51
|
Zhu JY, Vereshchagina N, Sreekumar V, Burbulla LF, Costa AC, Daub KJ, Woitalla D, Martins LM, Krüger R, Rasse TM. Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson's disease model. PLoS One 2013; 8:e83714. [PMID: 24386261 PMCID: PMC3875477 DOI: 10.1371/journal.pone.0083714] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
Mortalin is an essential component of the molecular machinery that imports nuclear-encoded proteins into mitochondria, assists in their folding, and protects against damage upon accumulation of dysfunctional, unfolded proteins in aging mitochondria. Mortalin dysfunction associated with Parkinson’s disease (PD) increases the vulnerability of cultured cells to proteolytic stress and leads to changes in mitochondrial function and morphology. To date, Drosophila melanogaster has been successfully used to investigate pathogenesis following the loss of several other PD-associated genes. We generated the first loss-of-Hsc70-5/mortalin-function Drosophila model. The reduction of Mortalin expression recapitulates some of the defects observed in the existing Drosophila PD-models, which include reduced ATP levels, abnormal wing posture, shortened life span, and reduced spontaneous locomotor and climbing ability. Dopaminergic neurons seem to be more sensitive to the loss of mortalin than other neuronal sub-types and non-neuronal tissues. The loss of synaptic mitochondria is an early pathological change that might cause later degenerative events. It precedes both behavioral abnormalities and structural changes at the neuromuscular junction (NMJ) of mortalin-knockdown larvae that exhibit increased mitochondrial fragmentation. Autophagy is concomitantly up-regulated, suggesting that mitochondria are degraded via mitophagy. Ex vivo data from human fibroblasts identifies increased mitophagy as an early pathological change that precedes apoptosis. Given the specificity of the observed defects, we are confident that the loss-of-mortalin model presented in this study will be useful for further dissection of the complex network of pathways that underlie the development of mitochondrial parkinsonism.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Natalia Vereshchagina
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vrinda Sreekumar
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Lena F. Burbulla
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ana C. Costa
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester, United Kingdom
| | - Katharina J. Daub
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - L. Miguel Martins
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester, United Kingdom
| | - Rejko Krüger
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- * E-mail: (TMR); (RK)
| | - Tobias M. Rasse
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- * E-mail: (TMR); (RK)
| |
Collapse
|
52
|
Park SJ, Shin JH, Jeong JI, Song JH, Jo YK, Kim ES, Lee EH, Hwang JJ, Lee EK, Chung SJ, Koh JY, Jo DG, Cho DH. Down-regulation of mortalin exacerbates Aβ-mediated mitochondrial fragmentation and dysfunction. J Biol Chem 2013; 289:2195-204. [PMID: 24324263 DOI: 10.1074/jbc.m113.492587] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dynamics greatly influence the biogenesis and morphology of mitochondria. Mitochondria are particularly important in neurons, which have a high demand for energy. Therefore, mitochondrial dysfunction is strongly associated with neurodegenerative diseases. Until now various post-translational modifications for mitochondrial dynamic proteins and several regulatory proteins have explained complex mitochondrial dynamics. However, the precise mechanism that coordinates these complex processes remains unclear. To further understand the regulatory machinery of mitochondrial dynamics, we screened a mitochondrial siRNA library and identified mortalin as a potential regulatory protein. Both genetic and chemical inhibition of mortalin strongly induced mitochondrial fragmentation and synergistically increased Aβ-mediated cytotoxicity as well as mitochondrial dysfunction. Importantly we determined that the expression of mortalin in Alzheimer disease (AD) patients and in the triple transgenic-AD mouse model was considerably decreased. In contrast, overexpression of mortalin significantly suppressed Aβ-mediated mitochondrial fragmentation and cell death. Taken together, our results suggest that down-regulation of mortalin may potentiate Aβ-mediated mitochondrial fragmentation and dysfunction in AD.
Collapse
Affiliation(s)
- So Jung Park
- From the Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Saxena N, Katiyar S, Liu Y, Grover A, Gao R, Sundar D, Kaul S, Wadhwa R. Molecular interactions of Bcl-2 and Bcl-xL with mortalin: identification and functional characterization. Biosci Rep 2013; 33:e00073. [PMID: 24050266 PMCID: PMC3797589 DOI: 10.1042/bsr20130034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022] Open
Abstract
Bcl-2 family of proteins consists of both pro-apoptotic and anti-apoptotic members that control cellular apoptosis. They predominantly reside in the mitochondria and control the release of apoptotic factors from the mitochondria to the cytosol by regulating its membrane potential and opening the PT (permeability transition) pore. Here we report bioinformatics and biochemical evidence to demonstrate the interaction between Bcl-2 and Bcl-xL with a stress chaperone, mortalin. We demonstrate that such interaction results in the abrogation of mortalin-p53 interaction leading to nuclear translocation and transcriptional reactivation of p53 function that results in an induction of senescence in cancer cells.
Collapse
Key Words
- bcl-2
- bcl-xl
- interaction
- mortalin
- p53 activation
- senescence
- bad, bcl-2/bcl-xl-antagonist, causing cell death
- bh, bcl-2 homology
- bim, bcl-2-interacting mediator of cell death
- dmem, dulbecco’s modified eagle’s medium
- gfp, green fluorescent protein
- hsp 70, heat-shock protein 70
- ic, immunocomplexes
- md, molecular dynamics
- pbs-t, triton x-100 in pbs
- pt, permeability transition
- ros, reactive oxygen species
Collapse
Affiliation(s)
- Nishant Saxena
- *National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | - Shashank P. Katiyar
- †Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Ye Liu
- *National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | - Abhinav Grover
- †Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Ran Gao
- *National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | - Durai Sundar
- †Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil C. Kaul
- *National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | - Renu Wadhwa
- *National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| |
Collapse
|
54
|
Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1559-74. [PMID: 22864793 PMCID: PMC3776105 DOI: 10.1007/s11357-012-9459-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
Nutraceuticals are known to have numerous health and disease preventing properties. Recent studies suggest that extracts containing cranberry may have anti-aging benefits. However, little is known about whether and how cranberry by itself promotes longevity and healthspan in any organism. Here we examined the effect of a cranberry only extract on lifespan and healthspan in Caenorhabditis elegans. Supplementation of the diet with cranberry extract (CBE) increased the lifespan in C. elegans in a concentration-dependent manner. Cranberry also increased tolerance of C. elegans to heat shock, but not to oxidative stress or ultraviolet irradiation. In addition, we tested the effect of cranberry on brood size and motility and found that cranberry did not influence these behaviors. Our mechanistic studies indicated that lifespan extension induced by CBE requires the insulin/IGF signaling pathway and DAF-16. We also found that cranberry promotes longevity through osmotic stress resistant-1 (OSR-1) and one of its downstream effectors, UNC-43, but not through SEK-1, a component of the p38 MAP kinase pathway. However, SIR-2.1 and JNK signaling pathways are not required for cranberry to promote longevity. Our findings suggest that cranberry supplementation confers increased longevity and stress resistance in C. elegans through pathways modulated by daf-16 and osr-1. This study reveals the anti-aging property of widely consumed cranberry and elucidates the underpinning mechanisms.
Collapse
Affiliation(s)
- Sujay Guha
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Min Cao
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
- />Institute for Engaged Aging, Clemson University, Clemson, SC 29634 USA
| | - Ryan M. Kane
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Anthony M. Savino
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Sige Zou
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Yuqing Dong
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
- />Institute for Engaged Aging, Clemson University, Clemson, SC 29634 USA
- />Clemson University, 132 Long Hall, Clemson, SC 29634 USA
| |
Collapse
|
55
|
Kılıçgün H, Göksen G. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress. Pharmacogn Mag 2013; 8:325-8. [PMID: 24082638 PMCID: PMC3785172 DOI: 10.4103/0973-1296.103666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/11/2012] [Accepted: 11/22/2012] [Indexed: 01/31/2023] Open
Abstract
Background: The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals’ life span or not. Materials and Methods: To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. Results: We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Conclusion: Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises.
