51
|
Kateb F, Abergel D, Blouquit Y, Duchambon P, Craescu CT, Bodenhausen G. Slow Backbone Dynamics of the C-Terminal Fragment of Human Centrin 2 in Complex with a Target Peptide Probed by Cross-Correlated Relaxation in Multiple-Quantum NMR Spectroscopy. Biochemistry 2006; 45:15011-9. [PMID: 17154538 DOI: 10.1021/bi061469v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C-terminal domain of human centrin 2 (C-HsCen2) strongly binds to P1-XPC, a peptide comprising 17 amino acids with a NWKLLAKGLLIRERLKR sequence. This peptide corresponds to residues N847-R863 of XPC, a protein involved in the recognition of damaged DNA during the initial step of the nucleotide excision repair pathway. The slow internal dynamics of the protein backbone in the C-HsCen-P1-XPC complex was studied by measuring the relaxation rates of zero- and double-quantum coherences involving neighboring pairs of carbonyl 13C and amide 15N nuclei. These relaxation rates, which reflect dynamics on time scales in the range of micro- to milliseconds, vary significantly along the protein backbone. Analysis of the relaxation rates at different CaCl2 concentrations and ionic strengths shows that these slow motions are mainly affected by the binding of a Ca2+ ion to the lower-affinity EF-hand III. Moreover, we discuss the possible functional role of residues that undergo differential exchange in the formation of HsCen homodimers.
Collapse
Affiliation(s)
- Fatiha Kateb
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
52
|
Martinez-Sanz J, Yang A, Blouquit Y, Duchambon P, Assairi L, Craescu CT. Binding of human centrin 2 to the centrosomal protein hSfi1. FEBS J 2006; 273:4504-15. [PMID: 16956364 DOI: 10.1111/j.1742-4658.2006.05456.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
hSfi1, a human centrosomal protein with homologs in other eukaryotic organisms, includes 23 repeats, each of 23 amino acids, separated by 10 residue linkers. The main molecular partner in the centrosome is a small, calcium-binding EF-hand protein, the human centrin 2. Using isothermal titration calorimetry experiments, we characterized the centrin-binding capacity of three isolated hSfi1 repeats, two exhibiting the general consensus motif and the third being the unique Pro-containing human repeat. The two standard peptides bind human centrin 2 and its isolated C-terminal domain with high affinity (approximately 10(7) M(-1)) by an enthalpy-driven mechanism, with a moderate Ca2+ dependence. The Pro-containing repeat shows a binding affinity that is two orders of magnitude lower. The target binding site is localized within the C-terminal domain of human centrin 2. Fluorescence titration and NMR spectroscopy show that the well-conserved Trp residue situated in the C-terminus of each repeat is deeply embedded in a protein hydrophobic cavity, indicating that the peptide direction is reversed relative to previously studied centrin targets. The present results suggest that almost all of the repeats of the Sfi1 protein may independently bind centrin molecules. On the basis of this hypothesis and previous studies on centrin self-assembly, we propose a working model for the role of centrin-Sfi1 interactions in the dynamic structure of centrosome-associated contractile fibers.
Collapse
Affiliation(s)
- Juan Martinez-Sanz
- The Integrative Imaging Unit, INSERM U759/Institut Curie-Recherche, Centre Universitaire Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
53
|
Craig TA, Benson LM, Bergen HR, Venyaminov SY, Salisbury JL, Ryan ZC, Thompson JR, Sperry J, Gross ML, Kumar R. Metal-binding properties of human centrin-2 determined by micro-electrospray ionization mass spectrometry and UV spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1158-71. [PMID: 16750384 DOI: 10.1016/j.jasms.2006.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/03/2006] [Accepted: 04/13/2006] [Indexed: 05/10/2023]
Abstract
We analyzed the metal-binding properties of human centrin-2 (HsCen-2) and followed the changes in HsCen-2 structure upon metal-binding using micro-electrospray ionization mass spectrometry (muESI-MS). Apo-HsCen-2 is mostly monomeric. The ESI spectra of HsCen-2 show two charge-state distributions, representing two conformations of the protein. HsCen-2 binds four moles calcium/mol protein: one mol of calcium with high affinity, one additional mol of calcium with lower affinity, and two moles of calcium at low affinity sites. HsCen-2 binds four moles of magnesium/mol protein. The conformation giving the lower charge-state HsCen-2 by ESI, binds calcium and magnesium more readily than does the higher charge-state HsCen-2. Both conformations of HsCen-2 bind calcium more readily than magnesium. Calcium was more effective in displacing magnesium bound to HsCen-2 than vice versa. Binding of a peptide from a known binding partner, the xeroderma pigmentosum complementation group protein C (XPC), to apo-HsCen-2, occurs in the presence or the absence of calcium. Near and far-UV CD spectra of HsCen-2 show little difference with addition of calcium or magnesium. Minor changes in secondary structure are noted. Melting curves derived from temperature dependence of molar ellipticity at 222 nm for HsCen-2 show that calcium increases protein stability whereas magnesium does not. Delta 25 HsCen-2 behaves similarly to HsCen-2. We conclude that HsCen-2 binds calcium and magnesium and that calcium modulates HsCen-2 structure and function by increasing its stability without undergoing significant changes in secondary or tertiary structure.
