51
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
52
|
ISLAM NASHREENS, BORUAH JEENAJYOTI. Macromolecular peroxo complexes of Vanadium(V) and Molybdenum(VI): Catalytic activities and biochemical relevance. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0833-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
53
|
Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu S. Vanadium, recent advancements and research prospects: A review. ENVIRONMENT INTERNATIONAL 2015; 80:79-88. [PMID: 25898154 DOI: 10.1016/j.envint.2015.03.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Metal pollution is an important issue worldwide, with various documented cases of metal toxicity in mining areas, industries, coal power plants and agriculture sector. Heavy metal polluted soils pose severe problems to plants, water resources, environment and nutrition. Among all non-essential metals, vanadium (V) is becoming a serious matter of discussion for the scientists who deals with heavy metals. Due to its mobility from soil to plants, it causes adverse effects to human beings. This review article illustrates briefly about V, its role and shows the progress about V research so far done globally in the light of the previous work which may assist in inter-disciplinary studies to evaluate the ecological importance of V toxicity.
Collapse
Affiliation(s)
- Muhammad Imtiaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Muhammad Shahid Rizwan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shuanglian Xiong
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Hailan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Muhammad Ashraf
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, University Road, Sargodha, Punjab 40100, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, University Road, Sargodha, Punjab 40100, Pakistan.
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Muhammad Rizwan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shuxin Tu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
54
|
Chinopoulos C, Kiss G, Kawamata H, Starkov AA. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. Methods Enzymol 2015; 542:333-48. [PMID: 24862274 DOI: 10.1016/b978-0-12-416618-9.00017-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations.
Collapse
Affiliation(s)
| | - Gergely Kiss
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Hibiki Kawamata
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, USA
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, USA
| |
Collapse
|
55
|
Thirty years through vanadium chemistry. J Inorg Biochem 2015; 147:4-24. [PMID: 25843361 DOI: 10.1016/j.jinorgbio.2015.03.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/23/2022]
Abstract
The relevance of vanadium in biological systems is known for many years and vanadium-based catalysts have important industrial applications, however, till the beginning of the 80s research on vanadium chemistry and biochemistry did not receive much attention from the scientific community. The understanding of the broad bioinorganic implications resulting from the similarities between phosphate and vanadate(V) and the discovery of vanadium dependent enzymes gave rise to an enormous increase in interest in the chemistry and biological relevance of vanadium. Thereupon the last 30years corresponded to a period of enormous research effort in these fields, as well as in medicinal applications of vanadium and in the development of catalysts for use in fine-chemical synthesis, some of these inspired by enzymatic active sites. Since the 80s my group in collaboration with others made contributions, described throughout this text, namely in the understanding of the speciation of vanadium compounds in aqueous solution and in biological fluids, and to the transport of vanadium compounds in blood plasma and their uptake by cells. Several new types of vanadium compounds were also synthesized and characterized, with applications either as prospective therapeutic drugs or as homogeneous or heterogenized catalysts for the production of fine chemicals. The developments made are described also considering the international context of the evolution of the knowledge in the chemistry and bioinorganic chemistry of vanadium compounds during the last 30years. This article was compiled based on the Vanadis Award presentation at the 9th International Vanadium Symposium.
Collapse
|
56
|
Physiological roles of peroxido-vanadium complexes: Leitmotif as their signal transduction pathway. J Inorg Biochem 2015; 147:93-8. [PMID: 25912243 DOI: 10.1016/j.jinorgbio.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 11/24/2022]
Abstract
Evidence exists that supports the various physiological roles of vanadium compounds, although the amount of vanadium in our body is limited. This limited concentration in our body does not attract much attention of the biological chemists, although the fact is present; even in the 19th century, vanadium derivatives were used for the therapeutic reagents. In the middle of the 20th century, the main focus of vanadium chemistry is mainly on the chemical and material fields. After the first discovery of vanadium compounds expressing ATPase activity, oxidovanadium(IV) sulfate was reported to have insulin mimic activity. Additionally, because some vanadium compounds possess cellular toxicity, trials were also carried out to examine the possible use of vanadium compounds as cancer therapeutics. The application of vanadium complexes was extended in recent years especially in the 21st century. In this review, we briefly explain the historical background of vanadium chemistry and also summarize the physiological role of vanadium complexes mainly focusing on the synthesis and physiological role of peroxidovanadium compounds and their interactions with insulin signal transduction pathways.
Collapse
|
57
|
Magpusao AN, Omolloh G, Johnson J, Gascón J, Peczuh MW, Fenteany G. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR. ACS Chem Biol 2015; 10:561-9. [PMID: 25334087 PMCID: PMC4340362 DOI: 10.1021/cb500665r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
The cardiac glycosides ouabain and
digitoxin, established Na+/K+ ATPase inhibitors,
were found to inhibit MDA-MB-231
breast cancer cell migration through an unbiased chemical genetics
screen for cell motility. The Na+/K+ ATPase
acts both as an ion-transporter and as a receptor for cardiac glycosides.
To delineate which function is related to breast cancer cell migration,
structure–activity relationship (SAR) profiles of cardiac glycosides
were established at the cellular (cell migration inhibition), molecular
(Na+/K+ ATPase inhibition), and atomic (computational
docking) levels. The SAR of cardiac glycosides and their analogs revealed
a similar profile, a decrease in potency when the parent cardiac glycoside
structure was modified, for each activity investigated. Since assays
were done at the cellular, molecular, and atomic levels, correlation
of SAR profiles across these multiple assays established links between
cellular activity and specific protein–small molecule interactions.
The observed antimigratory effects in breast cancer cells are directly
related to the inhibition of Na+/K+ transport.
Specifically, the orientation of cardiac glycosides at the putative
cation permeation path formed by transmembrane helices αM1–M6
correlates with the Na+ pump activity and cell migration.
Other Na+/K+ ATPase inhibitors that are structurally
distinct from cardiac glycosides also exhibit antimigratory activity,
corroborating the conclusion that the antiport function of Na+/K+ ATPase and not the receptor function is important
for supporting the motility of MDA-MB-231 breast cancer cells. Correlative
SAR can establish new relationships between specific biochemical functions
and higher-level cellular processes, particularly for proteins with
multiple functions and small molecules with unknown or various modes
of action.
Collapse
Affiliation(s)
- Anniefer N. Magpusao
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - George Omolloh
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Joshua Johnson
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - José Gascón
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Gabriel Fenteany
- Department of Chemistry, University of Connecticut, 55 N.
Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| |
Collapse
|
58
|
Abstract
Vanadium is special in at least two respects: on the one hand, the tetrahedral anion vanadate(v) is similar to the phosphate anion; vanadate can thus interact with various physiological substrates that are otherwise functionalized by phosphate. On the other hand, the transition metal vanadium can easily expand its sphere beyond tetrahedral coordination, and switch between the oxidation states +v, +iv and +iii in a physiological environment. The similarity between vanadate and phosphate may account for the antidiabetic potential of vanadium compounds with carrier ligands such as maltolate and picolinate, and also for vanadium's mediation in cardiovascular and neuronal defects. Other potential medicinal applications of more complex vanadium coordination compounds, for example in the treatment of parasitic tropical diseases, may also be rooted in the specific properties of the ligand sphere. The ease of the change in the oxidation state of vanadium is employed by prokarya (bacteria and cyanobacteria) as well as by eukarya (algae and fungi) in respiratory and enzymatic functions. Macroalgae (seaweeds), fungi, lichens and Streptomyces bacteria have available haloperoxidases, and hence enzymes that enable the 2-electron oxidation of halide X(-) with peroxide, catalyzed by a Lewis-acidic V(V) center. The X(+) species thus formed can be employed to oxidatively halogenate organic substrates, a fact with implications also for the chemical processes in the atmosphere. Vanadium-dependent nitrogenases in bacteria (Azotobacter) and cyanobacteria (Anabaena) convert N2 + H(+) to NH4(+) + H2, but are also receptive for alternative substrates such as CO and C2H2. Among the enigmas to be solved with respect to the utilization of vanadium in nature is the accumulation of V(III) by some sea squirts and fan worms, as well as the purport of the nonoxido V(IV) compound amavadin in the fly agaric.
Collapse
Affiliation(s)
- Dieter Rehder
- Chemistry Department, University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
59
|
Patra D, Biswas N, Kumari B, Das P, Sepay N, Chatterjee S, Drew MGB, Ghosh T. A family of mixed-ligand oxidovanadium(v) complexes with aroylhydrazone ligands: a combined experimental and computational study on the electronic effects of para substituents of hydrazone ligands on the electronic properties, DNA binding and nuclease activities. RSC Adv 2015. [DOI: 10.1039/c5ra17844d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Substituents at 5-position in the acetophenone ring of the hydrazone ligands in a family of mixed-ligand oxidovanadium(v) complexes show marked influence on the electronic properties, DNA binding ability and nuclease activity.
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Bhavini Kumari
- Department of Chemistry
- Indian Institute of Technology Patna
- India
| | - Prolay Das
- Department of Chemistry
- Indian Institute of Technology Patna
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Shamba Chatterjee
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
60
|
Ito K, Matsuzaki M, Sasahara T, Shin M, Yayama K. Orthovanadate-Induced Vasoconstriction of Rat Mesenteric Arteries Is Mediated by Rho Kinase-Dependent Inhibition of Myosin Light Chain Phosphatase. Biol Pharm Bull 2015; 38:1809-1816. [PMID: 26521832 DOI: 10.1248/bpb.b15-00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Orthovanadate (OVA), a protein tyrosine phosphatase inhibitor, induces vasoconstriction in a Rho kinase-dependent manner. The aim of this study was to determine the mechanism underlying OVA-induced vasoconstriction of rat mesenteric arteries. OVA-induced constriction of mesenteric arterial rings treated with N(G)-nitro-L-arginine methyl ester (L-NAME, 0.1 mM), a nitric oxide synthase inhibitor, was significantly blocked by the Rho kinase inhibitor Y-27632 (R-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 10 µM), extracellular signal-regulated kinase 1 and 2 (Erk1/2) inhibitor FR180204 (5-(2-phenyl-pyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-3-ylamine, 10 µM), Erk1/2 kinase (MEK) inhibitor PD98059 (2'-amino-3'-methoxyflavone, 10 µM), epidermal growth factor receptor (EGFR) inhibitor AG1478 (4-(3-chloroanilino)-6,7-dimethoxyquinazoline, 10 µM), and Src inhibitor PP2 (4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 3 µM). However, the myosin light chain kinase inhibitor ML-7 (1-(5-iodonaphthalene-1-sulfonyl)-homopiperazine, 10 µM) did not affect OVA-induced constriction. Phosphorylation of myosin phosphatase target subunit 1 (MYPT1, an index of Rho kinase activity) was abrogated by inhibitors of Src, EGFR MEK, Erk1/2, and Rho kinase. OVA-stimulated Erk1/2 phosphorylation was blocked by inhibitors of EGFR, Src, MEK, and Erk1/2 but not affected by an inhibitor of Rho kinase. OVA-induced Src phosphorylation was abrogated by an Src inhibitor but not affected by inhibitors of EGFR, MEK, Erk1/2, and Rho kinase. In addition, the metalloproteinase inhibitor TAPI-0 (N-(R)-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl-L-naphthylalanyl-L-alanine amide, 10 µM) and an inhibitor of heparin/epidermal growth factor binding (CRM 197, 10 µg/mL) did not affect OVA-induced contraction of rat mesenteric arterial rings. These results suggest that OVA induces vasoconstriction in rat mesenteric arteries via Src, EGFR, MEK, and Erk1/2 activation, leading to the inactivation of myosin light chain phosphatase through phosphorylation of MYPT1.
Collapse
Affiliation(s)
- Kazuya Ito
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | | | | | | | | |
Collapse
|
61
|
Kustin K. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review. J Inorg Biochem 2014; 147:32-8. [PMID: 25578410 DOI: 10.1016/j.jinorgbio.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics.
Collapse
Affiliation(s)
- Kenneth Kustin
- Department of Chemistry, Emeritus, MS015, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
62
|
Guzmán D. LA, Martínez JD, Araujo ML, Brito F, del Carpio E, Hernández L, Lubes V. Formation constants for the ternary complexes of vanadium(III), 8-hidroxyquinoline, and the amino acids histidine, cysteine, aspartic and glutamic acids. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Damnjanovic B, Apell HJ. KdpFABC reconstituted in Escherichia coli lipid vesicles: substrate dependence of the transport rate. Biochemistry 2014; 53:5674-82. [PMID: 25144826 DOI: 10.1021/bi5008244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KdpFABC complexes were reconstituted in Escherichia coli lipid vesicles, and ion pumping was activated by addition of ATP to the external medium which corresponds to the cytoplasm under physiological conditions. ATP-driven potassium extrusion was studied in the presence of various substrates potentially influencing transport rate. The pump current was detected as a decrease of the membrane potential by the voltage-sensitive dye DiSC3(5). The results indicate that high cytoplasmic K(+) concentrations have an inhibitory effect on the KdpFABC complex. The pump current decreased to ∼25% of the maximal value at 140 mM K(+) and minimal Mg(2+)concentrations. This effect could be counteracted with increased Mg(2+) concentrations on the cytoplasmic side. This observation may be explained by the Gouy-Chapman effect of two Mg(2+) ions probably bound with a K1/2 of 0.8 mM close to the entrance of the access channel to the binding sites. This factor ensures that under physiological conditions the rate-limiting effect of K(+) release is significantly reduced. Also both ADP and inorganic phosphate are able to reduce the turnover rate of the pump by reversing the phosphorylation step (Ki of 151 μM) and the dephosphorylation step (Ki of 268 μM), respectively. In the case of the DDM-solubilized KdpFABC complex, activation energy under turnover conditions was previously found to be 55 kJ/mol, and the o-vanadate inhibition constant is shown here to be ∼1 μM, which is in agreement with values reported for other P-type ATPases. In the case of the reconstituted enzyme, however, significant differences were observed that have to be assigned to effects of the lipid bilayer environment. The activation energy was increased by a factor of 2, whereas the inhibition by o-vanadate became reduced in a way that only ∼66% of the enzyme could be inhibited and the inhibition constant was increased to a value of ∼60 μM.
