microscopy tool for uncovering the biophysical rules for navigating the nuclear landscape. Biochem Soc Trans 2019; 47:1117-1129. [DOI: 10.1042/bst20180604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Nuclear architecture is fundamental to the manner by which molecules traverse the nucleus. The nucleoplasm is a crowded environment where dynamic rearrangements in local chromatin compaction locally redefine the space accessible toward nuclear protein diffusion. Here, we review a suite of methods based on fluorescence fluctuation spectroscopy (FFS) and how they have been employed to interrogate chromatin organization, as well as the impact this structural framework has on nuclear protein target search. From first focusing on a set of studies that apply FFS to an inert fluorescent tracer diffusing inside the nucleus of a living cell, we demonstrate the capacity of this technology to measure the accessibility of the nucleoplasm. Then with a baseline understanding of the exploration volume available to nuclear proteins during target search, we review direct applications of FFS to fluorescently labeled transcription factors (TFs). FFS can detect changes in TF mobility due to DNA binding, as well as the formation of TF complexes via changes in brightness due to oligomerization. Collectively, we find that FFS-based methods can uncover how nuclear proteins in general navigate the nuclear landscape.
Collapse
|
59
|
Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells. Cell 2019; 178:491-506.e28. [PMID: 31155237 DOI: 10.1016/j.cell.2019.05.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/23/2018] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Transforming the vast knowledge from genetics, biochemistry, and structural biology into detailed molecular descriptions of biological processes inside cells remains a major challenge-one in sore need of better imaging technologies. For example, transcription involves the complex interplay between RNA polymerase II (Pol II), regulatory factors (RFs), and chromatin, but visualizing these dynamic molecular transactions in their native intracellular milieu remains elusive. Here, we zoom into single tagged genes using nanoscopy techniques, including an active target-locking, ultra-sensitive system that enables single-molecule detection in addressable sub-diffraction volumes, within crowded intracellular environments. We image, track, and quantify Pol II with single-molecule resolution, unveiling its dynamics during the transcription cycle. Further probing multiple functionally linked events-RF-chromatin interactions, Pol II dynamics, and nascent transcription kinetics-reveals detailed operational parameters of gene-regulatory mechanisms hitherto-unseen in vivo. Our approach sets the stage for single-molecule studies of complex molecular processes in live cells.
Collapse
|
60
|
A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat Methods 2019; 16:493-496. [PMID: 31110281 DOI: 10.1038/s41592-019-0408-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
Here, we introduce fluorescence intensity fluctuation spectrometry for determining the identity, abundance and stability of protein oligomers. This approach was tested on monomers and oligomers of known sizes and was used to uncover the oligomeric states of the epidermal growth factor receptor and the secretin receptor in the presence and absence of their agonist ligands. This method is fast and is scalable for high-throughput screening of drugs targeting protein-protein interactions.
Collapse
|
61
|
Abstract
Silicon Photomultipliers are potentially ideal detectors for Quantum Optics and Quantum Information studies based on mesoscopic states of light. However, their non-idealities hampered their use so far. An optimal mode of operation has been developed and it is presented here, proving that this class of sensors can actually be exploited for the characterization of both classical and quantum properties of light.
Collapse
|
62
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
63
|
Cutrale F, Rodriguez D, Hortigüela V, Chiu CL, Otterstrom J, Mieruszynski S, Seriola A, Larrañaga E, Raya A, Lakadamyali M, Fraser SE, Martinez E, Ojosnegros S. Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nat Protoc 2019; 14:616-638. [DOI: 10.1038/s41596-018-0111-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
64
|
Heide F, Diamond S, Lindell DB, Wetzstein G. Sub-picosecond photon-efficient 3D imaging using single-photon sensors. Sci Rep 2018; 8:17726. [PMID: 30531961 PMCID: PMC6286372 DOI: 10.1038/s41598-018-35212-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Active 3D imaging systems have broad applications across disciplines, including biological imaging, remote sensing and robotics. Applications in these domains require fast acquisition times, high timing accuracy, and high detection sensitivity. Single-photon avalanche diodes (SPADs) have emerged as one of the most promising detector technologies to achieve all of these requirements. However, these detectors are plagued by measurement distortions known as pileup, which fundamentally limit their precision. In this work, we develop a probabilistic image formation model that accurately models pileup. We devise inverse methods to efficiently and robustly estimate scene depth and reflectance from recorded photon counts using the proposed model along with statistical priors. With this algorithm, we not only demonstrate improvements to timing accuracy by more than an order of magnitude compared to the state-of-the-art, but our approach is also the first to facilitate sub-picosecond-accurate, photon-efficient 3D imaging in practical scenarios where widely-varying photon counts are observed.