Collapse
Affiliation(s)
- Theodore A Craig
- Department of Medicine, Mayo Clinic College of Medicine and Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Charbonnier JB, Christova P, Shosheva A, Stura E, Le Du MH, Blouquit Y, Duchambon P, Miron S, Craescu CT. Crystallization and preliminary X-ray diffraction data of the complex between human centrin 2 and a peptide from the protein XPC. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:649-51. [PMID: 16820684 PMCID: PMC2242955 DOI: 10.1107/s1744309106019415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 05/24/2006] [Indexed: 11/10/2022]
Abstract
Centrins are highly conserved calcium-binding proteins involved in the nucleotide-excision repair pathway as a subunit of the heterotrimer including the XPC and hHR23B proteins. A complex formed by a Ca2+-bound human centrin 2 construct (the wild type lacking the first 25 amino acids) with a 17-mer peptide derived from the XPC sequence (residues Asn847-Arg863) was crystallized. Data were collected to 1.65 angstroms resolution from crystals grown in 30% monomethyl polyethylene glycol (MPEG) 500, 100 mM NaCl and 100 mM Bicine pH 9.0. Crystals are monoclinic and belong to space group C2, with two molecules in the asymmetric unit. The unit-cell parameters are a = 60.28, b = 59.42, c = 105.14 angstroms, alpha = gamma = 90, beta = 94.67 degrees. A heavy-atom derivative was obtained by co-crystallization with Sr2+. The substitution was rationalized by calorimetry experiments, which indicate a binding constant for Sr2+ of 4.0 x 10(4) M(-1).
Collapse
Affiliation(s)
- Jean-Baptiste Charbonnier
- Laboratoire de Structure des Protéines, Département d’Ingénierie et d’Étude des Protéines, Commissariat à l’Energie Atomique CEA, 91191 Gif-sur-Yvette, France
| | - Petya Christova
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexandra Shosheva
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Enrico Stura
- Laboratoire de Structure des Protéines, Département d’Ingénierie et d’Étude des Protéines, Commissariat à l’Energie Atomique CEA, 91191 Gif-sur-Yvette, France
| | - Marie Hélène Le Du
- Laboratoire de Structure des Protéines, Département d’Ingénierie et d’Étude des Protéines, Commissariat à l’Energie Atomique CEA, 91191 Gif-sur-Yvette, France
| | - Yves Blouquit
- Integrative Imaging Unit, INSERM U759/Institut Curie-Recherche, Centre Universitaire Paris-Sud, Bâtiment 112, 91405 Orsay, France
| | - Patricia Duchambon
- Integrative Imaging Unit, INSERM U759/Institut Curie-Recherche, Centre Universitaire Paris-Sud, Bâtiment 112, 91405 Orsay, France
| | - Simona Miron
- Integrative Imaging Unit, INSERM U759/Institut Curie-Recherche, Centre Universitaire Paris-Sud, Bâtiment 112, 91405 Orsay, France
| | - Constantin T. Craescu
- Integrative Imaging Unit, INSERM U759/Institut Curie-Recherche, Centre Universitaire Paris-Sud, Bâtiment 112, 91405 Orsay, France
| |
Collapse
|
55
|
Liang L, Flury S, Kalck V, Hohn B, Molinier J. CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. PLANT MOLECULAR BIOLOGY 2006; 61:345-56. [PMID: 16786311 DOI: 10.1007/s11103-006-0016-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/25/2006] [Indexed: 05/10/2023]
Abstract
Arabidopsis thaliana CENTRIN2 (AtCEN2) has been shown to modulate Nucleotide Excision Repair (NER) and Homologous Recombination (HR). The present study provides evidence that AtCEN2 interacts with the Arabidopsis homolog of human XPC, AtRAD4 and that the distal EF-hand Ca(2+) binding domain is essential for this interaction. In addition, the synthesis-dependent repair efficiency of bulky DNA lesions was enhanced in cell extracts prepared from Arabidopsis plants overexpressing the full length AtCEN2 but not in those overexpressing a truncated AtCEN2 form, suggesting a role for the distal EF-hand Ca(2+) binding domain in the early step of the NER process. Upon UV-C treatment the AtCEN2 protein was shown to be increased in concentration and to be localised in the nucleus rapidly. Taken together these data suggest that AtCEN2 is a part of the AtRAD4 recognition complex and that this interaction is required for efficient NER. In addition, NER and HR appear to be differentially modulated upon exposure of plants to DNA damaging agents. This suggests in plants, that processing of bulky DNA lesions highly depends on the excision repair efficiency, especially the recognition step, thus influencing the recombinational repair pathway.