Collapse
Affiliation(s)
- Hasan Kılıçgün
- Department of Nutrition and Dietetic, Erzincan University, School of Health, 24100, Erzincan, Turkey
| | | |
Collapse
|
56
|
Broer L, Demerath EW, Garcia ME, Homuth G, Kaplan RC, Lunetta KL, Tanaka T, Tranah GJ, Walter S, Arnold AM, Atzmon G, Harris TB, Hoffmann W, Karasik D, Kiel DP, Kocher T, Launer LJ, Lohman KK, Rotter JI, Tiemeier H, Uitterlinden AG, Wallaschofski H, Bandinelli S, Dörr M, Ferrucci L, Franceschini N, Gudnason V, Hofman A, Liu Y, Murabito JM, Newman AB, Oostra BA, Psaty BM, Smith AV, van Duijn CM. Association of heat shock proteins with all-cause mortality. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1367-76. [PMID: 22555621 PMCID: PMC3705092 DOI: 10.1007/s11357-012-9417-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/17/2012] [Indexed: 05/31/2023]
Abstract
Experimental mild heat shock is widely known as an intervention that results in extended longevity in various models along the evolutionary lineage. Heat shock proteins (HSPs) are highly upregulated immediately after a heat shock. The elevation in HSP levels was shown to inhibit stress-mediated cell death, and recent experiments indicate a highly versatile role for these proteins as inhibitors of programmed cell death. In this study, we examined common genetic variations in 31 genes encoding all members of the HSP70, small HSP, and heat shock factor (HSF) families for their association with all-cause mortality. Our discovery cohort was the Rotterdam study (RS1) containing 5,974 participants aged 55 years and older (3,174 deaths). We assessed 4,430 single nucleotide polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. After adjusting for multiple testing by permutation analysis, three SNPs showed evidence for association with all-cause mortality in RS1. These findings were followed in eight independent population-based cohorts, leading to a total of 25,007 participants (8,444 deaths). In the replication phase, only HSF2 (rs1416733) remained significantly associated with all-cause mortality. Rs1416733 is a known cis-eQTL for HSF2. Our findings suggest a role of HSF2 in all-cause mortality.
Collapse
Affiliation(s)
- L. Broer
- Department of Epidemiology, Erasmus Medical Center, Dr. Molewaterplein 50, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
| | - E. W. Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN USA
| | - M. E. Garcia
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - G. Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - R. C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY USA
| | - K. L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Talbot Building, Boston, MA 02118 USA
- NHLBI’s Framingham Heart Study, Framingham, USA
| | - T. Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, MD USA
| | - G. J. Tranah
- California Pacific Medical Center, San Francisco, CA USA
| | - S. Walter
- Department of Society, Human Development, and Health, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - A. M. Arnold
- Department of Biostatistics, University of Washington, Seattle, WA USA
| | - G. Atzmon
- Institute for Aging Research and the Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - T. B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - W. Hoffmann
- Institute of Community Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - D. Karasik
- NHLBI’s Framingham Heart Study, Framingham, USA
- Hebrew Senior Life Institute for Aging Research and Harvard Medical School, Boston, MA USA
| | - D. P. Kiel
- NHLBI’s Framingham Heart Study, Framingham, USA
- Hebrew Senior Life Institute for Aging Research and Harvard Medical School, Boston, MA USA
| | - T. Kocher
- Dental School, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - L. J. Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - K. K. Lohman
- Sticht Center on Aging, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - J. I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - H. Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Dr. Molewaterplein 50, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Dr. Molewaterplein 50, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H. Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - S. Bandinelli
- Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy
| | - M. Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - L. Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, MD USA
| | - N. Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA
| | - V. Gudnason
- Icelandic Heart Association, Kópavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - A. Hofman
- Department of Epidemiology, Erasmus Medical Center, Dr. Molewaterplein 50, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Y. Liu
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - J. M. Murabito
- NHLBI’s Framingham Heart Study, Framingham, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118 USA
| | - A. B. Newman
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - B. A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - B. M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA USA
- Group Health Research Unit, Group Health Cooperative, Seattle, WA USA
| | - A. V. Smith
- Icelandic Heart Association, Kópavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - C. M. van Duijn
- Department of Epidemiology, Erasmus Medical Center, Dr. Molewaterplein 50, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
| |
Collapse
|
57
|
Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, Nudler E. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 2013; 152:818-30. [PMID: 23415229 DOI: 10.1016/j.cell.2012.12.043] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/13/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional NOS. Here, we demonstrate that bacterially derived NO enhances C. elegans longevity and stress resistance via a defined group of genes that function under the dual control of HSF-1 and DAF-16 transcription factors. Our work provides an example of interspecies signaling by a small molecule and illustrates the lifelong value of commensal bacteria to their host.
Collapse
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013; 92:181-94. [PMID: 23563202 DOI: 10.1016/j.jprot.2013.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/22/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
59
|
Vargas-Ortiz MA, Quintana-Castro R, Oliart-Ros RM, De la Cruz-Medina J, Ramírez de León JA, Garcia HS. High hydrostatic pressure induces synthesis of heat-shock proteins and trehalose-6-phosphate synthase in Anastrepha ludens larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:196-212. [PMID: 23361865 DOI: 10.1002/arch.21085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Mexican fruit fly (Anastrepha ludens) is responsible for losses of up to 25% of crops such as mango and citrus fruits in Central America and México. The larval life cycle of A. ludens comprises three stages with a duration ranging from 3 to 8 days. Because of the damage caused by A. ludens, several methods of control have been studied and implemented. High hydrostatic pressures (HHP) are currently applied to foods and it is now proposed to be employed to inactivate eggs and larvae of A. ludens. Originally HHP was designed to inactivate microorganisms, since it exerts marked effects on cell morphology, and can affect enzymatic reactions and genetic mechanisms of microbial cells, with no major changes altering the sensory or nutritional quality of the foodstuff. In this study, A. ludens in two larval stages (5- and 8-day-old) were subjected to HHP treatments. The biochemical response of the larvae of A. ludens was dependent on their stage of development. The third larval stage (L3) developed a better protection mechanism based on the synthesis of stress proteins or heat-shock proteins (HSPs) and the enzyme trehalose-6-phosphate synthase, which are linked and possibly act together to achieve greater survivability to stress caused by hydrostatic pressure.
Collapse
Affiliation(s)
- Manuel A Vargas-Ortiz
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo, Col. Formando Hogar, Veracruz, Ver. México
| | | | | | | | | | | |
Collapse
|
60
|
Lagisz M, Hector KL, Nakagawa S. Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis. Ageing Res Rev 2013; 12:653-60. [PMID: 23570942 DOI: 10.1016/j.arr.2013.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
Hormesis is the response of organisms to a mild stressor resulting in improved health and longevity. Mild heat shocks have been thought to induce hormetic response because they promote increased activity of heat shock proteins (HSPs), which may extend lifespan. Using data from 27 studies on 12 animal species, we performed a comparative meta-analysis to quantify the effect of heat shock exposure on longevity. Contrary to our expectations, heat shock did not measurably increase longevity in the overall meta-analysis, although we observed much heterogeneity among studies. Thus, we explored the relative contributions of different experimental variables (i.e. moderators). Higher temperatures, longer durations of heat shock exposure, increased shock repeat and less time between repeat shocks, all decreased the likelihood of a life-extending effect, as would be expected when a hormetic response crosses the threshold to being a damaging exposure. We conclude that there is limited evidence that mild heat stress is a universal way of promoting longevity at the whole-organism level. Life extension via heat-induced hormesis is likely to be constrained to a narrow parameter window of experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Lagisz
- Gravida, National Centre for Growth and Development, Department of Zoology, University of Otago, P.O. Box 56, New Zealand.
| | | | | |
Collapse
|
61
|
Cohen A, Ross L, Nachman I, Bar-Nun S. Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays. PLoS One 2012; 7:e44785. [PMID: 22970306 PMCID: PMC3435303 DOI: 10.1371/journal.pone.0044785] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 08/13/2012] [Indexed: 11/18/2022] Open
Abstract
Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an “aggregation timeline”. This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.