Collapse
Affiliation(s)
- Felix Heide
- Stanford University, Department of Electrical Engineering, Stanford, USA.
| | - Steven Diamond
- Stanford University, Department of Electrical Engineering, Stanford, USA
| | - David B Lindell
- Stanford University, Department of Electrical Engineering, Stanford, USA
| | - Gordon Wetzstein
- Stanford University, Department of Electrical Engineering, Stanford, USA.
| |
Collapse
|
65
|
Bouchaala R, Richert L, Anton N, Vandamme TF, Djabi S, Mély Y, Klymchenko AS. Quantifying Release from Lipid Nanocarriers by Fluorescence Correlation Spectroscopy. ACS OMEGA 2018; 3:14333-14340. [PMID: 30411065 PMCID: PMC6210065 DOI: 10.1021/acsomega.8b01488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the release of drugs and contrast agents from nanocarriers is fundamental in the development of new effective nanomedicines. However, the commonly used method based on dialysis frequently fails to quantify the release of molecules poorly soluble in water, and it is not well-suited for in situ measurements in biological media. Here, we have developed a new methodology for quantifying the release of fluorescent molecules from lipid nanocarriers (LNCs) using fluorescence correlation spectroscopy (FCS). LNCs based on nanoemulsion droplets, encapsulating the hydrophobic Nile red derivative NR668 as a model cargo, were used. Our studies revealed that the standard deviation of fluorescence fluctuations in FCS measurements depends linearly on the dye loading in the nanocarriers, and it is insensitive to the presence of less-bright molecular emissive species in solution. In sharp contrast, classical FCS parameters, such as the number and the brightness of emissive species, are strongly influenced by the fluorescence of molecular species in solution. Therefore, we propose to use the standard deviation of fluorescence fluctuations for the quantitative analysis of dye release from nanocarriers, which is unaffected by the "parasite" fluorescence of the released dyes or the auto-fluorescence of the medium. Using this method, we found that LNCs remain intact in water, whereas in serum medium, they release their content in a temperature-dependent manner. At 37 °C, the release was relatively slow reaching 50% only after 6 h of incubation. The results are corroborated by qualitative observations based on Förster resonance energy transfer between two different encapsulated dyes. The developed method is simple because it is only based on the standard deviation of fluorescence fluctuations and, in principle, can be applied to nanocarriers of different types.
Collapse
Affiliation(s)
- Redouane Bouchaala
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
- Laboratory
of Photonic Systems and Nonlinear Optics, Institute of Optics and
Fine Mechanics, University of Setif 1, 19000 Setif, Algeria
| | - Ludovic Richert
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
| | - Nicolas Anton
- CNRS
UMR 7199, Laboratoire de Conception et Application de Molécules
Bioactives, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Thierry F. Vandamme
- CNRS
UMR 7199, Laboratoire de Conception et Application de Molécules
Bioactives, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Smail Djabi
- Laboratory
of Photonic Systems and Nonlinear Optics, Institute of Optics and
Fine Mechanics, University of Setif 1, 19000 Setif, Algeria
| | - Yves Mély
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
| | - Andrey S. Klymchenko
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
| |
Collapse
|
66
|
Gao S, Li R, Cui M, Liu Y, Xie L. A Multichannel Time-Tagged Time-Resolved (TTTR) Model for Quantification of Oligomer Concentrations Based on Antibunching Effect. ACS OMEGA 2018; 3:14302-14308. [PMID: 31458120 PMCID: PMC6644909 DOI: 10.1021/acsomega.8b01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/16/2018] [Indexed: 06/10/2023]
Abstract
Molecule/protein aggregation causes many devastating and incurable diseases in human bodies. For example, studies have revealed that protein oligomers formed at the early stage are toxic and may be mostly responsible for some diseases. In the fundamental research, differentiation of different protein oligomers and quantification of the concentrations are important and challenging. Here, we have developed a multichannel time-tagged time-resolved (TTTR) confocal fluorescence model based on antibunching effect to solve the problem. The key point of the model is that n-oligomers labeled with n-dyes cannot emit more than n photons at one time. By assuming that all labeling dyes behave perfectly as noninteractive individual dyes, the analytic relationship between photon-emission probability and oligomer concentrations has been derived. Simulations have been carried out to verify the model, in which differentiation and concentration quantification of up to tetraoligomers can be realized with a relative error <10% in an eight-channel TTTR confocal setup with eight single-photon detectors.
Collapse
Affiliation(s)
- Shanshan Gao
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
| | - Ruiru Li
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
| | - Menghua Cui
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
- Academy
for Advanced Interdisciplinary Studies, Peking University, No.
5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Ying Liu
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
| | - Liming Xie
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
| |
Collapse
|
67
|
O’Keefe CM, Pisanic TR, Zec H, Overman MJ, Herman JG, Wang TH. Facile profiling of molecular heterogeneity by microfluidic digital melt. SCIENCE ADVANCES 2018; 4:eaat6459. [PMID: 30263958 PMCID: PMC6157960 DOI: 10.1126/sciadv.aat6459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/14/2018] [Indexed: 05/05/2023]
Abstract
This work presents a digital microfluidic platform called HYPER-Melt (high-density profiling and enumeration by melt) for highly parallelized copy-by-copy DNA molecular profiling. HYPER-Melt provides a facile means of detecting and assessing sequence variations of thousands of individual DNA molecules through digitization in a nanowell microchip array, allowing amplification and interrogation of individual template molecules by detecting HRM fluorescence changes due to sequence-dependent denaturation. As a model application, HYPER-Melt is used here for the detection and assessment of intermolecular heterogeneity of DNA methylation within the promoters of classical tumor suppressor genes. The capabilities of this platform are validated through serial dilutions of mixed epialleles, with demonstrated detection limits as low as 1 methylated variant in 2 million unmethylated templates (0.00005%) of a classic tumor suppressor gene, CDKN2A (p14ARF). The clinical potential of the platform is demonstrated using a digital assay for NDRG4, a tumor suppressor gene that is commonly methylated in colorectal cancer, in liquid biopsies of healthy and colorectal cancer patients. Overall, the platform provides the depth of information, simplicity of use, and single-molecule sensitivity necessary for rapid assessment of intermolecular variation contributing to genetic and epigenetic heterogeneity for challenging applications in embryogenesis, carcinogenesis, and rare biomarker detection.