Collapse
Affiliation(s)
- Lu Liang
- Plant Biochemistry Physiology Group, Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Lindau, Switzerland
| | | | | | | | | |
Collapse
|
56
|
Thompson JR, Ryan ZC, Salisbury JL, Kumar R. The structure of the human centrin 2-xeroderma pigmentosum group C protein complex. J Biol Chem 2006; 281:18746-52. [PMID: 16627479 DOI: 10.1074/jbc.m513667200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered alpha-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an alpha-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.
Collapse
Affiliation(s)
- James R Thompson
- Department of Physiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
57
|
Yang A, Miron S, Mouawad L, Duchambon P, Blouquit Y, Craescu CT. Flexibility and Plasticity of Human Centrin 2 Binding to the Xeroderma Pigmentosum Group C Protein (XPC) from Nuclear Excision Repair,. Biochemistry 2006; 45:3653-63. [PMID: 16533048 DOI: 10.1021/bi0524868] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human centrin 2 is a component of the nucleotide excision repair system, as a subunit of the heterotrimer including xeroderma pigmentosum group C protein (XPC) and hHR23B. The C-terminal domain of centrin (C-HsCen2) binds strongly a peptide from the XPC protein (P1-XPC: N(847)-R(863)). Here, we characterize the solution Ca(2+)-dependent structural and molecular features of the C-HsCen2 in complex with P1-XPC, mainly using NMR spectroscopy and molecular modeling. The N-terminal half of the peptide, organized as an alpha helix is anchored into a deep hydrophobic cavity of the protein, because of three bulky hydrophobic residues in position 1-4-8 and electrostatic contacts with the centrin helix E. Investigation of the whole centrin interactions shows that the N-terminal domain of the protein is not involved in the complex formation and is structurally independent from the peptide-bound C-terminal domain. The complex may exist in three different binding conformations corresponding to zero, one, and two Ca(2+)-bound states, which may exchange with various rates and have distinct structural stability. The various features of the intermolecular interaction presented here constitute a centrin-specific mode for the target binding.
Collapse
Affiliation(s)
- Ao Yang
- Integrative Imaging Unit, INSERM U759/Institut Curie-Recherche, Centre Universitaire Paris-Sud, Bâtiment 112, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
58
|
Sheehan JH, Bunick CG, Hu H, Fagan PA, Meyn SM, Chazin WJ. Structure of the N-terminal Calcium Sensor Domain of Centrin Reveals the Biochemical Basis for Domain-specific Function. J Biol Chem 2006; 281:2876-81. [PMID: 16317001 DOI: 10.1074/jbc.m509886200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Centrin is an essential component of microtubule-organizing centers in organisms ranging from algae and yeast to humans. It is an EF-hand calcium-binding protein with homology to calmodulin but distinct calcium binding properties. In a previously proposed model, the C-terminal domain of centrin serves as a constitutive anchor to target proteins, and the N-terminal domain serves as the sensor of calcium signals. The three-dimensional structure of the N-terminal domain of Chlamydomonas rheinhardtii centrin has been determined in the presence of calcium by solution NMR spectroscopy. The domain is found to occupy an open conformation typical of EF-hand calcium sensors. Comparison of the N- and C-terminal domains of centrin reveals a structural and biochemical basis for the domain specificity of interactions with its cellular targets and the distinct nature of centrin relative to other EF-hand proteins. An NMR titration of the centrin N-terminal domain with a fragment of the known centrin target Sfi1 reveals binding of the peptide to a discrete site on the protein, which supports the proposal that the N-terminal domain serves as a calcium sensor in centrin.
