51
|
Allaith S, Tew SR, Hughes CE, Clegg PD, Canty-Laird EG, Comerford EJ. Characterisation of key proteoglycans in the cranial cruciate ligaments (CCLs) from two dog breeds with different predispositions to CCL disease and rupture. Vet J 2021; 272:105657. [PMID: 33941333 DOI: 10.1016/j.tvjl.2021.105657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
Cranial cruciate ligament disease and rupture (CCLD/R) is one of the most common orthopaedic conditions in dogs, eventually leading to osteoarthritis of the stifle joint. Certain dog breeds such as the Staffordshire bull terrier have an increased risk of developing CCLD/R. Previous studies into CCLD/R have found that glycosaminoglycan levels were elevated in cranial cruciate ligament (CCL) tissue from high-risk breeds when compared to the CCL from a low-risk breed to CCLD/R. Our objective was to determine specific proteoglycans/glycosaminoglycans in the CCL and to see whether their content was altered in dog breeds with differing predispositions to CCLD/R. Disease-free CCLs from Staffordshire bull terriers (moderate/high-risk to CCLD/R) and Greyhounds (low-risk to CCLD/R) were collected and key proteoglycan/glycosaminoglycans were determined by semi-quantitative Western blotting, quantitative biochemistry, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Gene expression of fibromodulin (P = 0.03), aggrecan (P = 0.0003), and chondroitin-6-sulphate stubs (P = 0.01) were significantly increased, and for fibromodulin this correlated with an increase in protein content in Staffordshire bull terriers compared to Greyhound CCLs (P = 0.02). Decorin (P = 0.03) and ADAMTS-4 (P = 0.04) gene expression were significantly increased in Greyhounds compared to Staffordshire bull terrier CCLs. The increase of specific proteoglycans and glycosaminoglycans within the Staffordshire bull terrier CCLs may indicate a response to higher compressive loads, potentially altering their risk to traumatic injury. The higher decorin content in the Greyhound CCLs is essential for maintaining collagen fibril strength, while the increase of ADAMTS-4 indicates a higher rate of turnover helping to regulate normal CCL homeostasis in Greyhounds.
Collapse
Affiliation(s)
- S Allaith
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - S R Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - C E Hughes
- School of Biosciences, University of Cardiff, Sir Martin Evans Building, Museum Avenue, Cardiff, CF 10 3AX, UK
| | - P D Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - E G Canty-Laird
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - E J Comerford
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; Small Animal Teaching Hospital, Leahurst Campus, School of Veterinary Science, University of Liverpool, Chester High Rd, Neston CH64 7TE, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK.
| |
Collapse
|
52
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
53
|
Warren PM, Fawcett JW, Kwok JCF. Substrate Specificity and Biochemical Characteristics of an Engineered Mammalian Chondroitinase ABC. ACS OMEGA 2021; 6:11223-11230. [PMID: 34056277 PMCID: PMC8153898 DOI: 10.1021/acsomega.0c06262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Chondroitin sulfate proteoglycans inhibit regeneration, neuroprotection, and plasticity following spinal cord injury. The development of a second-generation chondroitinase ABC enzyme, capable of being secreted from mammalian cells (mChABC), has facilitated the functional recovery of animals following severe spinal trauma. The genetically modified enzyme has been shown to efficiently break down the inhibitory extracellular matrix surrounding cells at the site of injury, while facilitating cellular integration and axonal growth. However, the activity profile of the enzyme in relation to the original bacterial chondroitinase (bChABC) has not been determined. Here, we characterize the activity profile of mChABC and compare it to bChABC, both enzymes having been maintained under physiologically relevant conditions for the duration of the experiment. We show that this genetically modified enzyme can be secreted reliably and robustly in high yields from a mammalian cell line. The modifications made to the cDNA of the enzyme have not altered the functional activity of mChABC compared to bChABC, ensuring that it has optimal activity on chondroitin sulfate-A, with an optimal pH at 8.0 and temperature at 37 °C. However, mChABC shows superior thermostability compared to bChABC, ensuring that the recombinant enzyme operates with enhanced activity over a variety of physiologically relevant substrates and temperatures compared to the widely used bacterial alternative without substantially altering its kinetic output. The determination that mChABC can function with greater robustness under physiological conditions than bChABC is an important step in the further development of this auspicious treatment strategy toward a clinical application.