Collapse
Affiliation(s)
- Bojana Damnjanovic
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz , 78464 Konstanz, Germany
| | | |
Collapse
|
64
|
Preface. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Crans DC, Tarlton ML, McLauchlan CC. Trigonal Bipyramidal or Square Pyramidal Coordination Geometry? Investigating the Most Potent Geometry for Vanadium Phosphatase Inhibitors. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402306] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
66
|
|
67
|
ATPase inhibitor based luciferase assay for prolonged and enhanced ATP pool measurement as an efficient fish freshness indicator. Anal Bioanal Chem 2014; 406:4541-9. [PMID: 24838490 DOI: 10.1007/s00216-014-7840-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
The nucleotide degradation pathway in somatic cells leads to the accumulation of products such as hypoxanthine and inosine, which are commonly used as fish and meat freshness indicators. Assays based on these molecules cannot differentiate the postmortem time over a short period of time (5-10 h). Further, quantification of these degradation products is cumbersome, costly and time-consuming. For the proposed assay, optimal concentrations of 30 and 2 mM, respectively, for the ATPase inhibitors sodium orthovanadate and EDTA were found. Further, it was observed that a firefly luciferase based assay could enhance the sensitivity levels up to 165-fold at 30 °C. In addition, it was observed that the sensitivity for ATP assay was enhanced up to 60-fold even after 12 h. The limit of detection for the ATP assay was 1 pM, unlike other conventional methods, which are sensitive only up to micromolar levels. Moreover, as little as 0.044 g fish fillet was required for the assay, and no time-consuming sample preparation was necessary. Luminescence of prolonged duration was observed in harvested fish kept at -20 °C in comparison with fish kept at 4 and 30 °C, which reflects the shelf life of fish preserved at lower temperatures.
Collapse
|
68
|
Yayama K, Sasahara T, Ohba H, Funasaka A, Okamoto H. Orthovanadate-induced vasocontraction is mediated by the activation of Rho-kinase through Src-dependent transactivation of epidermal growth factor receptor. Pharmacol Res Perspect 2014; 2:e00039. [PMID: 25505586 PMCID: PMC4184709 DOI: 10.1002/prp2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/26/2023] Open
Abstract
Orthovanadate (OVA), a protein tyrosine phosphatase (PTPase) inhibitor, exerts contractile effects on smooth muscle in a Rho-kinase-dependent manner, but the precise mechanisms are not elucidated. The aim of this study was to determine the potential roles of Src and epidermal growth factor receptor (EGFR) in the OVA-induced contraction of rat aortas and the phosphorylation of myosin phosphatase target subunit 1 (MYPT1; an index of Rho-kinase activity) in vascular smooth muscle cells (VSMCs). Aortic contraction by OVA was significantly blocked not only by Rho kinase inhibitors Y-27632 [R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cyclohexanecarboxamide] and hydroxyfasudil [1-(1-hydroxy-5-isoquinolinesulfonyl)homopiperazine] but also by Src inhibitors PP2 [4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine] and Src inhibitor No. 5 [4-(3′-methoxy-6′-chloro-anilino)-6-methoxy-7(morpholino-3-propoxy)-quinazoline], and the EGFR inhibitors AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline] and EGFR inhibitor 1 [cyclopropanecarboxylic acid-(3-(6-(3-trifluoromethyl-phenylamino)-pyrimidin-4-ylamino)-phenyl)-amide]. OVA induced rapid increases in the phosphorylation of MYPT1 (Thr-853), Src (Tyr-416), and EGFR (Tyr-1173) in VSMCs, and Src inhibitors abolished these effects. OVA-induced Src phosphorylation was abrogated by Src inhibitors, but not affected by inhibitors of EGFR and Rho-kinase. Inhibitors of Src and EGFR, but not Rho-kinase, also blocked OVA-induced EGFR phosphorylation. Furthermore, a metalloproteinase inhibitor TAPI-0 [N-(R)-[2-(hydroxyaminocarbonyl) methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine amide] and an inhibitor of heparin-binding EGF (CRM 197) not only abrogated the OVA-induced aortic contraction, but also OVA-induced EGFR and MYPT1 phosphorylation, suggesting the involvement of EGFR transactivation. OVA also induced EGFR phosphorylation at Tyr-845, one of residues phosphorylated by Src. These results suggest that OVA-induced vasocontraction is mediated by the Rho-kinase-dependent inactivation of myosin light-chain phosphatase via signaling downstream of Src-induced transactivation of EGFR.
Collapse
Affiliation(s)
- Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Tomoya Sasahara
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hisaaki Ohba
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Ayaka Funasaka
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hiroshi Okamoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
69
|
|
70
|
Kerek F, Voicu VA. Spherical Oligo-Silicic Acid SOSA Disclosed as Possible Endogenous Digitalis-Like Factor. Front Endocrinol (Lausanne) 2014; 5:233. [PMID: 25667581 PMCID: PMC4304351 DOI: 10.3389/fendo.2014.00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/16/2014] [Indexed: 11/15/2022] Open
Abstract
The Na(+)/K(+)-ATPase is a membrane ion-transporter protein, specifically inhibited by digitalis glycosides used in cardiac therapy. The existence in mammals of some endogenous digitalis-like factors (EDLFs) as presumed ATPase ligands is generally accepted. But the chemical structure of these factors remained elusive because no weighable amounts of pure EDLFs have been isolated. Recent high-resolution crystal structure data of Na(+)/K(+)-ATPase have located the hydrophobic binding pocket of the steroid glycoside ouabain. It remained uncertain if the EDLF are targeting this steroid-receptor or another specific binding site(s). Our recently disclosed spherical oligo-silicic acids (SOSA) fulfill the main criteria to be identified with the presumed EDL factors. SOSA was found as a very potent inhibitor of the Na(+)/K(+)-ATPase, Ca(2+)-ATPase, H(+)/K(+)-ATPase, and of K-dp-ATPase, with IC50 values between 0.2 and 0.5 μg/mL. These findings are even more astonishing while so far, neither monosilicic acid nor its poly-condensed forms have been remarked biologically active. With the diameter ϕ between 1 and 3 nm, SOSA still belong to molecular species definitely smaller than silica nano-particles with ϕ > 5 nm. In SOSA molecules, almost all Si-OH bonds are displayed on the external shell, which facilitates the binding to hydrophilic ATPase domains. SOSA is stable for long term in solution but is sensitive to freeze-drying, which could explain the failure of countless attempts to isolate pure EDLF. There is a strong resemblance between SOSA and vanadates, the previously known general inhibitors of P-type ATPases. SOSA may be generated endogenously by spherical oligomerization of the ubiquitously present monosilicic acid in animal fluids. The structure of SOSA is sensitive to the concentration of Na(+), K(+), Ca(2+), Mg(2+), and other ions suggesting a presumably archaic mechanism for the regulation of the ATPase pumps.