Collapse
Affiliation(s)
- Jonathan H Sheehan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | |
Collapse
|
59
|
Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 2005; 25:5664-74. [PMID: 15964821 PMCID: PMC1156980 DOI: 10.1128/mcb.25.13.5664-5674.2005] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xeroderma pigmentosum group C (XPC) protein plays a key role in DNA damage recognition in global genome nucleotide excision repair (NER). The protein forms in vivo a heterotrimeric complex involving one of the two human homologs of Saccharomyces cerevisiae Rad23p and centrin 2, a centrosomal protein. Because centrin 2 is dispensable for the cell-free NER reaction, its role in NER has been unclear. Binding experiments with a series of truncated XPC proteins allowed the centrin 2 binding domain to be mapped to a presumed alpha-helical region near the C terminus, and three amino acid substitutions in this domain abrogated interaction with centrin 2. Human cell lines stably expressing the mutant XPC protein exhibited a significant reduction in global genome NER activity. Furthermore, centrin 2 enhanced the cell-free NER dual incision and damaged DNA binding activities of XPC, which likely require physical interaction between XPC and centrin 2. These results reveal a novel vital function for centrin 2 in NER, the potentiation of damage recognition by XPC.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Cellular Physiology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Ortiz M, Sanoguet Z, Hu H, Chazin WJ, McMurray CT, McMurray C, Salisbury JL, Pastrana-Rios B. Dynamics of Hydrogen−Deuterium Exchange in Chlamydomonas Centrin. Biochemistry 2005; 44:2409-18. [PMID: 15709753 DOI: 10.1021/bi0484419] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlamydomonas reinhardtii centrin is a 169-amino acid residue calcium binding protein belonging to the EF-hand protein superfamily. Centrin is associated with the microtubule organizing center (MTOC) in all eukaryotes, and in Chlamydomonas, centrin is a component of the flagellar basal body apparatus. Recombinant full-length centrin, calmodulin, and terminal domain fragments [Ccen-N (residues 1-94) and Ccen-C (residues 99-169)] were used to examine hydrogen-deuterium (H --> D) exchange dynamics using combined attenuated total reflectance (ATR) Fourier transform-infrared (FT-IR) spectroscopy, curve fit, and two-dimensional correlation analysis. Analysis of the Ccen-N and Ccen-C fragments allowed separation of domain specific solvent exchange events and together with analysis of the full-length proteins provides novel insight into domain accessibility to the aqueous environment and the internal dynamics of the protein.
Collapse
Affiliation(s)
- Mildred Ortiz
- Department of Chemistry and Center for Protein Structure Function and Dynamics, University of Puerto Rico, Mayagüez Campus, P.O. Box 9019, Mayagüez, Puerto Rico 00681-9019
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Cox JA, Tirone F, Durussel I, Firanescu C, Blouquit Y, Duchambon P, Craescu CT. Calcium and Magnesium Binding to Human Centrin 3 and Interaction with Target Peptides. Biochemistry 2004; 44:840-50. [PMID: 15654740 DOI: 10.1021/bi048294e] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are four isoforms of centrin in mammals, with variable sequence, tissue expression, and functional properties. We have recently characterized a number of structural, ion, and target binding properties of human centrin isoform HsCen2. This paper reports a similar characterization of HsCen3, overexpressed in Escherichia coli and purified by phase-reversed chromatography. Equilibrium and dynamic binding studies revealed that HsCen3 has one mixed Ca(2+)/Mg(2+) binding site of high affinity (K(d) = 3 and 10 microM for Ca(2+) and Mg(2+), respectively) and two Ca(2+)-specific sites of low affinity (K(d) = 140 microM). The metal-free protein is fragmented by an unidentified protease into a polypeptide segment of 11 kDa, which was purified by HPLC, and identified by mass spectrometry as the segment of residues 21-112. Similarly, controlled trypsinolysis on Ca(2+)-bound HsCen3 yielded a mixture of segments of residues 1-124 and 1-125. The Ca(2+)/Mg(2+) site could be assigned to this segment and thus resides in the N-terminal half of HsCen3. Temperature denaturation experiments, circular dichroism, and utilization of fluorescence hydrophobic probes allowed us to propose that the metal-free protein has molten globule characteristics and that the dication-bound forms are compact with a polar surface for the Mg(2+) form and a hydrophobic exposed surface for the Ca(2+) form. Thus, HsCen3 could be classified as a Ca(2+) sensor protein. In addition, it is able to bind strongly to a model target peptide (melittin), as well as to peptides derived from the protein XPC and Kar1p, with a moderate Ca(2+) dependence.