Collapse
Affiliation(s)
- Philippa M. Warren
- Department
of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, U.K.
- Wolfson
Centre for Age Related Diseases, Institute of Psychiatry, Psychology
and Neuroscience, King’s College
London, Guy’s
Campus, London Bridge, London SE1 1UL, U.K.
- Department
of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 0PY, U.K.
| | - James W. Fawcett
- Department
of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, U.K.
- Centre
for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jessica C. F. Kwok
- Department
of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, U.K.
- Centre
for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
54
|
Guo LB, Zhu CY, Wu YB, Fan XM, Zhang YW. A novel chondroitin AC lyase from Pedobacter xixiisoli: Cloning, expression, characterization and the application in the preparation of oligosaccharides. Enzyme Microb Technol 2021; 146:109765. [PMID: 33812567 DOI: 10.1016/j.enzmictec.2021.109765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 01/22/2023]
Abstract
Chondroitin AC lyase can efficiently hydrolyze chondroitin sulfate (CS) to low molecule weight chondroitin sulfate, which has been widely used in clinical therapy, including anti-tumor, anti-oxidation, hypolipidemic, and anti-inflammatory. In this work, a novel chondroitin AC lyase from Pedobacter xixiisoli (PxchonAC) was cloned and overexpressed in Escherichia coli BL21 (DE3). The characterization of PxchonAC showed that it has specific activities on chondroitin sulfate A, Chondroitin sulfate C and hyaluronic acid with 428.77, 270.57, and 136.06 U mg-1, respectively. The Km and Vmax of PxchonAC were 0.61 mg mL-1 and 670.18 U mg-1 using chondroitin sulfate A as the substrate. The enzyme had a half-life of roughly 660 min at 37 °C in the presence of Ca2+ and remained a residual activity of 54 % after incubated at 4 °C for 25 days. Molecular docking revealed that Asn123, His223, Tyr232, Arg286, Arg290, Asn372, and Glu374 were mainly involved in the substrate binding. The enzymatic hydrolysis product was analyzed by gel permeation chromatography, demonstrating PxchonAC could hydrolyze CS efficiently.
Collapse
Affiliation(s)
- Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yi-Bei Wu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
55
|
Investigation of action pattern of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase. Biochem J 2021; 478:281-298. [PMID: 33351063 DOI: 10.1042/bcj20200657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Recently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et. al (2015) J. Biol. Chem.290, 7823-7832; Wang, S., et. al (2019) Front. Microbiol.10, 1309). In the study herein, we provide new insight about the structural characteristics of the substrate which determine the activity of this enzyme. The substrate specificities of the 4-O-endosulfatase were probed by using libraries of structure-defined CS/DS oligosaccharides issued from synthetic and enzymatic sources. We found that this 4-O-endosulfatase effectively remove the 4-O-sulfate of disaccharide sequences GlcUAβ1-3GalNAc(4S) or GlcUAβ1-3GalNAc(4S,6S) in all tested hexasaccharides. The sulfated GalNac residue is resistant to the enzyme when adjacent uronic residues are sulfated as shown by the lack of enzymatic desulfation of GlcUAβ1-3GalNAc(4S) connected to a disaccharide GlcUA(2S)β1-3GalNAc(6S) in an octasaccharide. The 3-O-sulfation of GlcUA was also shown to hinder the action of this enzyme. The 4-O-endosulfatase exhibited an oriented action from the reducing to the non-reducing whatever the saturation or not of the non-reducing end. Finally, the activity of the 4-O-endosulfatase decreases with the increase in substrate size. With the deeper understanding of this novel 4-O-endosulfatase, such chondroitin sulfate (CS)/dermatan sulfate (DS) sulfatase is a useful tool for exploring the structure-function relationship of CS/DS.