Collapse
Affiliation(s)
- Aviv Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liron Ross
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
62
|
Melo JA, Ruvkun G. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 2012; 149:452-66. [PMID: 22500807 DOI: 10.1016/j.cell.2012.02.050] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 01/02/2012] [Accepted: 02/23/2012] [Indexed: 12/18/2022]
Abstract
The nematode C. elegans is attracted to nutritious bacteria and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulate behavioral avoidance of normally attractive bacteria. RNAi of these and other essential processes induces expression of detoxification and innate immune effectors, even in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues was sufficient to stimulate aversion behavior, revealing a neuroendocrine axis of control that additionally required serotonergic and Jnk kinase signaling pathways. We propose that surveillance pathways overseeing core cellular activities allow animals to detect invading pathogens that deploy toxins and virulence factors to undermine vital host functions. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification, and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes.
Collapse
Affiliation(s)
- Justine A Melo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
63
|
Londono C, Osorio C, Gama V, Alzate O. Mortalin, apoptosis, and neurodegeneration. Biomolecules 2012; 2:143-64. [PMID: 24970131 PMCID: PMC4030873 DOI: 10.3390/biom2010143] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023] Open
Abstract
Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin's binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolina Londono
- Systems Proteomics Center Laboratory, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, Escuela de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Cristina Osorio
- Systems Proteomics Center Laboratory and Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Vivian Gama
- Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Oscar Alzate
- Systems Proteomics Center Laboratory, Department of Cell and Developmental Biology, Program in Molecular Biology and Biotechnology and Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, Escuela de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia.
| |
Collapse
|
64
|
Abstract
Alzheimer’s disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.
Collapse
|
65
|
Reis‐Rodrigues P, Czerwieniec G, Peters TW, Evani US, Alavez S, Gaman EA, Vantipalli M, Mooney SD, Gibson BW, Lithgow GJ, Hughes RE. Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 2012; 11:120-7. [PMID: 22103665 PMCID: PMC3437485 DOI: 10.1111/j.1474-9726.2011.00765.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While it is generally recognized that misfolding of specific proteins can cause late-onset disease, the contribution of protein aggregation to the normal aging process is less well understood. To address this issue, a mass spectrometry-based proteomic analysis was performed to identify proteins that adopt sodium dodecyl sulfate (SDS)-insoluble conformations during aging in Caenorhabditis elegans. SDS-insoluble proteins extracted from young and aged C. elegans were chemically labeled by isobaric tagging for relative and absolute quantification (iTRAQ) and identified by liquid chromatography and mass spectrometry. Two hundred and three proteins were identified as being significantly enriched in an SDS-insoluble fraction in aged nematodes and were largely absent from a similar protein fraction in young nematodes. The SDS-insoluble fraction in aged animals contains a diverse range of proteins including a large number of ribosomal proteins. Gene ontology analysis revealed highly significant enrichments for energy production and translation functions. Expression of genes encoding insoluble proteins observed in aged nematodes was knocked down using RNAi, and effects on lifespan were measured. 41% of genes tested were shown to extend lifespan after RNAi treatment, compared with 18% in a control group of genes. These data indicate that genes encoding proteins that become insoluble with age are enriched for modifiers of lifespan. This demonstrates that proteomic approaches can be used to identify genes that modify lifespan. Finally, these observations indicate that the accumulation of insoluble proteins with diverse functions may be a general feature of aging.
Collapse
Affiliation(s)
- Pedro Reis‐Rodrigues
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Gregg Czerwieniec
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Theodore W. Peters
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Uday S. Evani
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Silvestre Alavez
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Emily A. Gaman
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Maithili Vantipalli
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | - Sean D. Mooney
- The Interdisciplinary Research Consortium on Geroscience, The Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94949, USA
| | | | | | | |
Collapse
|
66
|
Rytinki MM, Lakso M, Pehkonen P, Aarnio V, Reisner K, Peräkylä M, Wong G, Palvimo JJ. Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci 2011; 68:3219-32. [PMID: 21253676 PMCID: PMC11114839 DOI: 10.1007/s00018-011-0627-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/17/2023]
Abstract
Small ubiquitin-related modifiers (SUMOs) are important regulator proteins. Caenorhabditis elegans contains a single SUMO ortholog, SMO-1, necessary for the reproduction of C. elegans. In this study, we constructed transgenic C. elegans strains expressing human SUMO-1 under the control of pan-neuronal (aex-3) or pan-muscular (myo-4) promoter and SUMO-2 under the control of myo-4 promoter. Interestingly, muscular overexpression of SUMO-1 or -2 resulted in morphological changes of the posterior part of the nematode. Movement, reproduction and aging of C. elegans were perturbed by the overexpression of SUMO-1 or -2. Genome-wide expression analyses revealed that several genes encoding components of SUMOylation pathway and ubiquitin-proteasome system were upregulated in SUMO-overexpressing nematodes. Since muscular overexpression of SMO-1 also brought up reproductive and mobility perturbations, our results imply that the phenotypes were largely due to an excess of SUMO, suggesting that a tight control of SUMO levels is important for the normal development of multicellular organisms.
Collapse
Affiliation(s)
- Miia M. Rytinki
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Merja Lakso
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
| | - Petri Pehkonen
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Vuokko Aarnio
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kaja Reisner
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Developmental Biology, Institute of Zoology and Hydrobiology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia
| | - Mikael Peräkylä
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Garry Wong
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jorma J. Palvimo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
67
|
Zhang G, Storey JM, Storey KB. Chaperone proteins and winter survival by a freeze tolerant insect. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1115-1122. [PMID: 21382374 DOI: 10.1016/j.jinsphys.2011.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
The role of chaperone proteins in the winter survival of insects was evaluated in freeze tolerant gall fly larvae, Eurosta solidaginis. Levels of four heat shock proteins (Hsp110, Hsp70, Hsp60, Hsp40), two glucose-regulated proteins (Grp75, Grp78) and three others (tailless complex polypeptide 1 [TCP-1], αA-crystallin, αB-crystallin) were tracked in outdoor larvae from September to April and, in addition, laboratory experiments assessed chilling, freezing, and anoxia effects on these proteins. Gall fly larvae showed consistent elevation of Hsp110, Hsp70, Hsp40, Grp78 and αB-crystallin over the late autumn and winter months, generally 1.5-2.0-fold higher than September values. This suggests that these proteins contribute to cell preservation over the winter months via protection and stabilization of macromolecules. By contrast, levels of the mitochondrial Hsp60 fell to just 40% of September values by midwinter, paralleling the responses by numerous mitochondrial enzymes and consistent with a reduction in total mitochondria numbers over the winter. None of the proteins were altered when 15°C acclimated larvae were chilled to 3°C for 24h but Hsp70, Hsp40 and Grp75 increased during freezing at -16°C for 24h whereas others (Hsp110, TCP-1 and both crystallins) increased significantly after larvae thawed at 3°C. Anoxia exposure (24h under N2 gas at 15°C) elevated levels of Hsp70, Grp78 and the two crystallins. Levels of active hyperphosphorylated heat shock transcription factor (HSF1) were also analyzed, giving an indication of the state of hsp gene transcription in the larvae. HSF1 was high in September and October but fell to less than 40% of September values in midwinter consistent with suppression of gene transcription in diapause larvae. HSF1 levels responded positively to freezing and increased robustly by 4.9-fold under anoxia. Overall, the data provide strong evidence for the importance of protein chaperones as a mechanism of cell preservation in freeze tolerant insects.