Collapse
Affiliation(s)
- Franz Kerek
- SiNatur GmbH, Martinsried, Germany
- *Correspondence: Franz Kerek, SiNatur GmbH, Am Klopferspitz 19, IZB, 82152 Munich, Germany e-mail:
| | - Victor A. Voicu
- Department of Clinical Pharmacology, Toxicology and Psychopharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
71
|
Dash SP, Pasayat S, Bhakat S, Roy S, Dinda R, Tiekink ERT, Mukhopadhyay S, Bhutia SK, Hardikar MR, Joshi BN, Patil YP, Nethaji M. Highly Stable Hexacoordinated Nonoxidovanadium(IV) Complexes of Sterically Constrained Ligands: Syntheses, Structure, and Study of Antiproliferative and Insulin Mimetic Activity. Inorg Chem 2013; 52:14096-107. [DOI: 10.1021/ic401866x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Subhashree P. Dash
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sagarika Pasayat
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Saswati Bhakat
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Satabdi Roy
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rupam Dinda
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Subhadip Mukhopadhyay
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sujit K. Bhutia
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Manasi R. Hardikar
- Biometry
and Nutrition Group, Agharkar Research Institute, G.G. Agrakar Road, Pune 411004
| | - Bimba N. Joshi
- Biometry
and Nutrition Group, Agharkar Research Institute, G.G. Agrakar Road, Pune 411004
| | - Yogesh P. Patil
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - M. Nethaji
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
72
|
Fedorova EV, Buryakina AV, Vorobieva NM, Baranova NI. The vanadium compounds: Chemistry, synthesis, insulinomimetic properties. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813040021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Abstract
The putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with particular focus on the interaction of decavanadate with Ca(2+)-ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca(2+)-ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore need to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca(2+)-ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10 (IC50 = 15 μM) which is quite similar to the majority of the established therapeutic drugs.
Collapse
|
74
|
Mohamed TMA, Abou-Leisa R, Baudoin F, Stafford N, Neyses L, Cartwright EJ, Oceandy D. Development and characterization of a novel fluorescent indicator protein PMCA4-GCaMP2 in cardiomyocytes. J Mol Cell Cardiol 2013; 63:57-68. [PMID: 23880607 DOI: 10.1016/j.yjmcc.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
Isoform 4 of the plasma membrane calcium/calmodulin dependent ATPase (PMCA4) has recently emerged as an important regulator of several key pathophysiological processes in the heart, such as contractility and hypertrophy. However, direct monitoring of PMCA4 activity and assessment of calcium dynamics in its vicinity in cardiomyocytes are difficult due to the lack of molecular tools. In this study, we developed novel calcium fluorescent indicators by fusing the GCaMP2 calcium sensor to the N-terminus of PMCA4 to generate the PMCA4-GCaMP2 fusion molecule. We also identified a novel specific inhibitor of PMCA4, which might be useful for studying the role of this molecule in cardiomyocytes and other cell types. Using an adenoviral system we successfully expressed PMCA4-GCaMP2 in both neonatal and adult rat cardiomyocytes. This fusion molecule was correctly targeted to the plasma membrane and co-localised with caveolin-3. It could monitor signal oscillations in electrically stimulated cardiomyocytes. The PMCA4-GCaMP2 generated a higher signal amplitude and faster signal decay rate compared to a mutant inactive PMCA4(mut)GCaMP2 fusion protein, in electrically stimulated neonatal and adult rat cardiomyocytes. A small molecule library screen enabled us to identify a novel selective inhibitor for PMCA4, which we found to reduce signal amplitude of PMCA4-GCaMP2 and prolong the time of signal decay (Tau) to a level comparable with the signal generated by PMCA4(mut)GCaMP2. In addition, PMCA4-GCaMP2 but not the mutant form produced an enhanced signal in response to β-adrenergic stimulation. Together, the PMCA4-GCaMP2 and PMCA4(mut)GCaMP2 demonstrate calcium dynamics in the vicinity of the pump under active or inactive conditions, respectively. In summary, the PMCA4-GCaMP2 together with the novel specific inhibitor provides new means with which to monitor calcium dynamics in the vicinity of a calcium transporter in cardiomyocytes and may become a useful tool to further study the biological functions of PMCA4. In addition, similar approaches could be useful for studying the activity of other calcium transporters during excitation-contraction coupling in the heart.
Collapse
Affiliation(s)
- Tamer M A Mohamed
- Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PT, UK; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | | | | | | | | |
Collapse
|
75
|
Lin CY, Trinh NN, Lin CW, Huang HJ. Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:98-104. [PMID: 23500712 DOI: 10.1016/j.plaphy.2013.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/05/2013] [Indexed: 06/01/2023]
Abstract
Trace concentrations of vanadium (V) have several benefits for plant growth, but high concentrations are toxic. To help characterize the cellular mechanisms underlying the toxic effects of V in plants, we present the first large-scale analysis of rice root responding to V during the early stages (1 and 3 h) of toxicity. Exposure to V triggered changes in the transcript levels of several genes related to cellular metabolic process, response to stimulus and transporters. Gene expression profiling revealed upregulated levels of genes associated with signaling and biosynthesis of auxin, abscisic acid (ABA) and jasmonic acid (JA) in V-treated rice roots. In addition, V upregulated the expression of ATP-dependent GSH-conjugated transport, ATP binding cassette (ABC) transporter, and markedly downregulated of the expression of divalent cation transporters, drug/metabolite transporter (DMT) and zinc-iron permease (ZIP). Among the V-specific responsive transcription factors and protein kinases, the most predominant families were NAC (NAM, ATAF, CUC) transcription factor, receptor-like cytoplasmic kinase VII (RLCK-VII) and leucine-rich repeat kinase VIII (LRR-VIII). These microarray data provide a new insight into the molecular mechanism of the rice roots response to V toxicity.
Collapse
Affiliation(s)
- Chung-Yi Lin
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
76
|
Artal MC, Holtz RD, Kummrow F, Alves OL, Umbuzeiro GDA. The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:908-912. [PMID: 23341191 DOI: 10.1002/etc.2128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/22/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Nanomaterials are used in a wide spectrum of applications, including nanowires that are objects with at least one of its dimensions in the range of 1 to 100 nm. Recently, a new type of silver vanadate nanowire decorated with silver nanoparticles (SVSN-LQES1) with promising antimicrobial activity against different pathogenic bacteria was described. The objective of the present study was to evaluate the role of silver and vanadium release in the acute toxicity of this material using Daphnia similis. To verify the effect of the presence of the nanowires in the test solution, tests were performed before and after filtration. Total silver release to the testing media was determined using the method of inductively coupled plasma atomic emission spectroscopy (ICP-AES). Silver vanadate nanowires decorated with silver nanoparticles (SVSN-LQES1) are acutely toxic to D. similis. The release of silver from the nanomaterial trapped in the gut along with the silver released to the test media seems to be responsible for the observed toxicity. Although toxic to Daphnia, vanadium does not contribute to the toxicity of SVSN-LQES1. The observed increase in lipid droplets appears to be related to the exposure of the organisms to the nanomaterials, but the significance of this response needs further investigation.