Collapse
|
56
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering a thermostable chondroitinase for production of specifically distributed low-molecular-weight chondroitin sulfate. Biotechnol J 2021; 16:e2000321. [PMID: 33350041 DOI: 10.1002/biot.202000321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
Chondroitinase ABC I (csABC I) has attracted intensive attention because of its great potential in heparin refining and the enzymatic preparation of low-molecular-weight chondroitin sulfate (LMW-CS). However, low thermal resistance (<30℃) restricts its applications. Herein, structure-guided and sequence-assisted combinatorial engineering approaches were applied to improve the thermal resistance of Proteus vulgaris csABC I. By integrating the deletion of the flexible fragment R166-L170 at the N-terminal domain and the mutation of E694P at the C-terminal domain, variant NΔ5/E694P exhibited 247-fold improvement of its half-life at 37℃ and a 2.3-fold increase in the specific activity. Through batch fermentation in a 3-L fermenter, the expression of variant NΔ5/E694P in an Escherichia coli host reached 1.7 g L-1 with the activity of 1.0 × 105 U L-1 . Finally, the enzymatic approach for the preparation of LMW-CS was established. By modulating enzyme concentration and controlling depolymerization time, specifically distributed LMW-CS (7000, 3400, and 1900 Da) with low polydispersity was produced, demonstrating the applicability of these processes for the industrial production of LMW-CS in a more environmentally friendly way.
Collapse
Affiliation(s)
- Hao Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Lin Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
57
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
58
|
Banno T, Hasegawa T, Yamato Y, Yoshida G, Yasuda T, Arima H, Oe S, Ushirozako H, Yamada T, Ide K, Watanabe Y, Matsuyama Y. Clinical outcome of condoliase injection treatment for lumbar disc herniation: Indications for condoliase therapy. J Orthop Sci 2021; 26:79-85. [PMID: 32111547 DOI: 10.1016/j.jos.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Condoliase is a novel, potent chemonucleolytic drug available for clinical use for lumbar disc herniation (LDH) in Japan. The aim of this study was to assess the clinical outcome of condoliase therapy in patients with LDH, as well as factors affecting the clinical outcome. METHODS We enrolled patients with LDH who were receiving condoliase injection. The following baseline data were collected: symptom duration; herniation level and type; T2 signal intensity of herniation; adverse events; rates of spondylolisthesis, posterior intervertebral angle of ≥5°, and vertebral body translation of ≥3 mm. Change in disc height, disc degeneration, herniation size, visual analog scale (VAS) for leg and back pain, and Oswestry Disability Index (ODI) were evaluated at the baseline, and 3-month follow-up. These data were compared between patients with efficacious (VAS improvement of ≥20 mm; group E) and inefficacious (VAS improvement <20 mm or required operation; group I) for condoliase treatment. RESULTS Forty-seven patients (20 women, 27 men; mean age 48 years) were included. The herniation level was L2/3 in one patient, L3/4 in two, L4/5 in 23, and L5/S1 in 21. Median symptom duration was 8 months. The mean VAS and ODI improved significantly from the baseline to 3-month follow-up (p < 0.01). Group E included 33 patients (70.2%) and group I included 14, three of whom had a history of discectomy. The rates of spondylolisthesis and posterior intervertebral angle ≥5° were significantly higher in group I than in group E. However, the rates of trans-ligamentous type and herniation with high signal intensity on T2-weighted images (highT2) were significantly higher in group E. Reduction of disc herniation was more frequently observed in group E. CONCLUSIONS Condoliase injection resulted in significantly improved symptoms in patients with LDH. Condoliase therapy was less effective for patients with a history of discectomy, spondylolisthesis, or those with a posterior intervertebral angle ≥5°, while trans-ligamentous type and high T2 herniation were associated with increased efficacy.