Collapse
Affiliation(s)
- Guijun Zhang
- Institute of Biochemistry and Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | | | | |
Collapse
|
68
|
Higher levels of heat shock proteins in longer-lived mammals and birds. Mech Ageing Dev 2011; 132:287-97. [PMID: 21703294 DOI: 10.1016/j.mad.2011.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 12/21/2022]
Abstract
Cellular stress resistance is generally associated with longevity, but the mechanisms underlying this phenotype are not clear. In invertebrate models there is a clear role for heat shock proteins (Hsps) and organelle-specific unfolded protein responses (UPR) in longevity. However, this has not been demonstrated in vertebrates. Some Hsp amino acid sequences are highly conserved amongst mammals and birds. We used antibodies recognizing conserved regions of Hsp60 (primarily mitochondrial), Hsp70 (primarily cytosolic), GRP78 (Bip) and GRP94 (endoplasmic reticulum) to measure constitutive levels of these proteins in brain, heart and liver of 13 mammalian and avian species ranging in maximum lifespan from 3 to 30 years. In all three tissues, the expression of these proteins was highly correlated with MLSP, indicating higher basal levels of Hsp expression are characteristic of longer-lived species. We also quantified the levels of Hsp60, Hsp70 and GRP78 in brain and heart tissue of young adult (6-7 month old) Snell dwarf mice and normal littermates. Snell dwarf mice are characterized by a single gene mutation that is associated with an ∼50% increase in lifespan. However, neither Hsp60, nor Hsp70, nor GRP78 levels were elevated in brain or heart tissue from Snell dwarf mice compared to normal littermates.
Collapse
|
69
|
Rodrigues AJ, Neves-Carvalho A, Teixeira-Castro A, Rokka A, Corthals G, Logarinho E, Maciel P. Absence of ataxin-3 leads to enhanced stress response in C. elegans. PLoS One 2011; 6:e18512. [PMID: 21526185 PMCID: PMC3079722 DOI: 10.1371/journal.pone.0018512] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/08/2011] [Indexed: 02/07/2023] Open
Abstract
Ataxin-3, the protein involved in Machado-Joseph disease, is able to bind ubiquitylated substrates and act as a deubiquitylating enzyme in vitro, and it has been involved in the modulation of protein degradation by the ubiquitin-proteasome pathway. C. elegans and mouse ataxin-3 knockout models are viable and without any obvious phenotype in a basal condition however their phenotype in stress situations has never been described. Considering the role of ataxin-3 in the protein degradation pathway, we analyzed the effects of heat shock, a known protein homeostasis stressor, in C. elegans ataxin-3 (ATX-3) knockout animals. We found that ATX-3 mutants have an exacerbated stress response and survive significantly better than wild type animals when subjected to a noxious heat shock stimulus. This increased thermotolerance of mutants was further enhanced by pre-exposure to a mild heat shock. At a molecular level, ATX-3 mutants have a distinct transcriptomic and proteomic profile with several molecular chaperones abnormally up-regulated during heat shock and recovery, consistent with the observed resistance phenotype. The improved thermotolerancein ATX-3 mutants is independent of heat shock factor 1, the maestro of the heat shock response, but fully dependent on DAF-16, a critical stress responsive transcription factor involved in longevity and stress resistance. We also show that the increased thermotolerance of ATX-3 mutants is mainly due to HSP-16.2, C12C8.1 and F44E5.5 given that the knockdown of these heat shock proteins using RNA interference causes the phenotype to revert. This report suggests that the absence of ATX-3 activates the DAF-16 pathway leading to an overexpression of molecular chaperones, which yields knockout animals with an improved capacity for dealing with deleterious stimuli.
Collapse
Affiliation(s)
- Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Garry Corthals
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Elsa Logarinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
70
|
Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 2011; 10:205-15. [PMID: 20152936 PMCID: PMC2888802 DOI: 10.1016/j.arr.2010.02.001] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/12/2023]
Abstract
All cells count on precise mechanisms that regulate protein homeostasis to maintain a stable and functional proteome. A progressive deterioration in the ability of cells to preserve the stability of their proteome occurs with age and contributes to the functional loss characteristic of old organisms. Molecular chaperones and the proteolytic systems are responsible for this cellular quality control by assuring continuous renewal of intracellular proteins. When protein damage occurs, such as during cellular stress, the coordinated action of these cellular surveillance systems allows detection and repair of the damaged structures or, in many instances, leads to the complete elimination of the altered proteins from inside cells. Dysfunction of the quality control mechanisms and intracellular accumulation of abnormal proteins in the form of protein inclusions and aggregates occur in almost all tissues of an aged organism. Preservation or enhancement of the activity of these surveillance systems until late in life improves their resistance to stress and is sufficient to slow down aging. In this work, we review recent advances on our understanding of the contribution of chaperones and proteolytic systems to the maintenance of cellular homeostasis, the cellular response to stress and ultimately to longevity.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
71
|
McConnell KW, Fox AC, Clark AT, Chang NYN, Dominguez JA, Farris AB, Buchman TG, Hunt CR, Coopersmith CM. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3718-25. [PMID: 21296977 PMCID: PMC3126621 DOI: 10.4049/jimmunol.1003652] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.
Collapse
Affiliation(s)
- Kevin W McConnell
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Li H, Ren C, Shi J, Hang X, Zhang F, Gao Y, Wu Y, Xu L, Chen C, Zhang C. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress. Proteome Sci 2010; 8:49. [PMID: 20858264 PMCID: PMC2954870 DOI: 10.1186/1477-5956-8-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023] Open
Abstract
Background The nematode Caenorhabditis elegans is both sensitive and tolerant to hypoxic stress, particularly when the evolutionarily conserved hypoxia response pathway HIF-1/EGL-9/VHL is involved. Hypoxia-induced changes in the expression of a number of genes have been analyzed using whole genome microarrays in C. elegans, but the changes at the protein level in response to hypoxic stress still remain unclear. Results Here, we utilized a quantitative proteomic approach to evaluate changes in the expression patterns of proteins during the early response to hypoxia in C. elegans. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to compare the proteomic maps of wild type C. elegans strain N2 under a 4-h hypoxia treatment (0.2% oxygen) and under normoxia (control). A subsequent analysis by MALDI-TOF-TOF-MS revealed nineteen protein spots that were differentially expressed. Nine of the protein spots were significantly upregulated, and ten were downregulated upon hypoxic stress. Three of the upregulated proteins were involved in cytoskeletal function (LEV-11, MLC-1, ACT-4), while another three upregulated (ATP-2, ATP-5, VHA-8) were ATP synthases functionally related to energy metabolism. Four ribosomal proteins (RPL-7, RPL-8, RPL-21, RPS-8) were downregulated, indicating a decrease in the level of protein translation upon hypoxic stress. The overexpression of tropomyosin (LEV-11) was further validated by Western blot. In addition, the mutant strain of lev-11(x12) also showed a hypoxia-sensitive phenotype in subsequent analyses, confirming the proteomic findings. Conclusions Taken together, our data suggest that altered protein expression, structural protein remodeling, and the reduction of translation might play important roles in the early response to oxygen deprivation in C. elegans, and this information will help broaden our knowledge on the mechanism of hypoxia response.