Collapse
Affiliation(s)
- Mariana Coletty Artal
- Laboratory of Ecotoxicology and Environmental Microbiology, Faculty of Technology, State University of Campinas, Limeira, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
77
|
Smith PG, Boutin C, Knopper L. Vanadium pentoxide phytotoxicity: effects of species selection and nutrient concentration. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:87-96. [PMID: 23052358 DOI: 10.1007/s00244-012-9806-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Vanadium concentrations in soil can be increased through anthropogenic inputs and can be harmful to plants. A Petri dish experiment was conducted to assess the effect of vanadium toxicity on the germination and survival of the garden lettuce, Lactuca sativa. A second study was conducted in a greenhouse to investigate the influence of species selection and nutrient concentration on the toxicity of vanadium pentoxide to plants. L. sativa and four non-crop native plant species, two grasses (Elymus virginicus and Panicum virgatum) and two broad-leaved species (Lycopus americanus and Prunella vulgaris) were selected. Artificial soil was used in both experiments, and a geometric progression of five vanadium concentrations plus controls was selected for the soil treatments. Results of the Petri dish experiment showed that seedling survival is a less sensitive end point than above-ground dry weight (DW) as measured in the greenhouse experiment. Nutrient level (100, 10, and 1 kg/ha) was found to strongly influence vanadium toxicity in the greenhouse study. At 100 kg/ha, plant tolerance to vanadium was greatest, as indicated by higher no-observed, lowest-observed, and percentage effect concentration values. Results showed that forbs (L. americanus and P. vulgaris) tended to be more sensitive than both the crop (L. sativa) and grasses (E. virginicus and P. virgatum) at high concentrations of vanadium. Soil concentrations resulting in a 25 % decrease in shoot DW were generally less than the Canadian soil quality guideline for vanadium, suggesting that 130 mg/kg may not be protective of the Canadian native plant species used in this study.
Collapse
|
78
|
|
79
|
Abstract
Vanadium is the 21st most abundant element in the Earth's crust and the 2nd-to-most abundant transition metal in sea water. The element is ubiquitous also in freshwater and nutrients. The average body load of a human individual amounts to 1 mg. The omnipresence of vanadium hampers checks directed towards its essentiality. However, since vanadate can be considered a close blueprint of phosphate with respect to its built-up, vanadate likely takes over a regulatory function in metabolic processes depending on phosphate. At common concentrations, vanadium is non-toxic. The main source for potentially toxic effects caused by vanadium is exposure to high loads of vanadium oxides in the breathing air of vanadium processing industrial enterprises. Vanadium can enter the body via the lungs or, more commonly, the stomach. Most of the dietary vanadium is excreted. The amount of vanadium resorbed in the gastrointestinal tract is a function of its oxidation state (V(V) or V(IV)) and the coordination environment. Vanadium compounds that enter the blood stream are subjected to speciation. The predominant vanadium species in blood are vanadate and vanadyl bound to transferrin. From the blood stream, vanadium becomes distributed to the body tissues and bones. Bones act as storage pool for vanadate. The aqueous chemistry of vanadium(V) at concentration <10 μM is dominated by vanadate. At higher concentrations, oligovanadates come in, decavanadate in particular, which is thermodynamically stable in the pH range 2.3-6.3, and can further be stabilized at higher pH by interaction with proteins.The similarity between vanadate and phosphate accounts for the interplay between vanadate and phosphate-dependent enzymes: phosphatases can be inhibited, kinases activated. As far as medicinal applications of vanadium compounds are concerned, vanadium's mode of action appears to be related to the phosphate-vanadate antagonism, to the direct interaction of vanadium compounds or fragments thereof with DNA, and to vanadium's contribution to a balanced tissue level of reactive oxygen species. So far vanadium compounds have not yet found approval for medicinal applications. The antidiabetic (insulin-enhancing) effect, however, of a singular vanadium complex, bis(ethylmaltolato)oxidovanadium(IV) (BEOV), has revealed encouraging results in phase IIa clinical tests. In addition, in vitro studies with cell cultures and parasites, as well as in vivo studies with animals, have revealed a broad potential spectrum for the application of vanadium coordination compounds in the treatment of cardiac and neuronal disorders, malignant tumors, viral and bacterial infections (such as influenza, HIV, and tuberculosis), and tropical diseases caused by parasites, e.g., Chagas' disease, leishmaniasis, and amoebiasis.
Collapse
Affiliation(s)
- Astrid Sigel
- Dept. of Chemistry, Inorganic Chemistry, University of Basel, Basel, Basel Stadt Switzerland
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Roland K.O. Sigel
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Zürich Switzerland
| |
Collapse
|
80
|
Prolactin stimulates the L-type calcium channel-mediated transepithelial calcium transport in the duodenum of male rats. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
81
|
Imura H, Shimada A, Naota M, Morita T, Togawa M, Hasegawa T, Seko Y. Vanadium toxicity in mice: possible impairment of lipid metabolism and mucosal epithelial cell necrosis in the small intestine. Toxicol Pathol 2012; 41:842-56. [PMID: 23222995 DOI: 10.1177/0192623312467101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Because precise information as to the toxicity of vanadium is required for practical use of vanadium compounds as antidiabetic drugs, we examined vanadium toxicity in mice fed normal diet or high-fat diet (C57BL/6N, male, 7 weeks) by oral administration of ammonium metavanadate (AMV) with a maximum dose of 20 mgV/kg/day. Marked lipid accumulation in hepatocytes, renal epithelial cells, and mucosal epithelial cells of the small and large intestines and severe degeneration, necrosis, and loss of mucosal epithelial cells in the small intestine were observed. These pathological changes were more severe in mice fed high-fat diet than mice fed normal diet, and the intensity of the changes increased with increase in the administered dose of AMV. By electron microscopy, the number and size of lipid droplets in hepatocytes were increased. In the small intestine, a TUNEL assay showed a decreased number of positive cells, and positive cells for acrolein immunohistochemistry were observed specifically in the mucosal epithelial cells indicating degeneration and necrosis in the AMV-treated group, suggesting that a possible factor responsible for cell necrosis in the small intestine could be oxidative stress. In conclusion, AMV may impair cellular lipid metabolism, resulting in lipid accumulation, and induce mucosal epithelial cell necrosis in the small intestine.
Collapse
Affiliation(s)
- Hitomi Imura
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
Kume S, Ueki T, Matsuoka H, Hamada M, Satoh N, Michibata H. Differential gene regulation by VIV and VV ions in the branchial sac, intestine, and blood cells of a vanadium-rich ascidian, Ciona intestinalis. Biometals 2012; 25:1037-50. [DOI: 10.1007/s10534-012-9569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/06/2012] [Indexed: 11/25/2022]
|
83
|
Sato K, Ohnuki T, Takahashi H, Miyashita Y, Nozaki K, Kanamori K. Preparation, structure, and properties of tetranuclear vanadium(III) and (IV) complexes bridged by diphenyl phosphate or phosphate. Inorg Chem 2012; 51:5026-36. [PMID: 22486192 DOI: 10.1021/ic2024617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three novel tetranuclear vanadium(III) or (IV) complexes bridged by diphenyl phosphate or phosphate were prepared and their structures characterized by X-ray crystallography. The novel complexes are [{V(III)(2)(μ-hpnbpda)}(2){μ-(C(6)H(5)O)(2)PO(2)}(2)(μ-O)(2)]·6CH(3)OH (1), [{V(III)(2)(μ-tphpn)(μ-η(3)-HPO(4))}(2)(μ-η(4)-PO(4))](ClO(4))(3)·4.5H(2)O (2), and [{(V(IV)O)(2)(μ-tphpn)}(2)(μ-η(4)-PO(4))](ClO(4))(3)·H(2)O (3), where hpnbpda and tphpn are alkoxo-bridging dinucleating ligands. H(3)hpnbpda represents 2-hydroxypropane-1,3-diamino-N,N'-bis(2-pyridylmethyl)-N,N'-diacetic acid, and Htphpn represents N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine. A dinuclear vanadium(IV) complex without a phosphate bridge, [(VO)(2)(μ-tphpn)(H(2)O)(2)](ClO(4))(3)·2H(2)O (4), was also prepared and structurally characterized for comparison. The vanadium(III) center in 1 adopts a hexacoordinate structure while that in 2 adopts a heptacoordinate structure. In 1, the two dinuclear vanadium(III) units bridged by the alkoxo group of hpnbpda are further linked by two diphenylphosphato and two oxo groups, resulting in a dimer-of-dimers. In 2, the two vanadium(III) units bridged by tphpn are further bridged by three phosphate ions with two different coordination modes. Complex 2 is oxidized in aerobic solution to yield complex 3, in which two of the three phosphate groups in 2 are substituted by oxo groups.