Collapse
Affiliation(s)
- Tomohiro Banno
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Tomohiko Hasegawa
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yu Yamato
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Go Yoshida
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tatsuya Yasuda
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideyuki Arima
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shin Oe
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroki Ushirozako
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiro Yamada
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Koichiro Ide
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yu Watanabe
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
59
|
von Palubitzki L, Wang Y, Hoffmann S, Vidal-Y-Sy S, Zobiak B, Failla AV, Schmage P, John A, Osorio-Madrazo A, Bauer AT, Schneider SW, Goycoolea FM, Gorzelanny C. Differences of the tumour cell glycocalyx affect binding of capsaicin-loaded chitosan nanocapsules. Sci Rep 2020; 10:22443. [PMID: 33384430 PMCID: PMC7775450 DOI: 10.1038/s41598-020-79882-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The glycocalyx regulates the interaction of mammalian cells with extracellular molecules, such as cytokines. However, it is unknown to which extend the glycocalyx of distinct cancer cells control the binding and uptake of nanoparticles. In the present study, exome sequencing data of cancer patients and analysis of distinct melanoma and bladder cancer cell lines suggested differences in cancer cell-exposed glycocalyx components such as heparan sulphate. Our data indicate that glycocalyx differences affected the binding of cationic chitosan nanocapsules (Chi-NCs). The pronounced glycocalyx of bladder cancer cells enhanced the internalisation of nanoencapsulated capsaicin. Consequently, capsaicin induced apoptosis in the cancer cells, but not in the less glycosylated benign urothelial cells. Moreover, we measured counterion condensation on highly negatively charged heparan sulphate chains. Counterion condensation triggered a cooperative binding of Chi-NCs, characterised by a weak binding rate at low Chi-NC doses and a strongly increased binding rate at high Chi-NC concentrations. Our results indicate that the glycocalyx of tumour cells controls the binding and biological activity of nanoparticles. This has to be considered for the design of tumour cell directed nanocarriers to improve the delivery of cytotoxic drugs. Differential nanoparticle binding may also be useful to discriminate tumour cells from healthy cells.
Collapse
Affiliation(s)
- Lydia von Palubitzki
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Yuanyuan Wang
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, 48143, Münster, Germany
| | - Sabine Vidal-Y-Sy
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Bernd Zobiak
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Antonio V Failla
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Petra Schmage
- Clinic of Periodontology, Preventive and Operative Dentistry, Center of Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Axel John
- Department of Urology, University Medical Center of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering (IMTEK), Freiburg Materials Research Center (FMF), and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, 79104, Freiburg, Germany
| | - Alexander T Bauer
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan W Schneider
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Christian Gorzelanny
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
60
|
Kanyo N, Kovacs KD, Saftics A, Szekacs I, Peter B, Santa-Maria AR, Walter FR, Dér A, Deli MA, Horvath R. Glycocalyx regulates the strength and kinetics of cancer cell adhesion revealed by biophysical models based on high resolution label-free optical data. Sci Rep 2020; 10:22422. [PMID: 33380731 PMCID: PMC7773743 DOI: 10.1038/s41598-020-80033-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The glycocalyx is thought to perform a potent, but not yet defined function in cellular adhesion and signaling. Since 95% of cancer cells have altered glycocalyx structure, this role can be especially important in cancer development and metastasis. The glycocalyx layer of cancer cells directly influences cancer progression, involving the complicated kinetic process of cellular adhesion at various levels. In the present work, we investigated the effect of enzymatic digestion of specific glycocalyx components on cancer cell adhesion to RGD (arginine-glycine-aspartic acid) peptide motif displaying surfaces. High resolution kinetic data of cell adhesion was recorded by the surface sensitive label-free resonant waveguide grating (RWG) biosensor, supported by fluorescent staining of the cells and cell surface charge measurements. We found that intense removal of chondroitin sulfate (CS) and dermatan sulfate chains by chondroitinase ABC reduced the speed and decreased the strength of adhesion of HeLa cells. In contrast, mild digestion of glycocalyx resulted in faster and stronger adhesion. Control experiments on a healthy and another cancer cell line were also conducted, and the discrepancies were analysed. We developed a biophysical model which was fitted to the kinetic data of HeLa cells. Our analysis suggests that the rate of integrin receptor transport to the adhesion zone and integrin-RGD binding is strongly influenced by the presence of glycocalyx components, but the integrin-RGD dissociation is not. Moreover, based on the kinetic data we calculated the dependence of the dissociation constant of integrin-RGD binding on the enzyme concentration. We also determined the dissociation constant using a 2D receptor binding model based on saturation level static data recorded at surfaces with tuned RGD densities. We analyzed the discrepancies of the kinetic and static dissociation constants, further illuminating the role of cancer cell glycocalyx during the adhesion process. Altogether, our experimental results and modelling demonstrated that the chondroitin sulfate and dermatan sulfate chains of glycocalyx have an important regulatory function during the cellular adhesion process, mainly controlling the kinetics of integrin transport and integrin assembly into mature adhesion sites. Our results potentially open the way for novel type of cancer treatments affecting these regulatory mechanisms of cellular glycocalyx.