Collapse
Affiliation(s)
- Hualing Li
- Life Science College of Nanjing Agriculture University, Nanjing 210095, China.,Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China.,Medical College of Yangzhou University, Yangzhou 225001, China
| | - Changhong Ren
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Jinping Shi
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Xingyi Hang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Feilong Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Yan Gao
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Yonghong Wu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Langlai Xu
- Life Science College of Nanjing Agriculture University, Nanjing 210095, China
| | - Changsheng Chen
- Department of Health Statistics, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| |
Collapse
|
73
|
Burbulla LF, Schelling C, Kato H, Rapaport D, Woitalla D, Schiesling C, Schulte C, Sharma M, Illig T, Bauer P, Jung S, Nordheim A, Schöls L, Riess O, Krüger R. Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Hum Mol Genet 2010; 19:4437-52. [PMID: 20817635 DOI: 10.1093/hmg/ddq370] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mitochondrial chaperone mortalin has been linked to neurodegeneration in Parkinson's disease (PD) based on reduced protein levels in affected brain regions of PD patients and its interaction with the PD-associated protein DJ-1. Recently, two amino acid exchanges in the ATPase domain (R126W) and the substrate-binding domain (P509S) of mortalin were identified in Spanish PD patients. Here, we identified a separate and novel variant (A476T) in the substrate-binding domain of mortalin in German PD patients. To define a potential role as a susceptibility factor in PD, we characterized the functions of all three variants in different cellular models. In vitro import assays revealed normal targeting of all mortalin variants. In neuronal and non-neuronal human cell lines, the disease-associated variants caused a mitochondrial phenotype of increased reactive oxygen species and reduced mitochondrial membrane potential, which were exacerbated upon proteolytic stress. These functional impairments correspond with characteristic alterations of the mitochondrial network in cells overexpressing mutant mortalin compared with wild-type (wt), which were confirmed in fibroblasts from a carrier of the A476T variant. In line with a loss of function hypothesis, knockdown of mortalin in human cells caused impaired mitochondrial function that was rescued by wt mortalin, but not by the variants. Our genetic and functional studies of novel disease-associated variants in the mortalin gene define a loss of mortalin function, which causes impaired mitochondrial function and dynamics. Our results support the role of this mitochondrial chaperone in neurodegeneration and underscore the concept of impaired mitochondrial protein quality control in PD.
Collapse
Affiliation(s)
- Lena F Burbulla
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Trehalose is a disaccharide of glucose found in diverse organisms and is suggested to act as a stress protectant against heat, cold, desiccation, anoxia, and oxidation. Here, we demonstrate that treatment of Caenorhabditis elegans with trehalose starting from the young-adult stage extended the mean life span by over 30% without any side effects. Surprisingly, trehalose treatment starting even from the old-adult stage shortly thereafter retarded the age-associated decline in survivorship and extended the remaining life span by 60%. Demographic analyses of age-specific mortality rates revealed that trehalose extended the life span by lowering age-independent vulnerability. Moreover, trehalose increased the reproductive span and retarded the age-associated decrease in pharyngeal-pumping rate and the accumulation of lipofuscin autofluorescence. Trehalose also enhanced thermotolerance and reduced polyglutamine aggregation. These results suggest that trehalose suppressed aging by counteracting internal or external stresses that disrupt protein homeostasis. On the other hand, the life span-extending effect of trehalose was abolished in long-lived insulin/IGF-1-like receptor (daf-2) mutants. RNA interference-mediated inactivation of the trehalose-biosynthesis genes trehalose-6-phosphate synthase-1 (tps-1) and tps-2, which are known to be up-regulated in daf-2 mutants, decreased the daf-2 life span. These findings indicate that a reduction in insulin/IGF-1-like signaling extends life span, at least in part, through the aging-suppressor function of trehalose. Trehalose may be a lead compound for potential nutraceutical intervention of the aging process.
Collapse
Affiliation(s)
- Yoko Honda
- Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku 173-0015, Tokyo, Japan
| | | | | |
Collapse
|
75
|
Salminen A, Kaarniranta K. Genetics vs. entropy: longevity factors suppress the NF-kappaB-driven entropic aging process. Ageing Res Rev 2010; 9:298-314. [PMID: 19903538 DOI: 10.1016/j.arr.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023]
Abstract
Molecular studies in model organisms have identified potent longevity genes which can delay the aging process and extend the lifespan. Longevity factors promote stress resistance and cellular survival. It seems that the aging process itself is not genetically programmed but a random process involving the loss of molecular fidelity and subsequent accumulation of waste products. This age-related increase in cellular entropy is compatible with the disposable soma theory of aging. A large array of host defence systems has been linked to the NF-kappaB system which is an ancient signaling pathway specialized to host defence, e.g. functioning in immune system. Emerging evidence demonstrates that the NF-kappaB system is activated during aging. Oxidative stress and DNA damage increase with aging and elicit a sustained activation of the NF-kappaB system which has negative consequences, e.g. chronic inflammatory response, increase in apoptotic resistance, decline in autophagic cleansing, and tissue atrophy, i.e. processes that enhance the aging process. We will discuss the role of NF-kappaB system in the pro-aging signaling and will emphasize that several longevity factors seem to be inhibitors of NF-kappaB signaling and in that way they can suppress the NF-kappaB-driven entropic host defence catastrophe.
Collapse
|
76
|
Morrow G, Kim HJ, Le Pécheur M, Kaul SC, Wadhwa R, Tanguay RM. Protection from aging by small chaperones: A trade-off with cancer? Ann N Y Acad Sci 2010; 1197:67-75. [PMID: 20536835 DOI: 10.1111/j.1749-6632.2009.05413.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aging is a complex process accompanied by a decreased capacity of cells to cope with random molecular damages. Damaged proteins can form aggregates and have cytotoxic properties, a feature of many age-associated diseases. Small Hsps are chaperones involved in the refolding and/or disposal of protein aggregates. In Drosophila melanogaster, the mitochondrial DmHsp22 is preferentially upregulated during aging. Its over-expression results in an extension of lifespan (>30%) and an increased resistance to stress. Although DmHsp22 has a chaperone-like activity in vitro, additional mechanisms by which it may extend lifespan in vivo are unknown. Genome-wide transcriptional analysis and comparative mitochondrial proteomic analysis by MALDI-TOF were performed to unveil differences in long-lived DmHsp22 over-expressing flies. Flies over-expressing DmHsp22 display an upregulation of genes normally downregulated with age and involved in energy production and protein biosynthesis. Interestingly, DmHsp22 over-expression extended lifespan of normal fibroblasts by slowing the aging process. However, its expression also increased the malignant properties of human transformed cells. The delicate balance between beneficial and noxious effects of this small chaperone are discussed.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratory of Cell and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Institut de Biologie Intégrative et des Systèmes and PROTEO Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
Various heat shock proteins, including Hsp72, are strongly upregulated in cancers, but their significance for tumor emergence and growth is poorly understood. Here we review recent data from several labs to indicate that Hsps, including Hsp72, are critical for growth of transformed but not normal cells. By manipulating expression and activity of Hsp72 and several oncogenes, it was shown that Hsp72 suppresses oncogene-induced senescence, thus allowing proliferation of cancer cells. Importantly, Hsp72 is able to suppress both p53-dependent and p53-independent senescence pathways. We propose that targeting Hsp72 may be a promising approach toward development of novel cancer therapies.