Collapse
Affiliation(s)
- Jos A Cox
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
62
|
Tourbez M, Firanescu C, Yang A, Unipan L, Duchambon P, Blouquit Y, Craescu CT. Calcium-dependent self-assembly of human centrin 2. J Biol Chem 2004; 279:47672-80. [PMID: 15356003 DOI: 10.1074/jbc.m404996200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human centrin 2 (HsCen2) is a member of the EF-hand superfamily of calcium-binding proteins, often associated with the centrosomes and basal bodies. These organelles exhibit different morphological aspects, including a variety of centrin-containing fibers that connect the two centrioles or other structural elements of the pericentriolar space. The molecular basis of the Ca(2+)-sensitive fibers and their precise role in centrosome duplication are not known. To explore the possible structural role of HsCen2, we initiated a physicochemical study of the self-assembly properties of the purified protein in vitro. Using light scattering experiments, we investigated the temporal evolution of the assembly process and characterized the dependence on various chemical and physical factors, including temperature, di-cation concentration, ionic strength, protein concentration, and pH. The reversible self-assembly revealed many features of a large-size protein polymerization, with nucleation and elongation steps. Kinetic and equilibrium experiments show that a hydrophobic fluorescent probe (ANS) inhibits the polymerization by interfering with the nucleation step, probably through interactions with the apolar exposed sites on the protein surface. A truncated form of HsCen2, lacking the first 25 residues (Delta25HsCen2), shows no detectable self-assembly, pointing to the critical role played by the N-terminal fragment in the supermolecular organization of HsCen2. As revealed by isothermal titration experiments, the isolated N-terminal domains bind with a significant affinity (2 x 10(5) m(-1)) to preformed oligomers of Delta25HsCen2 through an entropy-driven mechanism.
Collapse
Affiliation(s)
- Martine Tourbez
- INSERM and Institut Curie-Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Bánfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnár GZ, Krause KH, Cox JA. Mechanism of Ca2+ Activation of the NADPH Oxidase 5 (NOX5). J Biol Chem 2004; 279:18583-91. [PMID: 14982937 DOI: 10.1074/jbc.m310268200] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a homologue of the gp91(phox) subunit of the phagocyte NADPH oxidase. NOX5 is expressed in lymphoid organs and testis and distinguished from the other NADPH oxidases by its unique N terminus, which contains three canonical EF-hands, Ca(2+)-binding domains. Upon heterologous expression, NOX5 was shown to generate superoxide in response to intracellular Ca(2+) elevations. In this study, we have analyzed the mechanism of Ca(2+) activation of NOX5. In a cell-free system, Ca(2+) elevations triggered superoxide production by NOX5 (K(m) = 1.06 microm) in an NADPH- and FAD-dependent but cytosol-independent manner. That result indicated a role for the N-terminal EF-hands in NOX5 activation. Therefore, we generated recombinant proteins of NOX5 N terminus and investigated their interactions with Ca(2+). Flow dialysis experiments showed that NOX5 N terminus contained four Ca(2+)-binding sites and allowed us to define the hitherto unidentified fourth, non-canonical EF-hand. The EF-hands of NOX5 formed two pairs: the very N-terminal pair had relatively low affinity for Ca(2+), whereas the more C-terminal pair bound Ca(2+) with high affinity. Ca(2+) binding caused a marked conformation change in the N terminus, which exposed its hydrophobic core, and became able to bind melittin, a model peptide for calmodulin targets. Using a pull-down assay, we demonstrate that the regulatory N terminus and the catalytic C terminus of NOX5 interact in a Ca(2+)-dependent way. Our results indicate that the Ca(2+)-induced conformation change of NOX5 N terminus led to enzyme activation through an intra-molecular interaction. That represents a novel mechanism of activation among NAD(P)H oxidases and Ca(2+)-activated enzymes.