Collapse
Affiliation(s)
- Nicolett Kanyo
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, 1120, Budapest, Hungary
| | - Kinga Dora Kovacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, 1120, Budapest, Hungary
| | - Andras Saftics
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, 1120, Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, 1120, Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, 1120, Budapest, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62., 6726, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62., 6726, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, 1120, Budapest, Hungary.
| |
Collapse
|
61
|
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials 2020; 268:120602. [PMID: 33360302 DOI: 10.1016/j.biomaterials.2020.120602] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.
Collapse
|
62
|
Daneshjou S, Dabirmanesh B, Rahimi F, Jabbari S, Khajeh K. Catalytic parameters and thermal stability of chondroitinase ABCI on red porous silicon nanoparticles. J Biotechnol 2020; 324:83-90. [PMID: 32979433 DOI: 10.1016/j.jbiotec.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/02/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
The bacterial enzyme chondroitinase ABC, which digests extracellular chondroitin sulfate proteoglycans, has been shown to enhance axonal regeneration. However, the utilization of this enzyme as therapeutics is notably restricted due to its thermal instability. Therefore, red luminescent porous silicon that hold promise for potential applications in biological/medical imaging was used as a carrying matrix for chondroitinase with the aim of enhancing its stability. Porous Si nanoparticles were prepared by electrochemical etching of silicon wafers in ethanolic HF solution. The size of nanoparticles (210 nm) and the mean pore diameter (8 -20 nm) were determined using dynamic light scattering and scanning electron microscopy. Purified chondroitinase was then incorporated into the silicon pores. Results revealed similar Km and lower Vmax value for the immobilized enzyme when compared with the free enzyme. The immobilized chondroitinase exhibited about a 4 fold increase in stability at 37 °C after 50 min. It is likely possible that, the enzyme was protected inside the pores resulted in higher stability. Moreover, porous silicon was seen to be capable of holding the chondroitinase for repeated cyclic tests for three times. The cell viability assay exhibited no significant cytotoxicity for Psi-chondroitinase up to 24 h.
Collapse
Affiliation(s)
- Sara Daneshjou
- Tarbiat Modares University, Faculty of Biological Science, Tehran, Iran.
| | | | - Fereshteh Rahimi
- University of Tehran, Faculty of New Sciences and Technologies, Tehran, Iran
| | - Safoura Jabbari
- Tarbiat Modares University, Faculty of Biological Science, Tehran, Iran
| | - Khosro Khajeh
- Tarbiat Modares University, Faculty of Biological Science, Tehran, Iran
| |
Collapse
|
63
|
Zhang Q, Lu D, Wang S, Wei L, Wang W, Li F. Identification and biochemical characterization of a novel chondroitin sulfate/dermantan sulfate lyase from Photobacterium sp. Int J Biol Macromol 2020; 165:2314-2325. [PMID: 33132124 DOI: 10.1016/j.ijbiomac.2020.10.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.