Collapse
Affiliation(s)
- Michael Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
78
|
Voisine C, Pedersen JS, Morimoto RI. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 2010; 40:12-20. [PMID: 20472062 DOI: 10.1016/j.nbd.2010.05.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 02/06/2023] Open
Abstract
Adult-onset neurodegeneration and other protein conformational diseases are associated with the appearance, persistence, and accumulation of misfolded and aggregation-prone proteins. To protect the proteome from long-term damage, the cell expresses a highly integrated protein homeostasis (proteostasis) machinery to ensure that proteins are properly expressed, folded, and cleared, and to recognize damaged proteins. Molecular chaperones have a central role in proteostasis as they have been shown to be essential to prevent the accumulation of alternate folded proteotoxic states as occurs in protein conformation diseases exemplified by neurodegeneration. Studies using invertebrate models expressing proteins associated with Huntington's disease, Alzheimer's disease, ALS, and Parkinson's disease have provided insights into the genetic networks and stress signaling pathways that regulate the proteostasis machinery to prevent cellular dysfunction, tissue pathology, and organismal failure. These events appear to be further amplified by aging and provide evidence that age-related failures in proteostasis may be a common element in many diseases.
Collapse
Affiliation(s)
- Cindy Voisine
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
79
|
Hamer G, Matilainen O, Holmberg CI. A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 2010; 7:473-8. [DOI: 10.1038/nmeth.1460] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/08/2010] [Indexed: 11/09/2022]
|
80
|
Sakashita T, Takanami T, Yanase S, Hamada N, Suzuki M, Kimura T, Kobayashi Y, Ishii N, Higashitani A. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. JOURNAL OF RADIATION RESEARCH 2010; 51:107-121. [PMID: 20208402 DOI: 10.1269/jrr.09100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good "in vivo" model system in the field of radiation biology.
Collapse
|
81
|
Back P, Matthijssens F, Vlaeminck C, Braeckman BP, Vanfleteren JR. Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in Caenorhabditis elegans. Exp Gerontol 2010; 45:603-10. [PMID: 20096764 DOI: 10.1016/j.exger.2010.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/23/2009] [Accepted: 01/14/2010] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species have long been considered a major cause of aging. However, previous work showed that loss of superoxide dismutase (SOD) only weakly affects lifespan of Caenorhabditis elegans. Here, we examined the impact of sod gene deletion and overexpression on the mRNA levels of the remaining sod genes and other detoxification genes. We detected no compensatory upregulation of other sod genes in any of the sod deletion mutants in both wild-type and daf-2(m577) genetic backgrounds when L4 larvae were shifted from 17 to 24 degrees C, and harvested as young adults. Elimination of MnSOD increased transcription of SKN-1 regulated genes and reduced transcription of multiple DAF-16 targets. Loss of the major Cu/ZnSOD isoform SOD-1 caused enhanced expression of subsets of both SKN-1 and DAF-16 targets when the animals were grown continuously at 24 degrees C, and strong overexpression of sod-1 induced a compensatory decrease in all tested SKN-1 regulated gst genes. When combined, these results suggest that low cytosolic SOD may activate SKN-1 signaling, whereas high levels may be repressive. Overall, our results suggest that sod gene manipulation causes complex, combinatorial regulation of expression of individual targets of stress sensitive transcription factors.
Collapse
Affiliation(s)
- Patricia Back
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
82
|
Depuydt G, Vanfleteren JR, Braeckman BP. Protein metabolism and lifespan in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:81-107. [PMID: 20886759 DOI: 10.1007/978-1-4419-7002-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lifespan of the versatile model system Caenorhabditis elegans can be extended by a decrease of insulin/IGF-1 signaling, TOR signaling, mitochondrial function, protein synthesis and dietary intake. The exact molecular mechanisms by which these modulations confer increased life expectancy are yet to be determined but increased stress resistance and improved protein homeostasis seem to be of major importance. In this chapter, we explore the interactions among several genetic pathways and cellular functions involved in lifespan extension and their relation to protein homeostasis in C. elegans. Several of these processes have been associated, however some relevant data are conflicting and further studies are needed to clarify these interactions. In mammals, protein homeostasis is also implicated in several neurodegenerative diseases, many of which can be modeled in C. elegans.
Collapse
Affiliation(s)
- Geert Depuydt
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
83
|
Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:138-59. [PMID: 20886762 PMCID: PMC3402352 DOI: 10.1007/978-1-4419-7002-2_11] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation ofproteostasis leads to neurodegenerative diseases of aging.
Collapse
Affiliation(s)
| | | | - Richard I. Morimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University; Rice Institute for Biomedical Research; Evanston, IL 60208-3500, USA
| |
Collapse
|
84
|
Abstract
Despite the fact that the phenomenon of hormesis has been known for many years it is still very much an area of controversy just how useful hormetic treatments are in preventing age-related human diseases and increasing life expectancy. Since there are no data in humans demonstrating hormesis as an effective anti-ageing strategy we turn to a simple model organism for insight. In this review we explore what can be predicted about the usefulness of hormetic treatments in humans based upon studies conducted in the soil nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Arnold Kahn
- Buck Institute for Age Research, Novato, CA, USA
| | | |
Collapse
|
85
|
Vellai T, Takács-Vellai K, Sass M, Klionsky DJ. The regulation of aging: does autophagy underlie longevity? Trends Cell Biol 2009; 19:487-94. [PMID: 19726187 PMCID: PMC2755611 DOI: 10.1016/j.tcb.2009.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 12/13/2022]
Abstract
The accumulation of cellular damage is a feature common to all aging cells and leads to decreased ability of the organism to survive. The overall rate at which damage accumulates is influenced by conserved metabolic factors (longevity pathways and regulatory proteins) that control lifespan through adjusting mechanisms for maintenance and repair. Autophagy, the major catabolic process of eukaryotic cells that degrades and recycles damaged macromolecules and organelles, is implicated in aging and in the incidence of diverse age-related pathologies. Recent evidence has revealed that autophagic activity is required for lifespan extension in various long-lived mutant organisms, and that numerous autophagy-related genes or proteins are directly regulated by longevity pathways. These findings support the emerging view that autophagy is a central regulatory mechanism for aging in diverse eukaryotic species.
Collapse
Affiliation(s)
- Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, H-1117, Hungary
| | | | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Daniel J. Klionsky
- Life Sciences Institute, and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry; University of Michigan; Ann Arbor, Michigan, USA
| |
Collapse
|
86
|
Conte M, Deri P, Isolani ME, Mannini L, Batistoni R. A mortalin-like gene is crucial for planarian stem cell viability. Dev Biol 2009; 334:109-18. [PMID: 19616535 DOI: 10.1016/j.ydbio.2009.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 12/22/2022]
Abstract
In adult organisms, stem cells are crucial to homeostasis and regeneration of damaged tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary replicative potential that guarantees unlimited replacement of all differentiated cell types and extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine long-term stability and constant proliferative activity, overcoming the impact of time, remain by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. DjmotRNA interference causes inability to regenerate and death of the animals, as a result of permanent growth arrest of stem cells. These results provide the first evidence that an hsp-related gene is essential for neoblast viability and suggest the possibility that high levels of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to escape cell death programs. Further studies are needed to unravel the molecular pathways involved in these processes.