Collapse
Affiliation(s)
- Christine M. O’Keefe
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD 21218, USA
| | - Helena Zec
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James G. Herman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD 21218, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Corresponding author.
| |
Collapse
|
68
|
Dunsing V, Luckner M, Zühlke B, Petazzi RA, Herrmann A, Chiantia S. Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. Sci Rep 2018; 8:10634. [PMID: 30006597 PMCID: PMC6045628 DOI: 10.1038/s41598-018-28858-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022] Open
Abstract
Fluorescence fluctuation spectroscopy has become a popular toolbox for non-disruptive analysis of molecular interactions in living cells. The quantification of protein oligomerization in the native cellular environment is highly relevant for a detailed understanding of complex biological processes. An important parameter in this context is the molecular brightness, which serves as a direct measure of oligomerization and can be easily extracted from temporal or spatial fluorescence fluctuations. However, fluorescent proteins (FPs) typically used in such studies suffer from complex photophysical transitions and limited maturation, inducing non-fluorescent states. Here, we show how these processes strongly affect molecular brightness measurements. We perform a systematic characterization of non-fluorescent states for commonly used FPs and provide a simple guideline for accurate, unbiased oligomerization measurements in living cells. Further, we focus on novel red FPs and demonstrate that mCherry2, an mCherry variant, possesses superior properties with regards to precise quantification of oligomerization.
Collapse
Affiliation(s)
- Valentin Dunsing
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Madlen Luckner
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Boris Zühlke
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Roberto A Petazzi
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Andreas Herrmann
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
69
|
Clayton AH. Fluorescence-based approaches for monitoring membrane receptor oligomerization. J Biosci 2018; 43:463-469. [PMID: 30002266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane protein structures are highly under-represented relative to water-soluble protein structures in the protein databank. This is especially the case because membrane proteins represent more than 30% of proteins encoded in the human genome yet contribute to less than 10% of currently known structures (Torres et al. in Trends Biol Sci 28:137-144, 2003). Obtaining high-resolution structures of membrane proteins by traditional methods such as NMR and x-ray crystallography is challenging, because membrane proteins are difficult to solubilise, purify and crystallize. Consequently, development of methods to examine protein structure in situ is highly desirable. Fluorescence is highly sensitive to protein structure and dynamics (Lakowicz in Principles of fluorescence spectroscopy, Springer, New York, 2007). This is mainly because of the time a fluorescence probe molecule spends in the excited state. Judicious choice and placement of fluorescent molecule(s) within a protein(s) enables the experimentalist to obtain information at a specific site(s) in the protein (complex) of interest. Moreover, the inherent multi-dimensional nature of fluorescence signals across wavelength, orientation, space and time enables the design of experiments that give direct information on protein structure and dynamics in a biological setting. The purpose of this review is to introduce the reader to approaches to determine oligomeric state or quaternary structure at the cell membrane surface with the ultimate goal of linking the oligomeric state to the biological function. In the first section, we present a brief overview of available methods for determining oligomeric state and compare their advantages and disadvantages. In the second section, we highlight some of the methods developed in our laboratory to address contemporary questions in membrane protein oligomerization. In the third section, we outline our approach to determine the link between protein oligomerization and biological activity.
Collapse
Affiliation(s)
- Andrew Ha Clayton
- Cell Biophysics Laboratory, Centre for Micro-Photonics, Department of Physics and Astronomy, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia,
| |
Collapse
|
70
|
Fluorescence-based approaches for monitoring membrane receptor oligomerization. J Biosci 2018. [DOI: 10.1007/s12038-018-9762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
71
|
Khaw I, Croop B, Tang J, Möhl A, Fuchs U, Han KY. Flat-field illumination for quantitative fluorescence imaging. OPTICS EXPRESS 2018; 26:15276-15288. [PMID: 30114777 DOI: 10.1364/oe.26.015276] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/22/2018] [Indexed: 05/26/2023]
Abstract
The uneven illumination of a Gaussian profile makes quantitative analysis highly challenging in laser-based wide-field fluorescence microscopy. Here we present flat-field illumination (FFI) where the Gaussian beam is reshaped into a uniform flat-top profile using a high-precision refractive optical component. The long working distance and high spatial coherence of FFI allows us to accomplish uniform epi and TIRF illumination for multi-color single-molecule imaging. In addition, high-throughput borderless imaging is demonstrated with minimal image overlap.