Collapse
Affiliation(s)
- Kyouhei Sato
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | |
Collapse
|
84
|
Ramos S, Moura JJG, Aureliano M. Recent advances into vanadyl, vanadate and decavanadate interactions with actin. Metallomics 2012; 4:16-22. [PMID: 22012168 DOI: 10.1039/c1mt00124h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.
Collapse
Affiliation(s)
- S Ramos
- REQUIMTE/CQFB, Dpto Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
85
|
Ramos S, Moura JJG, Aureliano M. A Comparison between Vanadyl, Vanadate, and Decavanadate Effects in Actin Structure and Function: Combination of Several Spectroscopic Studies. JOURNAL OF SPECTROSCOPY 2012; 27:355-359. [DOI: 10.1155/2012/532904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The studies about the interaction of actin with vanadium are seldom. In the present paper the effects of vanadyl, vanadate, and decavanadate in the actin structure and function were compared. Decavanadate clearly interacts with actin, as shown by 51V‐NMR spectroscopy. Decavanadate interaction with actin induces protein cysteine oxidation and vanadyl formation, being both prevented by the natural ligand of the protein, ATP. Monomeric actin (G‐actin) titration with vanadyl, as analysed by EPR spectroscopy, indicates a 1 : 1 binding stoichiometry and a kd of 7.5 μM. Both decavanadate and vanadyl inhibited G‐actin polymerization into actin filaments (F‐actin), with a IC50 of 68 and 300 μM, respectively, as analysed by light‐scattering assays. However, only vanadyl induces G‐actin intrinsic fluorescence quenching, which suggests the presence of vanadyl high‐affinity actin‐binding sites. Decavanadate increases (2.6‐fold) actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Finally, both vanadium species increased ε‐ATP exchange rate (k = 6.5 × 10−3 and 4.47 × 10−3 s−1 for decavanadate and vanadyl, resp.). Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl.
Collapse
|
86
|
Lv YK, Jiang ZG, Gan LH, Liu MX, Feng YL. Three novel organic-inorganic hybrid materials based on decaoxovanadates obtained from a new liquid phase reaction. CrystEngComm 2012. [DOI: 10.1039/c1ce05605k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
87
|
Liu X, Cui HM, Peng X, Fang J, Cui W, Wu B. The effect of dietary vanadium on cell cycle and apoptosis of liver in broilers. Biol Trace Elem Res 2011; 143:1508-15. [PMID: 21331564 DOI: 10.1007/s12011-011-8993-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
The objective of this study was to clarify the effects of dietary vanadium on cell cycle and apoptosis of liver in broilers. Four hundred and twenty one-day-old avian broilers were divided into six groups and fed on a corn-soybean basal diet as control diet or the same diet amended to contain 5, 15, 30, 45, and 60 mg/kg vanadium supplied as ammonium metavanadate for 42 days. As tested by flow cytometry, hepatocytes in G (0)/G (1) phase were significantly increased in number in 45 and 60 mg/kg groups, and hepatocytes in S, G (2) + M phases in 45 and 60 mg/kg groups and the proliferation index of hepatocytes in 30, 45, and 60 mg/kg were markedly decreased when compared with those of control group. At the same time, the percentage of hepatocyte apoptosis was markedly increased in both 45 and 60 mg/kg groups. The results showed that dietary vanadium in the range of 45 ∼ 60 mg/kg caused cell cycle arrest and apoptosis of hepatocytes in broilers.
Collapse
Affiliation(s)
- Xiaodong Liu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | | | | | | | | | | |
Collapse
|
88
|
Makihira S, Nikawa H, Kajiya M, Kawai T, Mine Y, Kosaka E, Silva MJ, Tobiume K, Terada Y. Blocking of sodium and potassium ion-dependent adenosine triphosphatase-α1 with ouabain and vanadate suppresses cell–cell fusion during RANKL-mediated osteoclastogenesis. Eur J Pharmacol 2011; 670:409-18. [DOI: 10.1016/j.ejphar.2011.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
89
|
Coordination asymmetry in μ-oxido divanadium complexes: Development of synthetic protocols. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
|
91
|
Micera G, Garribba E. Is the spin-orbit coupling important in the prediction of the 51V hyperfine coupling constants of V(IV) O2+ species? ORCA versus Gaussian performance and biological applications. J Comput Chem 2011; 32:2822-35. [PMID: 21735449 DOI: 10.1002/jcc.21862] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 05/15/2011] [Indexed: 01/26/2023]
Abstract
Density functional theory calculations of the (51)V hyperfine coupling (HFC) tensor A, have been completed for eighteen V(IV)O(2+) complexes with different donor set, electric charge and coordination geometry. A tensor was calculated with ORCA software with several functionals and basis sets taking into account the spin-orbit coupling contribution. The results were compared with those obtained with Gaussian 03 software using the half-and-half functional BHandHLYP and 6-311g(d,p) basis set. The order of accuracy of the functionals in the prediction of A(iso), A(z) and dipolar term A(z,anis) is BHandHLYP > PBE0 >> B3PW > TPSSh >> B3LYP >> BP86 > VWN5 (for A(iso)), BHandHLYP > PBE0 >> B3PW > TPSSh > B3LYP >> BP86 > VWN5 (for A(z)), B3LYP > PBE0 ∼ B3PW ∼ BHandHLYP >> TPSSh > BP86 ∼ VWN5 (for A(z,anis)). The good agreement in the prediction of A(z) with BHandHLYP is due to a compensation between the overestimation of A(iso) and underestimation of A(z,anis) (A(z) = A(iso) + A(z,anis)), whereas among the hybrid functionals PBE0 performs better than the other ones. BHandHLYP functional and Gaussian software are recommended when the V(IV)O(2+) species contains only V-O and/or V-N bonds, whereas PBE0 functional and ORCA software for V(IV)O(2+) complexes with one or more V-S bonds. Finally, the application of these methods to the coordination environment of V(IV)O(2+) ion in V-proteins, like vanadyl-substituted insulin, carbonic anhydrase, collagen and S-adenosylmethionine synthetase, was discussed.