Collapse
Affiliation(s)
- Maria Conte
- Dipartimento di Biologia, Università di Pisa, I-56017 Ghezzano, Italy
| | | | | | | | | |
Collapse
|
87
|
Abstract
Heat-shock proteins (Hsps) are increasingly being implicated in aging phenotypes and control of life span across species. They are targets of the conserved heat-shock factor and insulin/IGF1-like signaling pathways that affect life span and aging phenotypes. Hsps are expressed in tissue-specific and disease-specific patterns during aging, and their level of expression and induction by stress correlates with and, in some instances, predicts life span. In model organisms, Hsps have been shown to increase life span and ameliorate aging-associated proteotoxicity. Finally, Hsps have emerged as key components in regulating aging-related cellular phenotypes, including cell senescence, apoptosis and cancer. The Hsps, therefore, provide a metric of individual stress and aging and are potential targets for interventions in aging and aging-related diseases.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| |
Collapse
|
88
|
Swindell WR. Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 2009; 1:573-7. [PMID: 20157538 PMCID: PMC2806032 DOI: 10.18632/aging.100058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/14/2009] [Indexed: 11/25/2022]
Abstract
Heat shock
proteins (HSPs) have proven to be effective tools for extending
invertebrate lifespan, and inC. elegans daf-2 mutants,
longevity resulting from loss of insulin / insulin-like signals is at least
partly dependent upon elevated HSP expression. In mice, inhibition of the
orthologous growth hormone / insulin-like growth factor I (GH / IGF-I)
pathway has similar pro-longevity effects. A recent study, however,
suggests that loss of GH / IGF-I signals in long-lived mice does not
broadly elevate HSP expression, but in fact decreases HSP expression in
many tissue types, such as liver and kidney. The contribution of chaperones
to the longevity of long-lived mice with altered GH / IGF-I signals may therefore
differ from that described in C. elegans daf-2 mutants. This result,
in combination with other recent findings, underscores the possibility that
systemic overexpression of chaperones will have dissimilar effects on
longevity in vertebrate and invertebrate systems.
Collapse
Affiliation(s)
- William R Swindell
- University of Michigan, Departments of Pathology and Geriatrics, Ann Arbor MI 48109, USA.
| |
Collapse
|
89
|
Swindell WR, Masternak MM, Kopchick JJ, Conover CA, Bartke A, Miller RA. Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech Ageing Dev 2009; 130:393-400. [PMID: 19428459 PMCID: PMC2718793 DOI: 10.1016/j.mad.2009.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/12/2009] [Accepted: 03/28/2009] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) maintain proteostasis and may protect against age-associated pathology caused by protein malfolding. In Caenorhabditis elegans, the lifespan extension and thermotolerance in mutants with impaired insulin/IGF signals depend partly on HSP elevation. Less is known about the role of HSPs in the increased lifespan of mice with defects in GH/IGF-I pathways. We measured HSP mRNAs in liver, kidney, heart, lung, muscle and cerebral cortex from long-lived Pit1(dw/dw) Snell dwarf mice. We found many significant differences in HSP mRNA levels between dwarf and control mice, but these effects were complex and organ-specific. We noted 15 instances where HSP mRNAs were lower in Pit1(dw/dw) liver, kidney, or heart tissues, and 14/15 of these were also seen in Ghr(-/-) mice, which lack GH receptor. In contrast, of 12 examples where HSP mRNAs were higher in Snell liver, kidney, or heart, none were altered in Ghr(-/-) mice. Four liver mRNAs were depressed in both Pit1(dw/dw) and Ghr(-/-) mice, and each of these was elevated by GH injection in Ames (Prop1(df/df)) dwarf mice, consistent with the hypothesis that these declines depended on GH and/or IGF-I. Contributions of chaperones to longevity in mice may be more complex than those inferred from C. elegans.
Collapse
Affiliation(s)
- William R Swindell
- University of Michigan, Department of Pathology and Geriatrics Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | |
Collapse
|
90
|
Song HO, Lee W, An K, Lee HS, Cho JH, Park ZY, Ahnn J. C. elegans STI-1, the homolog of Sti1/Hop, is involved in aging and stress response. J Mol Biol 2009; 390:604-17. [PMID: 19467242 DOI: 10.1016/j.jmb.2009.05.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 11/25/2022]
Abstract
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.
Collapse
Affiliation(s)
- Hyun-Ok Song
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
91
|
Vanhooren V, Liu XE, Desmyter L, Fan YD, Vanwalleghem L, Van Molle W, Dewaele S, Praet M, Contreras R, Libert C, Chen C. Over-expression of heat shock protein 70 in mice is associated with growth retardation, tumor formation, and early death. Rejuvenation Res 2009; 11:1013-20. [PMID: 19072255 DOI: 10.1089/rej.2008.0783] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Experiments in lower organisms, such as worms and flies, indicate that the molecular chaperone protein heat shock protein 70 (HSP70) is a longevity factor. In contrast, we demonstrate here that mice overexpressing HSP70 display growth retardation and early death. HSP70 transgenic mice displayed increased levels of serum corticosterone and weaker expression and activity of the glucocorticoid receptor in the liver. Serum insulin-like growth factor-1 (IGF-1) concentrations in the transgenic mice were 50% lower than in the control mice, leading to growth retardation. HSP70 transgenic mice showed decreased expression of Casp9, which encodes caspase-9, and increased expression of the anti-apoptotic Bcl-2 gene, indicating that apoptosis is suppressed. Consequently, most of the transgenic animals died before the age of 18 months from tumors in their lungs and lymph nodes. We suggest that the proinflammatory and antiapoptotic effects of HSP70 might be responsible for the growth retardation, tumor formation, and early death observed in the HSP70 transgenic mice.
Collapse
|
92
|
Bonafè M, Olivieri F. Genetic polymorphism in long-lived people: cues for the presence of an insulin/IGF-pathway-dependent network affecting human longevity. Mol Cell Endocrinol 2009; 299:118-23. [PMID: 19027825 DOI: 10.1016/j.mce.2008.10.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 01/17/2023]
Abstract
Longevity in yeast, nematodes, fruit flies and mice is affected by mutations in the insulin/IGF-1 or homologous pathways. Studies on long-living people revealed some associations between genetic variants of the insulin/IGF-1 pathway and longevity. Here, we review such investigations, and we will report human longevity association studies regarding the variability of genes which modulate lifespan in model organisms by interacting with the insulin/IGF-1 pathway. These studies will be presented in three groups: (1) insulin/IGF-1 pathway transcriptional target, superoxide dismutase 2, heat shock protein, cytochrome p450 isoenzymes, glutathione transferases; (2) insulin/IGF-1 pathway accessory transduction proteins H-Ras, p66Shc; and (3) longevity pathways that converge on the insulin/IGF-1 pathway (Klotho, p53, Sirtuins, TGF-beta). The data reported support the notion that the insulin/IGF-1 pathway drives an evolutionarily conserved network that regulates lifespan and affects longevity across species.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Center for Applied Biomedical Research, (CRBA), St. Orsola-Malpighi University Hospital, Italy.
| | | |
Collapse
|
93
|
Abstract
Multisubunit complexes containing molecular chaperones regulate protein production, stability, and degradation in virtually every cell type. We are beginning to recognize how generalized and tissue-specific chaperones regulate specialized aspects of erythropoiesis. For example, chaperones intersect with erythropoietin signaling pathways to protect erythroid precursors against apoptosis. Molecular chaperones also participate in hemoglobin synthesis, both directly and indirectly. Current knowledge in these areas only scratches the surface of what is to be learned. Improved understanding of how molecular chaperones regulate erythropoietic development and hemoglobin homeostasis should identify biochemical pathways amenable to pharmacologic manipulation in a variety of red blood cell disorders including thalassemia and other anemias associated with hemoglobin instability.