Collapse
|
72
|
Zheng K, Chen K, Ren W, Yang J, Zhao J. Counterion Cloud Expansion of a Polyelectrolyte by Dilution. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kaikai Zheng
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Kuo Chen
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Weibin Ren
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Jingfa Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Jiang Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of
Sciences, Beijing 100049, China
| |
Collapse
|
73
|
Castell OK, Dijkman PM, Wiseman DN, Goddard AD. Single molecule fluorescence for membrane proteins. Methods 2018; 147:221-228. [PMID: 29857189 DOI: 10.1016/j.ymeth.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
The cell membrane is a complex milieu of lipids and proteins. In order to understand the behaviour of individual molecules is it often desirable to examine them as purified components in in vitro systems. Here, we detail the creation and use of droplet interface bilayers (DIBs) which, when coupled to TIRF microscopy, can reveal spatiotemporal and kinetic information for individual membrane proteins. A number of steps are required including modification of the protein sequence to enable the incorporation of appropriate fluorescent labels, expression and purification of the membrane protein and subsequent labelling. Following creation of DIBs, proteins are spontaneously incorporated into the membrane where they can be imaged via conventional single molecule TIRF approaches. Using this strategy, in conjunction with step-wise photobleaching, FRET and/or single particle tracking, a host of parameters can be determined such as oligomerisation state and dynamic information. We discuss advantages and limitations of this system and offer guidance for successful implementation of these approaches.
Collapse
Affiliation(s)
- Oliver K Castell
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | - Patricia M Dijkman
- Max Planck Institute for Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.
| | - Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
74
|
Stortz M, Angiolini J, Mocskos E, Wolosiuk A, Pecci A, Levi V. Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy. Methods 2018; 140-141:10-22. [DOI: 10.1016/j.ymeth.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022] Open
|
75
|
Potentials and pitfalls of inverse fluorescence correlation spectroscopy. Methods 2018; 140-141:23-31. [DOI: 10.1016/j.ymeth.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/19/2017] [Accepted: 01/12/2018] [Indexed: 11/21/2022] Open
|
76
|
Wang L, Xue Y, Xing J, Song K, Lin J. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:525-551. [PMID: 29489393 DOI: 10.1146/annurev-arplant-042817-040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Li Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yiqun Xue
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Xing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
77
|
Pánek J, Loukotová L, Hrubý M, Štěpánek P. Distribution of Diffusion Times Determined by Fluorescence (Lifetime) Correlation Spectroscopy. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiří Pánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| |
Collapse
|
78
|
Li G, He C, Bu P, Bi H, Pan S, Sun R, Zhao XS. Single-Molecule Detection Reveals Different Roles of Skp and SurA as Chaperones. ACS Chem Biol 2018. [PMID: 29543429 DOI: 10.1021/acschembio.8b00097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skp and SurA are both periplasmic chaperones involved in the biogenesis of Escherichia coli β-barrel outer membrane proteins (OMPs). It is commonly assumed that SurA plays a major role whereas Skp is a minor factor. However, there is no molecular evidence for whether their roles are redundant. Here, by using different dilution methods, we obtained monodisperse and aggregated forms of OmpC and studied their interactions with Skp and SurA by single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We found that Skp can dissolve aggregated OmpC while SurA cannot convert aggregated OmpC into the monodisperse form and the conformations of OmpC recognized by the two chaperones as well as their stoichiometries of binding are different. Our study demonstrates the functional distinctions between Skp and SurA. In particular, the role of Skp is not redundant and is probably more significant under stress conditions.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Chenhui He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixuan Bu
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Huimin Bi
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Sichen Pan
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Ronghua Sun
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
79
|
Ren W, Zheng K, Liao C, Yang J, Zhao J. Charge evolution during the unfolding of a single DNA i-motif. Phys Chem Chem Phys 2018; 20:916-924. [PMID: 29230450 DOI: 10.1039/c7cp06235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effective charge and evolution of single chains of a DNA i-motif during its unfolding process are investigated at the single molecule level. Using fluorescence correlation spectroscopy and photon counting histograms, the single chain dimensions and electrical potential of cytosine-rich human telomeric oligonucleotides are monitored, during their unfolding from the i-motif to the random coil state. It is discovered that the effective charge density of the DNA chain is very sensitive to conformation changes and the results remarkably expose the existence of an intermediate state of the unfolding process. A huge difference in pH value exists in the vicinity of the DNA chain and the bulk solution, depending on the salt concentration, as reflected by a down-shift in the pH value of unfolding. The presence of an external salt in the solution helps to stabilize the i-motif structure at low pH values due to the reduction of the effective charge density. It can also destabilize the folded structure in the pH range of the conformation transition due to the elevation of the local pH value, encouraging the deprotonation of the cytosine groups. These results provide new information for understanding the structure and stability of i-motif DNA, and its biological function, as well as the building blocks for smart nanomaterials.
Collapse
Affiliation(s)
- Weibin Ren
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
80
|
Papini C, Royer CA. Scanning number and brightness yields absolute protein concentrations in live cells: a crucial parameter controlling functional bio-molecular interaction networks. Biophys Rev 2018; 10:87-96. [PMID: 29383593 DOI: 10.1007/s12551-017-0394-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022] Open
Abstract
Biological function results from properly timed bio-molecular interactions that transduce external or internal signals, resulting in any number of cellular fates, including triggering of cell-state transitions (division, differentiation, transformation, apoptosis), metabolic homeostasis and adjustment to changing physical or nutritional environments, amongst many more. These bio-molecular interactions can be modulated by chemical modifications of proteins, nucleic acids, lipids and other small molecules. They can result in bio-molecular transport from one cellular compartment to the other and often trigger specific enzyme activities involved in bio-molecular synthesis, modification or degradation. Clearly, a mechanistic understanding of any given high level biological function requires a quantitative characterization of the principal bio-molecular interactions involved and how these may change dynamically. Such information can be obtained using fluctation analysis, in particular scanning number and brightness, and used to build and test mechanistic models of the functional network to define which characteristics are the most important for its regulation.