Collapse
Affiliation(s)
- Giovanni Micera
- Dipartimento di Chimica e Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | | |
Collapse
|
92
|
Mochizuki M, Kudo E, Kikuchi M, Takano T, Taniuchi Y, Kitamura T, Hondo R, Ueda F. A basic study on the biological monitoring for vanadium-effects of vanadium on Vero cells and the evaluation of intracellular vanadium contents. Biol Trace Elem Res 2011; 142:117-26. [PMID: 20556539 DOI: 10.1007/s12011-010-8741-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/24/2010] [Indexed: 11/28/2022]
Abstract
A high concentration of vanadium (V) has toxic effects on human and animals and is one of environmental pollutants. In the present study, we have conducted a fundamental study using cultured Vero cells from monkey kidney for the future environmental monitoring. Orthovanadate (VAN), one of V compounds, of 10(-10) and 10(-8) M did not affect the cell growth although the higher concentration of above 10(-6) M VAN inhibited the cell growth accompanied with the decrease in cell numbers and morphological changes. Given that the washing method with ice-cold Li is also effective for determination of the cellular Na content, we used this method for the determination of the V content of the Vero cells. The V distributions in Vero cell; in the 10(-3) M VAN solution, extracellular and intracellular were obtained as 1:0.564:0.036 and 1:0.662:0.098 at 60 and 120 min after the treatment of VAN. The intracellular V content was 10% of the applied concentration of VAN. Consequently, it was suggested that V concentration of 10(-7) and 10(-6) M in the tissue and environment, respectively, might become the threshold concentration; a criterion of the environmental contamination when we carry out environmental monitoring.
Collapse
Affiliation(s)
- Mariko Mochizuki
- Department of Applied Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Kurt O, Ozden TY, Ozsoy N, Tunali S, Can A, Akev N, Yanardag R. Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. Biometals 2011; 24:943-9. [PMID: 21479831 DOI: 10.1007/s10534-011-9452-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
In recent years, the role of free radical damage consequent to oxidative stress is widely discussed in diabetic complications. In this aspect, the protection of cell integrity by trace elements is a topic to be investigated. Vanadium is a trace element believed to be important for normal cell function and development. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the muscle tissue of diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) to male Swiss albino rats. The rats were randomly divided into 4 groups: Group I, control; Group II, vanadyl sulfate control; Group III, STZ-diabetic untreated; Group IV, STZ-diabetic treated with vanadyl sulfate. Vanadyl sulfate (100 mg/kg) was given daily by gavage for 60 days. At the last day of the experiment, rats were killed, muscle tissues were taken, homogenized in cold saline to make a 10% (w/v) homogenate. Body weights and blood glucose levels were estimated at 0, 30 and 60th days. Antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), as well as carbonic anhydrase (CA), myeloperoxidase (MPO) activities and protein carbonyl content (PCC) were determined in muscle tissue. Vanadyl sulfate administration improved the loss in body weight due to STZ-induced diabetes and decreased the rise in blood glucose levels. It was shown that vanadium supplementation to diabetic rats significantly decrease serum antioxidant enzyme levels, which were significantly raised by diabetes in muscle tissue showing that this trace element could be used as preventive for diabetic complications.
Collapse
Affiliation(s)
- Ozlem Kurt
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul 34116, Turkey
| | | | | | | | | | | | | |
Collapse
|
94
|
Sanna D, Micera G, Garribba E. Interaction of VO2+ ion and some insulin-enhancing compounds with immunoglobulin G. Inorg Chem 2011; 50:3717-28. [PMID: 21434616 DOI: 10.1021/ic200087p] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complexation of VO(2+) ion with the most abundant class of human immunoglobulins, immunoglobulin G (IgG), was studied using EPR spectroscopy. Differently from the data in the literature which report no interaction of IgG with vanadium, in the binary system VO(2+)/IgG at least three sites with comparable strength were revealed. These sites, named 1, 2, and 3, seem to be not specific, and the most probable candidates for metal ion coordination are histidine-N, aspartate-O or glutamate-O, and serinate-O or threoninate-O. The mean value for the association constant of (VO)(x)IgG, with x = 3-4, is log β = 10.3 ± 1.0. Examination of the ternary systems formed by VO(2+) with IgG and human serum transferrin (hTf) and human serum albumin (HSA) allows one to find that the order of complexing strength is hTf ≫ HSA ≈ IgG. The behavior of the ternary systems with IgG and one insulin-enhancing agent, like [VO(6-mepic)(2)], cis-[VO(pic)(2)(H(2)O)], [VO(acac)(2)], and [VO(dhp)(2)], where 6-mepic, pic, acac, and dhp indicate the deprotonated forms of 6-methylpicolinic and picolinic acids, acetylacetone, and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, is very similar to the corresponding systems with albumin. In particular, at the physiological pH value, VO(6-mepic)(IgG)(OH), cis-VO(pic)(2)(IgG), and cis-VO(dhp)(2)(IgG) are formed. In such species, IgG coordinates nonspecifically VO(2+) through an imidazole-N belonging to a histidine residue exposed on the protein surface. For cis-VO(dhp)(2)(IgG), log β is 25.6 ± 0.6, comparable with that of the analogous species cis-VO(dhp)(2)(HSA) and cis-VO(dhp)(2)(hTf). Finally, with these new values of log β, the predicted percent distribution of an insulin-enhancing VO(2+) agent between the high molecular mass (hTf, HSA, and IgG) and low molecular mass (lactate) components of the blood serum at physiological conditions is calculated.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | |
Collapse
|
95
|
Gorelsky S, Micera G, Garribba E. The equilibrium between the octahedral and square pyramidal form and the influence of an axial ligand on the molecular properties of V(IV)O complexes: a spectroscopic and DFT study. Chemistry 2010; 16:8167-80. [PMID: 20533466 DOI: 10.1002/chem.201000679] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The previously unreported equilibrium in aqueous solution between the V(IV)O square pyramidal and trans octahedral form with an axial water molecule for a number of bidentate ligands with (N,O) and (O,O) donor sets (6-methylpicolinic (6-mepicH) and 6-methyl-2,3-pyridinedicarboxylic (6-me-2,3-pdcH(2)) acids, dipyridin-2-ylmethanol (Hdpmo) and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone (Hdhp)) has been demonstrated by the combined application of EPR spectroscopy and DFT methods. The EPR spectra suggest that, with increasing ionic strength, the equilibrium is shifted towards the formation of the pentacoordinated species and values of K approximately 4.0 and 7.0 for the systems containing 6-methyl-2,3-pyridinedicarboxylic acid and dipyridin-2-ylmethanol were measured. DFT calculations performed with Gaussian 03 and ORCA software predict the (51)V anisotropic hyperfine coupling constant along the z axis (A(z)), which can be used to demonstrate the presence of an axially bound ligand trans to the V=O bond. The results suggest that an axial donor (charged or not) can lower |A(z)|, in contrast to what was previously believed on the basis of the "additivity rule", and this explains the anomalous behaviour of the V(IV)O complexes formed by N-{2-[(2-pyridylmethylene)amino]phenyl}pyridine-2-carboxamide (Hcapca) and several amidrazone derivatives. The decrease in |A(z)| for the axial binding of a solvent molecule is mainly a result of the reduction of |A(iso)| and this was also observed when the solid [VO(6-methylpicolinato)(2)] was dissolved in DMSO or DMF. The variations in the structural (V=O, V-O and V-N distances, O-V-O and N-V-N angles, and the trigonality index tau) and spectroscopic (|A(z)|, |A(iso)| and nu(V=O)) properties as a function of the axial V-OH(2) distance (R) are also presented. Finally, the electronic structures of the penta- and hexacoordinated complexes are discussed.