Collapse
Affiliation(s)
- Botond Bánfi
- Department of Biochemistry, University of Geneva, CH-1211 Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Popescu A, Miron S, Blouquit Y, Duchambon P, Christova P, Craescu CT. Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin. J Biol Chem 2003; 278:40252-61. [PMID: 12890685 DOI: 10.1074/jbc.m302546200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human centrin 2 (HsCen2), a member of the EF-hand superfamily of Ca2+-binding proteins, is commonly associated with centrosome-related structures. The protein is organized in two domains, each containing two EF-hand motifs, but only the C-terminal half exhibits Ca2+ sensor properties. A significant fraction of HsCen2 is localized in the nucleus, where it was recently found associated with the xeroderma pigmentosum group C protein (XPC), a component of the nuclear excision repair pathway. Analysis of the XPC sequence (940 residues), using a calmodulin target recognition software, enabled us to predict two putative binding sites. The binding properties of the two corresponding peptides were investigated by isothermal titration calorimetry. Only one of the peptides (P1-XPC) interacts strongly (Ka = 2.2 x 10(8) m-1, stoichiometry 1:1) with HsCen2 in a Ca2+-dependent manner. This peptide also binds, with a similar affinity (Ka = 1.1 x 10(8) m-1) to a C-terminal construct of HsCen2, indicating that the interaction with the integral protein is mainly the result of the contribution of the C-terminal half. The second peptide (P2-XPC) failed to show any detectable binding either to HsCen2 or to its C-terminal lobe. The two peptides interact with different affinities and mechanisms with calmodulin. Circular dichroism and nuclear magnetic resonance were used to structurally characterize the complex formed by the C-terminal domain of HsCen2 with P1-XPC.
Collapse
Affiliation(s)
- Aurel Popescu
- INSERM U350 and Institut Curie-Recherche, Centre Universitaire, Batiments 110-112, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
65
|
Wolfrum U, Giessl A, Pulvermüller A. Centrins, a novel group of Ca2+-binding proteins in vertebrate photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:155-78. [PMID: 12596921 DOI: 10.1007/978-1-4615-0121-3_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Changes in the intracellular Ca2+-concentration affect the visual signal transduction cascade directly or more often indirectly through Ca2+-binding proteins. Here we review recent findings on centrins in photoreceptor cells of the mammalian retina. Centrins are members of a highly conserved subgroup of the EF-hand superfamily of Ca2+-binding proteins commonly associated with centrosome-related structures. In vertebrate photoreceptor cells, centrins are also prominent components in the connecting cilium linking the light sensitive outer segment with the biosynthetically active inner segment compartment. Recent findings demonstrate that Ca2+-activated centrin forms a complex with the visual G-protein transducin in photoreceptor cells. This Ca2+-dependent assembly of G-proteins with centrin is a novel aspect of the supply of signaling proteins in sensory cells, and a potential link between molecular translocations and signal transduction in general.
Collapse
Affiliation(s)
- Uwe Wolfrum
- Institut für Zoologie, Johannes Gutenberg-Universitit Mainz, 55099 Mainz, Germany.
| | | | | |
Collapse
|
66
|
Abstract
Caltractin (centrin) is a member of the calmodulin (CaM) superfamily of EF-hand calcium-binding proteins. It is an essential component of the centrosomal structures in a wide range of organisms. Caltractin and calmodulin apparently function in distinct calcium signaling pathways despite substantial sequence similarity. In an effort to understand the structural basis for such differences, the high-resolution three-dimensional solution structure of the complex between the Ca(2+)-activated C-terminal domain of Chlamydomonas reinhardtii caltractin (CRC-C) and a 19 residue peptide fragment comprising the putative cdc31p-binding region of Kar1p (K(19)) has been determined by multi-dimensional heteronuclear NMR spectroscopy. Formation of the complex is calcium-dependent and is stabilized by extensive interactions between CRC-C and three key hydrophobic anchors (Trp10, Leu13 and Leu14) in the peptide as well as favorable electrostatic interactions at the protein-peptide interface. In-depth comparisons have been made to the structure of the complex of Ca(2+)-activated calmodulin and R(20), the CaM-binding domain of smooth muscle myosin light-chain kinase. Although the overall structures of CRC and CaM domains in their respective complexes are very similar, differences in critical regions in the sequences of these proteins and their targets lead to clear differences in the complementarity of their respective binding surfaces. These subtle differences reveal the structural basis for the Ca(2+)-dependent regulation of distinct cellular signaling events by CRC and CaM.