Collapse
Affiliation(s)
- Christina Papini
- Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Catherine A Royer
- Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
81
|
Grußmayer KS, Herten DP. Time-resolved molecule counting by photon statistics across the visible spectrum. Phys Chem Chem Phys 2018; 19:8962-8969. [PMID: 28300271 DOI: 10.1039/c7cp00363c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past few years quantification of fluorescently labeled (bio-) molecules has become of increasing importance and several approaches have been developed to address this task. Counting by photon statistics measures the distribution of multiple photon detection events that carry information about the number and brightness of independently emitting fluorophores. The method enables absolute and non-destructive quantification, with the quality of estimates critically depending on the ability to accurately measure said photon statistics. Here, we present a combination of simulations and experiments that relate fundamental properties of fluorophores, i.e. their molecular brightness and photostability, to important experimental conditions, i.e. excitation power and acquisition time. Thereby, experimental settings and analysis parameters can be quantitatively evaluated, making counting by photon statistics a robust method for absolute counting of the number of emitters in a diffraction limited observation volume. We show that the time-resolution of counting varies with the fluorophore brightness and can be as fast as 10-100 ms. At the same time, the range of suitable fluorophores can be easily assessed. We evaluated the brightness and photostability of 16 organic dyes across the visible spectrum, providing information crucial for a range of single-molecule spectroscopy applications. This opens up exciting possibilities to analyze absolute stoichiometries in dynamic multi-component complexes.
Collapse
Affiliation(s)
- K S Grußmayer
- Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.
| | - D-P Herten
- Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
82
|
Lee HB, Cong A, Leopold H, Currie M, Boersma AJ, Sheets ED, Heikal AA. Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments. Phys Chem Chem Phys 2018; 20:24045-24057. [DOI: 10.1039/c8cp03873b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macromolecular crowding effects on diffusion depend on the fluorophore structure, the concentration of crowding agents, and the technique employed.
Collapse
Affiliation(s)
- Hong Bok Lee
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Anh Cong
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Hannah Leopold
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Megan Currie
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | | | - Erin D. Sheets
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Ahmed A. Heikal
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| |
Collapse
|
83
|
Gambin Y, Giles N, O'Carroll A, Polinkovsky M, Hunter D, Sierecki E. Single-Molecule Fluorescence Reveals the Oligomerization and Folding Steps Driving the Prion-like Behavior of ASC. J Mol Biol 2017; 430:491-508. [PMID: 29288634 DOI: 10.1016/j.jmb.2017.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 10/24/2022]
Abstract
Single-molecule fluorescence has the unique ability to quantify small oligomers and track conformational changes at a single-protein level. Here we tackled one of the most extreme protein behaviors, found recently in an inflammation pathway. Upon danger recognition in the cytosol, NLRP3 recruits its signaling adaptor, ASC. ASC start polymerizing in a prion-like manner and the system goes in "overdrive" by producing a single micron-sized "speck." By precisely controlling protein expression levels in an in vitro translation system, we could trigger the polymerization of ASC and mimic formation of specks in the absence of inflammasome nucleators. We utilized single-molecule spectroscopy to fully characterize prion-like behaviors and self-propagation of ASC fibrils. We next used our controlled system to monitor the conformational changes of ASC upon fibrillation. Indeed, ASC consists of a PYD and CARD domains, separated by a flexible linker. Individually, both domains have been found to form fibrils, but the structure of the polymers formed by the full-length ASC proteins remains elusive. For the first time, using single-molecule Förster resonance energy transfer, we studied the relative positions of the CARD and PYD domains of full-length ASC. An unexpectedly large conformational change occurred upon ASC fibrillation, suggesting that the CARD domain folds back onto the PYD domain. However, contradicting current models, the "prion-like" conformer was not initiated by binding of ASC to the NLRP3 platform. Rather, using a new method, hybrid between Photon Counting Histogram and Number and Brightness analysis, we showed that NLRP3 forms hexamers with self-binding affinities around 300nM. Overall our data suggest a new mechanism, where NLRP3 can initiate ASC polymerization simply by increasing the local concentration of ASC above a supercritical level.
Collapse
Affiliation(s)
- Yann Gambin
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW 2052, Australia; The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW 2052, Australia; The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ailís O'Carroll
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW 2052, Australia; The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mark Polinkovsky
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominic Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW 2052, Australia; The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
84
|
Briddon SJ, Kilpatrick LE, Hill SJ. Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age. Trends Pharmacol Sci 2017; 39:158-174. [PMID: 29277246 DOI: 10.1016/j.tips.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are organised within the cell membrane into highly ordered macromolecular complexes along with other receptors and signalling proteins. Understanding how heterogeneity in these complexes affects the pharmacology and functional response of these receptors is crucial for developing new and more selective ligands. Fluorescence correlation spectroscopy (FCS) and related techniques such as photon counting histogram (PCH) analysis and image-based FCS can be used to interrogate the properties of GPCRs in these membrane microdomains, as well as their interaction with fluorescent ligands. FCS analyses fluorescence fluctuations within a small-defined excitation volume to yield information about their movement, concentration and molecular brightness (aggregation). These techniques can be used on live cells with single-molecule sensitivity and high spatial resolution. Once the preserve of specialist equipment, FCS techniques can now be applied using standard confocal microscopes. This review describes how FCS and related techniques have revealed novel insights into GPCR biology.