Collapse
Affiliation(s)
- Qingdong Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Danrong Lu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Shumin Wang
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), 619 Changcheng Road, Taian 271016, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
64
|
Zhao N, Meng J, Jiang W, Xu W, Liu C, Wang F. Study on the relationships between molecular weights of chondroitin sulfate oligosaccharides and Aβ-induced oxidative stress and the related mechanisms. Glycobiology 2020; 31:492-507. [PMID: 33043980 DOI: 10.1093/glycob/cwaa096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, we studied anti-Alzheimer's disease (AD) activities of chondroitin sulfate (CS) oligosaccharides with different molecular weights. CS from shark cartilage was degraded by a recombinant CS endolyase, chondroitinase ABC I (CHSase ABC I), and CS disaccharide (DP2), tetrasaccharide (DP4), hexasaccharide (DP6), octasaccharide (DP8), decasaccharide (DP10) and dodecasaccharide (DP12) were obtained by separation with gel filtration. Anti-AD activities of CS oligosaccharides were assessed using Aβ-injured SH-SY5Y cells and BV2 cells. It was shown that CS oligosaccharides could block Aβ-induced oxidative stress, mitochondrial dysfunction and activation of intrinsic apoptotic pathway for SH-SY5Y cells. Furthermore, these activities increased with the increase of molecular weights. For Aβ-injured BV2 cells, CS oligosaccharides inhibited oxidative stress, the production of proinflammatory cytokines and the activation of toll-like receptor pathway, and CS DP2 had the best activity among them. In conclusion, CS oligosaccharides suppressed Aβ-induced oxidative stress and relevant injury in vitro, and these effects had different relationships with the molecular weights of CS oligosaccharides for different cell lines, which might be caused by different mechanisms.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Jie Meng
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Wenjia Xu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.,Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
65
|
Zhang Z, Su H, Wang X, Tang L, Hu J, Yu W, Han F. Cloning and characterization of a novel chondroitinase ABC categorized into a new subfamily of polysaccharide lyase family 8. Int J Biol Macromol 2020; 164:3762-3770. [PMID: 32871123 DOI: 10.1016/j.ijbiomac.2020.08.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Chondroitinases degrade chondroitin sulfate (CS) into oligosaccharides, of which the biological activities have vital roles in various fields. Some chondroitinases in polysaccharide lyase family 8 (PL8) have been classified into four subfamilies (PL8_1, PL8_2, PL8_3, and PL8_4) based on their sequence similarity and substrate specificities. In this study, a gene, vpa_0049, was cloned from marine bacterium Vibrio sp. QY108. The encoded protein, Vpa_0049, did not belong to the four existing subfamilies in PL8 based on phylogenetic analysis. Vpa_0049 could degrade various glycosaminoglycans (CS-A, CS-B, CS-C, CS-D, and HA) into unsaturated disaccharides in an endolytic manner, which was different from PL8 lyases of four existing subfamilies. The maximum activity of Vpa_0049 on different glycosaminoglycan substrates appeared at 30-37 °C and pH 7.0-8.0 in the presence of NaCl. Vpa_0049 showed approximately 50% of maximum activity towards CS-B and HA at 0 °C. It was stable in alkaline conditions (pH 8.0-10.6) and 0-30 °C. Our study provides a new broad-substrate chondroitinase and presents an in-depth understanding of PL8.
Collapse
Affiliation(s)
- Zhelun Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Hang Su
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Xiaoyi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Luyao Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Jingyang Hu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Feng Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China..