Collapse
Affiliation(s)
- Haitao Hu
- Departments of Biochemistry and Physics, Center for Structural Biology, Vanderbilt University, 5142 BIOSCI/MRBIII, Nashville, TN 37232-8725, USA
| | | |
Collapse
|
67
|
Matei E, Miron S, Blouquit Y, Duchambon P, Durussel I, Cox JA, Craescu CT. C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain. Biochemistry 2003; 42:1439-50. [PMID: 12578356 DOI: 10.1021/bi0269714] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human centrin 2 (HsCen2) is an EF-hand protein that plays a critical role in the centrosome duplication and separation during cell division. We studied the structural and Ca(2+)-binding properties of two C-terminal fragments of this protein: SC-HsCen2 (T94-Y172), covering two EF-hands, and LC-HsCen2 (M84-Y172), having 10 additional residues. Both fragments are highly disordered in the apo state but become better structured (although not conformationally homogeneous) in the presence of Ca(2+) and depending on the nature of the cations (K(+) or Na(+)) in the buffer. Only the longer C-terminal domain, in the Ca(2+)-saturated state and in the presence of Na(+) ions, was amenable to structure determination by nuclear magnetic resonance. The solution structure of LC-HsCen2 reveals an open two EF-hand structure, similar to the conformation of related Ca(2+)-saturated regulatory domains. Unexpectedly, the N-terminal helix segment (F86-T94) lies over the exposed hydrophobic cavity. This unusual intramolecular interaction increases considerably the Ca(2+) affinity and constitutes a useful model for the target binding.
Collapse
Affiliation(s)
- Elena Matei
- INSERM U350 and Institut Curie-Recherche, Centre Universitaire, Bâtiments 110-112, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
68
|
Durussel I, Méhul B, Bernard D, Schmidt R, Cox JA. Cation- and peptide-binding properties of human calmodulin-like skin protein. Biochemistry 2002; 41:5439-48. [PMID: 11969404 DOI: 10.1021/bi016062z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human CLSP, a new Ca(2+)-binding protein specifically expressed in differentiated keratinocytes, is a 15.9 kDa, four EF-hand containing protein with 52% sequence identity to calmodulin (CaM). The protein binds four Ca(2+) ions at two pairs of sites with [Ca(2+)](0.5) values of 1.2 and 150 microM, respectively. Mg(2+) at millimolar concentrations strongly decreases the affinity for Ca(2+) of the two high-affinity sites, but has no effect on the low-affinity sites. The protein can also bind two Mg(2+) ([Mg(2+)](0.5) = 57 microM) at the sites of high Ca(2+) affinity. Thus, as fast skeletal muscle troponin C (TnC), CLSP possesses two high-affinity Ca(2+)-Mg(2+) mixed sites and two low-affinity Ca(2+)-specific sites. Studies on the isolated recombinant N- (N-CLSP) and C-terminal half domains of CLSP (C-CLSP) revealed that, in contrast to the case of TNC, the high-affinity Ca(2+)-Mg(2+) mixed sites reside in the N-terminal half. The binding of cations modifies the intrinsic fluorescence of the two Tyr residues. Upon Ca(2+) binding, hydrophobicity is exposed at the protein surface that can be monitored with a fluorescent probe. The Ca(2+)-dependency of the two conformational changes is biphasic in the absence of Mg(2+), but monophasic in the presence of 2 mM Mg(2+), both corresponding closely to direct binding of Ca(2+) to CLSP. In the presence of Ca(2+), human CLSP forms a high-affinity 1:1 complex with melittin, a natural peptide considered to be a model for the interaction of CaM with its targets. In the complex, CLSP binds Ca(2+) with high affinity to all four binding sites. Isolated N- and C-CLSP show only a weak interaction with melittin, which is enhanced when both halves are simultaneously presented to the model peptide.