Collapse
Affiliation(s)
- Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
85
|
Friend JE, Sayyad WA, Arasada R, McCormick CD, Heuser JE, Pollard TD. Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm. Cytoskeleton (Hoboken) 2017; 75:164-173. [PMID: 29205883 DOI: 10.1002/cm.21425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Myosin-II is required for the assembly and constriction of cytokinetic contractile rings in fungi and animals. We used electron microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS) to characterize the physical properties of Myo2 from fission yeast Schizosaccharomyces pombe. By electron microscopy, Myo2 has two heads and a coiled-coiled tail like myosin-II from other species. The first 65 nm of the tail is a stiff rod, followed by a flexible, less-ordered region up to 30 nm long. Myo2 sediments as a 7 S molecule in high salt, but aggregates rather than forming minifilaments at lower salt concentrations; this is unaffected by heavy chain phosphorylation. We used FRAP and FCS to observe the dynamics of Myo2 in live S. pombe cells and in cell extracts at different salt concentrations; both show that Myo2 with an N-terminal mEGFP tag has a diffusion coefficient of ∼ 3 µm2 s-1 in the cytoplasm of live cells during interphase and mitosis. Photon counting histogram analysis of the FCS data confirmed that Myo2 diffuses as doubled-headed molecules in the cytoplasm. FCS measurements on diluted cell extracts showed that mEGFP-Myo2 has a diffusion coefficient of ∼ 30 µm2 s-1 in 50 to 400 mM KCl concentrations.
Collapse
Affiliation(s)
- Janice E Friend
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Wasim A Sayyad
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Rajesh Arasada
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Chad D McCormick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-1855
| | - John E Heuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
86
|
Meng L, He S, Zhao XS. Determination of Equilibrium Constant and Relative Brightness in FRET-FCS by Including the Third-Order Correlations. J Phys Chem B 2017; 121:11262-11272. [PMID: 29155588 DOI: 10.1021/acs.jpcb.7b09229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) encodes the information on the equilibrium constant (K), the relative fluorescence brightness of fluorophore (Q), and the forward and backward reaction rate constants (k+ and k-) on a physical or chemical relaxation. However, it has been a long-standing problem to completely resolve the FCS data to get the thermodynamic and kinetic information. Recently, we have solved the problem for fluorescence autocorrelation spectroscopy (FACS). Here, we extend the method to fluorescence cross-correlation spectroscopy (FCCS), which appears when FCS is coupled with fluorescence resonance energy transfer (FRET). Among 12 total second-order and third-order pre-exponential factors in a relaxation process probed by the FRET-FCS technique, 3 are independent. We presented and discussed 3 sets of explicit solutions to use these pre-exponential factors to calculate K and Q. Together with the relaxation time, the acquired K will allow people to obtain k+ and k-, so that the goal of deciphering the FRET-FCS data will be fully reached. The theory is verified by extensive computer simulations and tested experimentally on a system of oligonucleotide hybridization.
Collapse
Affiliation(s)
- Lingyi Meng
- Biodynamic Optical Imaging Center (BIOPIC), Peking University , Beijing 100871, China.,School of Life Sciences, Peking University , Beijing 100871, China
| | - Shanshan He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University , Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Xin Sheng Zhao
- Biodynamic Optical Imaging Center (BIOPIC), Peking University , Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
87
|
Bieling P, Hansen SD, Akin O, Li TD, Hayden CC, Fletcher DA, Mullins RD. WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation. EMBO J 2017; 37:102-121. [PMID: 29141912 PMCID: PMC5753033 DOI: 10.15252/embj.201797039] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023] Open
Abstract
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.
Collapse
Affiliation(s)
- Peter Bieling
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA .,Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Scott D Hansen
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Orkun Akin
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Tai-De Li
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Daniel A Fletcher
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA .,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
88
|
Hennen J, Hur KH, Saunders CA, Luxton GWG, Mueller JD. Quantitative Brightness Analysis of Protein Oligomerization in the Nuclear Envelope. Biophys J 2017; 113:138-147. [PMID: 28700912 DOI: 10.1016/j.bpj.2017.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/20/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023] Open
Abstract
Brightness analysis of fluorescence fluctuation experiments has been used to successfully measure the oligomeric state of proteins at the plasma membrane, in the nucleoplasm, and in the cytoplasm of living cells. Here we extend brightness analysis to the nuclear envelope (NE), a double membrane barrier separating the cytoplasm from the nucleoplasm. Results obtained by applying conventional brightness analysis to fluorescently tagged proteins within the NE exhibited an unusual concentration dependence. Similarly, the autocorrelation function of the fluorescence fluctuations exhibited unexpected changes with protein concentration. These observations motivated the application of mean-segmented Q analysis, which identified the existence of a fluctuation process distinct from molecular diffusion in the NE. We propose that small changes in the separation of the inner and outer nuclear membrane are responsible for the additional fluctuation process, as suggested by results obtained for luminal and nuclear membrane-associated EGFP-tagged proteins. Finally, we applied these insights to study the oligomerization of the luminal domains of two nuclear membrane proteins, nesprin-2 and SUN2, which interact transluminally to form a nuclear envelope-spanning linker molecular bridge known as the linker of the nucleoskeleton and cytoskeleton complex.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
89
|
Blackwell DJ, Zak TJ, Robia SL. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer. Biophys J 2017; 111:1192-1202. [PMID: 27653478 DOI: 10.1016/j.bpj.2016.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Taylor J Zak
- Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Seth L Robia
- Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.