Collapse
Affiliation(s)
- Serge Gorelsky
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie Street BSC 431, K1N 6N5ON Ottawa, Ontario, Canada
| | | | | |
Collapse
|
96
|
Szewczyk MM, Pande J, Akolkar G, Grover AK. Caloxin 1b3: a novel plasma membrane Ca(2+)-pump isoform 1 selective inhibitor that increases cytosolic Ca(2+) in endothelial cells. Cell Calcium 2010; 48:352-7. [PMID: 21093050 DOI: 10.1016/j.ceca.2010.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca(2+) pump(s) (PMCA) isoform 1. PMCA extrude Ca(2+) from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1-4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca(2+)-Mg(2+)-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant=17±2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant=45±4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca(2+) concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.
Collapse
Affiliation(s)
- Magdalena M Szewczyk
- Department of Biology, HSC 4N41 McMaster University, 1200 Main Street West Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
97
|
Effect of vanadium on renal Na+,K+-ATPase activity in diabetic rats: a possible role of leptin. J Physiol Biochem 2010; 67:61-9. [PMID: 20927665 DOI: 10.1007/s13105-010-0049-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 09/21/2010] [Indexed: 01/14/2023]
Abstract
Several researches attempt to protect diabetic patients from the development of nephropathy. Involvement of leptin and renal Na+,K+-ATPase enzyme in diabetic nephropathy (DN) development is a recent field for researches. Vanadium, as a trace element with insulin mimetic effect, may act synergistically with insulin to protect against the development of DN. Sixty male Sprague Dawley rats were divided into six groups: control group (C), vanadium control group (CV), streptozotocin-induced diabetic group (D), insulin-treated diabetic group (DI), vanadium-treated diabetic group (DV), and combined insulin and vanadium-treated diabetic group. Six weeks later, systolic blood pressure (SBP) was measured and retro-orbital blood samples were collected to estimate glycosylated hemoglobin (HbA(₁c)), serum sodium (Na+) and creatinine, blood urea nitrogen (BUN) and plasma leptin levels. Preparation of microsomal fraction of renal tissue homogenate for estimation of Na+,K+-ATPase activity was done. The D group showed a significant increase in SBP, HbA(₁c), serum Na+, creatinine, and BUN levels and Na+,K+-ATPase activity in microsomal fraction of renal tissue homogenate while plasma leptin level decreased significantly compared with C and CV groups. Both DI and DV groups showed a significant improvement in all the above measured parameters compared with D group while there were no significant changes between the DI and DV groups. Concomitant treatment with insulin and vanadium resulted in a significant improvement in all the measured parameters compared to each alone. Vanadium in combination with insulin ameliorates DN markers and reduces renal Na+,K+-ATPase overactivity in diabetic rats. An effect that may be partially mediated through correction of hypoleptinemia observed in these animals.
Collapse
|
98
|
Abstract
The complexation of the VO(2+) ion in several systems that can model the physiological conditions of its transport in blood serum was studied using electron paramagnetic resonance (EPR) spectroscopy. Particularly, the ternary systems formed by (i) VO(2+) and two high-molecular-mass components of blood serum, human serum apo-transferrin (hTf) and human serum albumin (HSA); (ii) VO(2+), hTf, and bL; and (iii) VO(2+), HSA, and bL, where bL is one of the six most important low-molecular-mass bioligands of the blood serum (bL = lactate, citrate, oxalate, phosphate, glycine, or histidine), were examined. The results indicate that, in aqueous solution, transferrin is a stronger binder than albumin, and at the physiological ratio, most of the VO(2+) ion is present as (VO)(2)hTf, and a small amount as (VO)(2)(d)HSA, the dinuclear species formed by albumin where the two metal ions are interacting and the spin state S is 1. Among the bL ligands, only lactate and citrate are able to bind VO(2+) in the presence of transferrin or albumin, the others not interacting at all. Finally, the quaternary systems formed by (i) VO(2+), hTf, HSA, and lactate and (ii) VO(2+), hTf, HSA, and citrate were studied. In these cases, the results suggest that the predominant species is (VO)(2)hTf, followed by the mixed complexes VO(2+)-hTf-lactate or VO(2+)-hTf-citrate, whereas (VO)(2)(d)HSA and [(VO)(2)(citrH(-1))(2)](4-) are minor components at physiological pH. The conclusions of this study give new insights on how the VO(2+) ion distributes among the blood serum components and is transported in the plasma toward the target sites in the organism.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | |
Collapse
|
99
|
Kawamata H, Starkov AA, Manfredi G, Chinopoulos C. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells. Anal Biochem 2010; 407:52-7. [PMID: 20691655 DOI: 10.1016/j.ab.2010.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/27/2022]
Abstract
We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
100
|
Abdelhamid G, Anwar-Mohamed A, Elmazar MM, El-Kadi AOS. Modulation of NAD(P)H:quinone oxidoreductase by vanadium in human hepatoma HepG2 cells. Toxicol In Vitro 2010; 24:1554-61. [PMID: 20599494 DOI: 10.1016/j.tiv.2010.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 11/19/2022]
Abstract
Recent studies demonstrated the carcinogenicity and the mutagenicity of vanadium compounds. In addition, vanadium (V(5+)) was found to enhance the effects of other genotoxic agents. However, the mechanism by which V(5+) induce toxicity remain unknown. In the current study we examined the effect of V(5+) (as ammonium metavanadate, NH(4)VO(3)) on the expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) in human hepatoma HepG2 cells. Therefore, HepG2 cells were treated with increasing concentrations of V(5+) in the presence of two NQO1 inducers, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and isothiocyanate sulforaphane (SUL). Our results showed that V(5+) inhibited the TCDD- and SUL-mediated induction of NQO1 at mRNA, protein and activity levels. Investigating the effect of V(5+) at transcriptional levels revealed that V(5+) significantly inhibited the TCDD- and SUL-mediated induction of antioxidant responsive element (ARE)-dependent luciferase reporter gene expression. In addition, V(5+) was able to decrease the TCDD- and SUL-induced nuclear accumulation of nuclear factor erythroid 2-related factor-2 (Nrf2) without affecting Nrf2 mRNA or protein levels. Looking at the post-transcriptional level, V(5+) did not affect NQO1 mRNA stability, thus eliminating the possible role of V(5+) in decreasing NQO1 mRNA levels through this mechanism. In contrast, at post-translational level, V(5+) was able to significantly decrease NQO1 protein half-life. The present study demonstrates for the first time that V(5+) down-regulates NQO1 at the transcriptional and post-translational levels in the human hepatoma HepG2 cells via AhR- and Nrf2-dependent mechanisms.
Collapse
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|