Collapse
Affiliation(s)
- Isabelle Durussel
- Department of Biochemistry, University of Geneva, 1211 Genève, Switzerland
| | | | | | | | | |
Collapse
|
69
|
Pulvermüller A, Giessl A, Heck M, Wottrich R, Schmitt A, Ernst OP, Choe HW, Hofmann KP, Wolfrum U. Calcium-dependent assembly of centrin-G-protein complex in photoreceptor cells. Mol Cell Biol 2002; 22:2194-203. [PMID: 11884606 PMCID: PMC133667 DOI: 10.1128/mcb.22.7.2194-2203.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photoexcitation of rhodopsin activates a heterotrimeric G-protein cascade leading to cyclic GMP hydrolysis in vertebrate photoreceptors. Light-induced exchanges of the visual G-protein transducin between the outer and inner segment of rod photoreceptors occur through the narrow connecting cilium. Here we demonstrate that transducin colocalizes with the Ca(2+)-binding protein centrin 1 in a specific domain of this cilium. Coimmunoprecipitation, centrifugation, centrin overlay, size exclusion chromatography, and kinetic light-scattering experiments indicate that Ca(2+)-activated centrin 1 binds with high affinity and specificity to transducin. The assembly of centrin-G-protein complex is mediated by the betagamma-complex. The Ca(2+)-dependent assembly of a G protein with centrin is a novel aspect of the supply of signaling proteins in sensory cells and a potential link between molecular translocations and signal transduction in general.
Collapse
Affiliation(s)
- Alexander Pulvermüller
- Institut für Medizinische Physik und Biophysik, Humboldt-Universität zu Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Selvapandiyan A, Duncan R, Debrabant A, Bertholet S, Sreenivas G, Negi NS, Salotra P, Nakhasi HL. Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem 2001; 276:43253-61. [PMID: 11544261 DOI: 10.1074/jbc.m106806200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, causes visceral disease in humans. To identify genes that control growth, we have isolated for the first time in the order Kinetoplastida a gene encoding for centrin from L. donovani. Centrin is a calcium-binding cytoskeletal protein essential for centrosome duplication or segregation. Protein sequence similarity and immunoreactivity confirmed that Leishmania centrin is a homolog of human centrin 2. Immunofluorescence analysis localized the protein in the basal body. Calcium binding analysis revealed that its C-terminal Ca(2+) binding domain binds 16-fold more calcium than the N-terminal domain. Electrophoretic mobility shift of centrin treated with EGTA and abrogation of the shift in its mutants lacking a Ca(2+) binding site suggest that Ca(2+) binding to these regions may have a role in the protein conformation. The levels of centrin mRNA and protein were high during the exponential growth of the parasite in culture and declined to a low level in the stationary phase. Expression of N-terminal-deleted centrin in the parasite significantly reduces its growth rate, and it was found that significantly more cells are arrested in the G(2)/M stage than in control cells. These studies indicate that centrin may have a functional role in Leishmania growth.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Calcium/metabolism
- Calcium-Binding Proteins/chemistry
- Cell Cycle
- Chromosomal Proteins, Non-Histone/chemistry
- Cloning, Molecular
- Cytoskeleton/metabolism
- Egtazic Acid/pharmacology
- Flow Cytometry
- Gene Deletion
- Immunoblotting
- Leishmania donovani/chemistry
- Leishmania donovani/genetics
- Leishmania donovani/physiology
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Plasmids/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Time Factors
- Transfection
Collapse
Affiliation(s)
- A Selvapandiyan
- Laboratory of Bacterial, Parasitic, and Unconventional Agents, Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Daunderer C, Schliwa M, Gräf R. Dictyostelium centrin-related protein (DdCrp), the most divergent member of the centrin family, possesses only two EF hands and dissociates from the centrosome during mitosis. Eur J Cell Biol 2001; 80:621-30. [PMID: 11713866 DOI: 10.1078/0171-9335-00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a Dictyostelium discoideum cDNA sequence with homology to centrins. The derived protein, Dictyostelium discoideum centrinn-related protein (DdCrp), is the most divergent member of the centrin family. Most strikingly it lacks the first two EF-hand consensus motifs, whereas a number of other centrin-specific sequence features are conserved. Southern and Northern blot analysis and the data presently available from the Dictyostelium genome and cDNA projects suggest that DdCrp is the only centrin isoform present in Dictyostelium. Immunofluorescence analysis with anti-DdCrp antibodies revealed that the protein is localized to the centrosome, to a second, centrosome-associated structure close to the nucleus and to the nucleus itself. Confocal microscopy resolved that the centrosomal label is confined to the corona surrounding the centrosome core. Unlike for other centrins the localization of DdCrp is cell cycle-dependent. Both the centrosomal and the centrosome-associated label disappear during prometaphase, most likely in concert with the dissociation of the corona at this stage. The striking differences of DdCrp to all other centrins may be related to the distinct structure and duplication mode of the Dictyostelium centrosome.
Collapse
Affiliation(s)
- C Daunderer
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Germany
| | | | | |
Collapse
|