| |
Collapse
|
90
|
Hasegawa M, Wandera EA, Inoue Y, Kimura N, Sasaki R, Mizukami T, Shah MM, Shirai N, Takei O, Shindo H, Ichinose Y. Detection of rotavirus in clinical specimens using an immunosensor prototype based on the photon burst counting technique. BIOMEDICAL OPTICS EXPRESS 2017; 8:3383-3394. [PMID: 28717574 PMCID: PMC5508835 DOI: 10.1364/boe.8.003383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/13/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
In this study, a sensitive fluorescence sensor was developed for the detection of small, fluorescence-labeled particles dispersed in a solution. The prototype system comprises of a laser confocal optical system and a mechanical sample stage to detect photon bursting of fluorescence-labeled small particles in sample volumes less than 5 μL within 3 minutes. To examine the feasibility of the prototype system as a diagnostic tool, assemblages of rotavirus and fluorescence-labeled antibody were analyzed. The detection sensitivity for rotavirus was 1 × 104 pfu/mL. Rotavirus in stool samples from patients with acute gastroenteritis was also detected. The advantages and disadvantages of this immunosensor with respect to ELISA and RT-PCR, the current gold standards for virus detection, are discussed.
Collapse
Affiliation(s)
- Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama-shi, Shiga 526-0829, Japan
| | - Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Yuka Inoue
- Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama-shi, Shiga 526-0829, Japan
| | - Nanami Kimura
- Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama-shi, Shiga 526-0829, Japan
| | - Ryuzo Sasaki
- Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama-shi, Shiga 526-0829, Japan
| | - Tamio Mizukami
- Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama-shi, Shiga 526-0829, Japan
| | - Mohammad Monir Shah
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Nobuaki Shirai
- Industrial Research Center of Shiga Prefecture, 232 Kami-Toyama, Ritto-shi, Shiga 520-3004, Japan
| | - Osamu Takei
- LIFETECH Co. Ltd., 4074, Miyadera, Iruma-shi, Saitama 358-0014, Japan
| | - Hironori Shindo
- Matsunami Glass IND. Ltd., 2-1-10 Yasaka, Kishiwada-shi, Osaka 596-0049, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| |
Collapse
|
91
|
Hendrix J, Dekens T, Schrimpf W, Lamb DC. Arbitrary-Region Raster Image Correlation Spectroscopy. Biophys J 2017; 111:1785-1796. [PMID: 27760364 PMCID: PMC5073057 DOI: 10.1016/j.bpj.2016.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 11/23/2022] Open
Abstract
Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.
Collapse
Affiliation(s)
- Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium.
| | - Tomas Dekens
- Department of ETRO, Vrije Universiteit Brussel, Brussels, Belgium; iMinds vzw, Zwijnaarde, Belgium
| | - Waldemar Schrimpf
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
92
|
Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy. Biophys J 2017; 111:609-618. [PMID: 27508444 DOI: 10.1016/j.bpj.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/22/2022] Open
Abstract
Insulin secretion defects are central to the development of type II diabetes mellitus. Glucose stimulation of insulin secretion has been extensively studied, but its regulation by other stimuli such as incretins and neurotransmitters is not as well understood. We investigated the mechanisms underlying the inhibition of insulin secretion by dopamine, which is synthesized in pancreatic β-cells from circulating L-dopa. Previous research has shown that this inhibition is mediated primarily by activation of the dopamine receptor D3 subtype (DRD3), even though both DRD2 and DRD3 are expressed in β-cells. To understand this dichotomy, we investigated the dynamic interactions between the dopamine receptor subtypes and their G-proteins using two-color fluorescence fluctuation spectroscopy (FFS) of mouse MIN6 β-cells. We show that proper membrane localization of exogenous G-proteins depends on both the Gβ and Gγ subunits being overexpressed in the cell. Triple transfections of the dopamine receptor subtype and Gβ and Gγ subunits, each labeled with a different-colored fluorescent protein (FP), yielded plasma membrane expression of all three FPs and permitted an FFS evaluation of interactions between the dopamine receptors and the Gβγ complex. Upon dopamine stimulation, we measured a significant decrease in interactions between DRD3 and the Gβγ complex, which is consistent with receptor activation. In contrast, dopamine stimulation did not cause significant changes in the interactions between DRD2 and the Gβγ complex. These results demonstrate that two-color FFS is a powerful tool for measuring dynamic protein interactions in living cells, and show that preferential DRD3 signaling in β-cells occurs at the level of G-protein release.