Collapse
|
94
|
Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 2008; 29:1095-106. [PMID: 19075009 DOI: 10.1128/mcb.01227-08] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular accumulation of unfolded or misfolded proteins is believed to contribute to aging and age-related neurodegenerative diseases. However, the links between age-dependent proteotoxicity and cellular protein degradation systems remain poorly understood. Here, we show that 26S proteasome activity and abundance attenuate with age, which is associated with the impaired assembly of the 26S proteasome with the 19S regulatory particle (RP) and the 20S proteasome. In a genetic gain-of-function screen, we characterized Rpn11, which encodes a subunit of the 19S RP, as a suppressor of expanded polyglutamine-induced progressive neurodegeneration. Rpn11 overexpression suppressed the age-related reduction of the 26S proteasome activity, resulting in the extension of flies' life spans with suppression of the age-dependent accumulation of ubiquitinated proteins. On the other hand, the loss of function of Rpn11 caused an early onset of reduced 26S proteasome activity and a premature age-dependent accumulation of ubiquitinated proteins. It also caused a shorter life span and an enhanced neurodegenerative phenotype. Our results suggest that maintaining the 26S proteasome with age could extend the life span and suppress the age-related progression of neurodegenerative diseases.
Collapse
|
95
|
Perez FP, Zhou X, Morisaki J, Ilie J, James T, Jurivich DA. Engineered Repeated Electromagnetic Field Shock Therapy for Cellular Senescence and Age-Related Diseases. Rejuvenation Res 2008; 11:1049-57. [DOI: 10.1089/rej.2008.0793] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Ximing Zhou
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Jorge Morisaki
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - John Ilie
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Todd James
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Donald A. Jurivich
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| |
Collapse
|
96
|
Mocchegiani E, Malavolta M. Zinc-gene interaction related to inflammatory/immune response in ageing. GENES & NUTRITION 2008; 3:61-75. [PMID: 18850188 PMCID: PMC2467449 DOI: 10.1007/s12263-008-0085-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pivotal role played by zinc-gene interaction in affecting some relevant cytokines (IL-6 and TNF-alpha) and heat shock proteins (HSP70-2) in ageing, successful ageing (nonagenarians) and the most common age-related diseases, such as atherosclerosis and infections, is now recognized. The polymorphisms of genes codifying proteins related to the inflammation are predictive on one hand in longevity, on the other hand they are associated with atherosclerosis or severe infections. Since the health life-span has a strong genetic component, which in turn also affected by nutritional factors like zinc, the association of these polymorphisms with innate immune response, zinc ion bioavailability and Metallothioneins (MT) homeostasis is an useful tool to unravel the role played by zinc-gene interactions in longevity, especially due to the inability of MT in zinc release in ageing and chronic inflammation. In ageing, this last fact leads to depressed innate immune response for host defence. In contrast, in very old age the inflammation is lower with subsequent more zinc ion bioavailability, less MT gene expression and satisfactory innate immunity. Therefore, the zinc-gene (IL-6, TNF-alpha, Hsp70-2) interactions, via MT homeostasis, are crucial to achieve successful ageing.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center (Laboratory of Nutrigenomic and Immunosenescence), Research Department, INRCA, Via Birarelli 8, 60121, Ancona, Italy,
| | | |
Collapse
|
97
|
Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2008; 105:7094-9. [PMID: 18467495 DOI: 10.1073/pnas.0707025105] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The burden of protein misfolding is believed to contribute to aging. However, the links between adaptations to conditions associated with protein misfolding and resistance to the time-dependent attrition of cellular function remain poorly understood. We report that worms lacking aip-1, a homologue of mammalian AIRAP (arsenic-inducible proteasomal 19S regulatory particle-associated protein), are not only impaired in their ability to resist exposure to arsenite but also exhibit shortened lifespan and hypersensitivity to misfolding-prone proteins under normal laboratory conditions. Mammals have a second, constitutively expressed AIRAP-like gene (AIRAPL) that also encodes a proteasome-interacting protein, which shares with AIRAP the property of enhancing peptide accessibility to the proteasome's active site. Genetic rescue experiments suggest that features common to the constitutively expressed worm AIP-1 and mammalian AIRAPL (but missing in the smaller, arsenite-inducible AIRAP) are important to lifespan extension. In worms, a single AIRAP-related protein links proteasomal adaptation to environmental stress with resistance to both proteotoxic insults and maintenance of animal life span under normal conditions.
Collapse
|
98
|
CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol 2008; 28:4018-25. [PMID: 18411298 DOI: 10.1128/mcb.00296-08] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During the course of biological aging, there is a gradual accumulation of damaged proteins and a concomitant functional decline in the protein degradation system. Protein quality control is normally ensured by the coordinated actions of molecular chaperones and the protein degradation system that collectively help to maintain protein homeostasis. The carboxyl terminus of Hsp70-interacting protein (CHIP), a ubiquitin ligase/cochaperone, participates in protein quality control by targeting a broad range of chaperone substrates for proteasome degradation via the ubiquitin-proteasome system, demonstrating a broad involvement of CHIP in maintaining cytoplasmic protein quality control. In the present study, we have investigated the influence that protein quality control exerts on the aging process by using CHIP-/- mice. CHIP deficiency in mice leads to a markedly reduced life span, along with accelerated age-related pathophysiological phenotypes. These features were accompanied by indications of accelerated cellular senescence and increased indices of oxidative stress. In addition, CHIP-/- mice exhibit a deregulation of protein quality control, as indicated by elevated levels of toxic oligomer proteins and a decline in proteasome activity. Taken together, these data reveal that impaired protein quality control contributes to cellular senescence and implicates CHIP-dependent quality control mechanisms in the regulation of mammalian longevity in vivo.
Collapse
|
99
|
Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biol Chem 2008; 389:221-31. [DOI: 10.1515/bc.2008.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The prevalence of heart diseases, such as coronary artery disease and congestive heart failure, increases with age. Optimal therapeutic interventions that antagonize aging may reduce the occurrence and mortality of adult heart diseases. We discuss here how molecular mechanisms mediating life span extension affect aging of the heart and its resistance to pathological insults. In particular, we review our recent findings obtained from transgenic mice with cardiac-specific overexpression of Sirt1, which demonstrated delayed aging and protection against oxidative stress in the heart. We propose that activation of known longevity mechanisms in the heart may represent a novel cardioprotection strategy against aging and certain types of cardiac stress, such as oxidative stress.
Collapse
|
100
|
Storey KB, Storey JM. Tribute to P. L. Lutz: putting life on 'pause'--molecular regulation of hypometabolism. ACTA ACUST UNITED AC 2008; 210:1700-14. [PMID: 17488933 DOI: 10.1242/jeb.02716] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Entry into a hypometabolic state is an important survival strategy for many organisms when challenged by environmental stress, including low oxygen, cold temperatures and lack of food or water. The molecular mechanisms that regulate transitions to and from hypometabolic states, and stabilize long-term viability during dormancy, are proving to be highly conserved across phylogenic lines. A number of these mechanisms were identified and explored using anoxia-tolerant turtles as the model system, particularly from the research contributions made by Dr Peter L. Lutz in his explorations of the mechanisms of neuronal suppression in anoxic brain. Here we review some recent advances in understanding the biochemical mechanisms of metabolic arrest with a focus on ideas such as the strategies used to reorganize metabolic priorities for ATP expenditure, molecular controls that suppress cell functions (e.g. ion pumping, transcription, translation, cell cycle arrest), changes in gene expression that support hypometabolism, and enhancement of defense mechanisms (e.g. antioxidants, chaperone proteins, protease inhibitors) that stabilize macromolecules and promote long-term viability in the hypometabolic state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | |
Collapse
|