Collapse
|
93
|
Schneider M, Walta S, Cadek C, Richtering W, Willbold D. Fluorescence correlation spectroscopy reveals a cooperative unfolding of monomeric amyloid-β 42 with a low Gibbs free energy. Sci Rep 2017; 7:2154. [PMID: 28526839 PMCID: PMC5438374 DOI: 10.1038/s41598-017-02410-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
The amyloid-beta peptide (Aβ) plays a major role in the progression of Alzheimer's disease. Due to its high toxicity, the 42 amino acid long isoform Aβ42 has become of considerable interest. The Aβ42 monomer is prone to aggregation down to the nanomolar range which makes conventional structural methods such as NMR or X-ray crystallography infeasible. Conformational information, however, will be helpful to understand the different aggregation pathways reported in the literature and will allow to identify potential conditions that favour aggregation-incompetent conformations. In this study, we applied fluorescence correlation spectroscopy (FCS) to investigate the unfolding of Alexa Fluor 488 labelled monomeric Aβ42 using guanidine hydrochloride as a denaturant. We show that our Aβ42 pre-treatment and the low-nanomolar concentrations, typically used for FCS measurements, strongly favour the presence of monomers. Our results reveal that there is an unfolding/folding behaviour of monomeric Aβ42. The existence of a cooperative unfolding curve suggests the presence of structural elements with a Gibbs free energy of unfolding of about 2.8 kcal/mol.
Collapse
Affiliation(s)
- Mario Schneider
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Stefan Walta
- Institute of Physical Chemistry, RWTH Aachen University, JARA - Soft Matter Science, Aachen, Germany
| | - Chris Cadek
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, JARA - Soft Matter Science, Aachen, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. .,Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, Jülich, Germany.
| |
Collapse
|
94
|
Naz A, Cui Y, Collins CJ, Thompson DH, Irudayaraj J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed Pharmacother 2017; 90:586-597. [PMID: 28407579 DOI: 10.1016/j.biopha.2017.03.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Efficient delivery of cytidine analogues such as Azacitidine (AZA) into solid tumors constitutes a primary challenge in epigenetic therapies. We developed a di-block nano-vector based on poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) for stabilization of the conjugated AZA under physiological conditions. With equimolar drug content, our nano-conjugate could elicit a better anti-proliferative effect over free drug in breast cancer both in vitro and in vivo, through reactivation of p21 and BRCA1 to restrict cell proliferation. In addition, we applied single-molecule fluorescence tools to characterize the intracellular behavior of the AZA-PLGE-PEG nano-micelles at a finer spatiotemporal resolution. Our results suggest that the nano-micelles could effectively enrich in cancer cells and may not be limited by nucleoside transporters. Afterwards, the internalized nano-micelles exhibit pH-dependent release and resistance to active efflux. Altogether, our work describes a delivery strategy for DNA demethylating agents with nanoscale tunability, providing a cost-effective option for pharmaceutics.
Collapse
Affiliation(s)
- Asia Naz
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Pharmaceutical Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Yi Cui
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
95
|
Abdollah-Nia F, Gelfand MP, Van Orden A. Artifact-Free and Detection-Profile-Independent Higher-Order Fluorescence Correlation Spectroscopy for Microsecond-Resolved Kinetics. 1. Multidetector and Sub-Binning Approach. J Phys Chem B 2017; 121:2373-2387. [DOI: 10.1021/acs.jpcb.7b00407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farshad Abdollah-Nia
- Department of Physics and ‡Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin P. Gelfand
- Department of Physics and ‡Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alan Van Orden
- Department of Physics and ‡Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
96
|
Abdollah-Nia F, Gelfand MP, Van Orden A. Artifact-Free and Detection-Profile-Independent Higher-Order Fluorescence Correlation Spectroscopy for Microsecond-Resolved Kinetics. 2. Mixtures and Reactions. J Phys Chem B 2017; 121:2388-2399. [DOI: 10.1021/acs.jpcb.7b00408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farshad Abdollah-Nia
- Department
of Physics and ‡Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin P. Gelfand
- Department
of Physics and ‡Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alan Van Orden
- Department
of Physics and ‡Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
97
|
Affiliation(s)
- Hans Blom
- Royal Institute of Technology (KTH), Dept Applied Physics, SciLifeLab, 17165 Solna, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Albanova Univ Center, 10691 Stockholm, Sweden
| |
Collapse
|
98
|
The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 2016; 44:624-9. [PMID: 27068980 PMCID: PMC5264494 DOI: 10.1042/bst20150285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/10/2023]
Abstract
The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand–receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.
Collapse
|
99
|
Zhao ZW, White MD, Bissiere S, Levi V, Plachta N. Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos. BMC Biol 2016; 14:115. [PMID: 28010727 PMCID: PMC5180410 DOI: 10.1186/s12915-016-0331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Probing dynamic processes occurring within the cell nucleus at the quantitative level has long been a challenge in mammalian biology. Advances in bio-imaging techniques over the past decade have enabled us to directly visualize nuclear processes in situ with unprecedented spatial and temporal resolution and single-molecule sensitivity. Here, using transcription as our primary focus, we survey recent imaging studies that specifically emphasize the quantitative understanding of nuclear dynamics in both time and space. These analyses not only inform on previously hidden physical parameters and mechanistic details, but also reveal a hierarchical organizational landscape for coordinating a wide range of transcriptional processes shared by mammalian systems of varying complexity, from single cells to whole embryos.
Collapse
Affiliation(s)
- Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, C1428EHA, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
100
|
González Bardeci N, Angiolini JF, De Rossi MC, Bruno L, Levi V. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy. IUBMB Life 2016; 69:8-15. [PMID: 27896901 DOI: 10.1002/iub.1589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/07/2016] [Indexed: 11/12/2022]
Abstract
Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| | - Juan Francisco Angiolini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| | - María Cecilia De Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| | | | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, IQUIBICEN, UBA-CONICET
| |
Collapse
|