| |
Collapse
|
66
|
Warren PM, Andrews MR, Smith M, Bartus K, Bradbury EJ, Verhaagen J, Fawcett JW, Kwok JCF. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci Rep 2020; 10:11262. [PMID: 32647242 PMCID: PMC7347606 DOI: 10.1038/s41598-020-67526-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Schwann cell grafts support axonal growth following spinal cord injury, but a boundary forms between the implanted cells and host astrocytes. Axons are reluctant to exit the graft tissue in large part due to the surrounding inhibitory environment containing chondroitin sulphate proteoglycans (CSPGs). We use a lentiviral chondroitinase ABC, capable of being secreted from mammalian cells (mChABC), to examine the repercussions of CSPG digestion upon Schwann cell behaviour in vitro. We show that mChABC transduced Schwann cells robustly secrete substantial quantities of the enzyme causing large-scale CSPG digestion, facilitating the migration and adhesion of Schwann cells on inhibitory aggrecan and astrocytic substrates. Importantly, we show that secretion of the engineered enzyme can aid the intermingling of cells at the Schwann cell-astrocyte boundary, enabling growth of neurites over the putative graft/host interface. These data were echoed in vivo. This study demonstrates the profound effect of the enzyme on cellular motility, growth and migration. This provides a cellular mechanism for mChABC induced functional and behavioural recovery shown in in vivo studies. Importantly, we provide in vitro evidence that mChABC gene therapy is equally or more effective at producing these effects as a one-time application of commercially available ChABC.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK. .,Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 0PY, UK.
| | - Melissa R Andrews
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marc Smith
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Katalin Bartus
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Elizabeth J Bradbury
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - James W Fawcett
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
67
|
Muramatsu D, Yamaguchi H, Minamisawa Y, Nii A. Selective Chemonucleolysis With Condoliase in Cynomolgus Monkeys. Toxicol Pathol 2020; 48:656-668. [PMID: 32633701 DOI: 10.1177/0192623320928006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selective chemonucleolytic effects of condoliase, a glycosaminoglycan degrading enzyme, was investigated histopathologically in cynomolgus monkeys. Condoliase was administered once into the lumber intervertebral disc (IVD), and as a comparative control, chymopapain, a proteolytic enzyme, was administered in a similar manner. Histopathological changes of the IVD and the adjacent vertebral body (VB) were examined at 1 to 26 weeks after administration. Major changes induced by condoliase in the IVD were degenerative and necrotic changes in the nucleus pulposus, annulus fibrosus, cartilaginous endplate (CEP), and epiphyseal growth plate (EGP); focal disappearance of the EGP; and neovascularization and ossification of the CEP. Decreased/necrosis of bone marrow cells with new bone formation was observed in the VB. Cellular regeneration in the IVD was observed as a recovery changes on and after week 4. The changes in the IVD and VB subsided at week 26. Chymopapain induced qualitatively similar but more widely extended changes. The degrees of the changes in the IVD and VB were more severe than those of condoliase, and the changes were exacerbated even at week 26. These results indicated that histopathological changes caused by condoliase were less severe and more selective than those by chymopapain.
Collapse
Affiliation(s)
- Dai Muramatsu
- Safety & Pharmacokinetics, Central Research Laboratory, Research & Development, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Hiroaki Yamaguchi
- Safety & Pharmacokinetics, Central Research Laboratory, Research & Development, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Yuka Minamisawa
- Safety & Pharmacokinetics, Central Research Laboratory, Research & Development, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| | - Aisuke Nii
- Safety & Pharmacokinetics, Central Research Laboratory, Research & Development, Seikagaku Corporation, Higashiyamato, Tokyo, Japan
| |
Collapse
|
68
|
Takechi M, Oshima K, Nadano D, Kitagawa H, Matsuda T, Miyata S. A pericellular hyaluronan matrix is required for the morphological maturation of cortical neurons. Biochim Biophys Acta Gen Subj 2020; 1864:129679. [PMID: 32623025 DOI: 10.1016/j.bbagen.2020.129679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is involved in many cellular functions. In the adult brain, HA forms macromolecular aggregates around synapses and plays important roles in neural plasticity. In contrast to the well-characterized function of HA in the adult brain, its roles in the developing brain remain largely unknown. METHODS Biochemical and histochemical analyses were performed to analyze the amount, solubility, and localization of HA in the developing mouse brain. By combining in utero labeling, cell isolation, and in vitro cultures, we examined the expression of hyaluronan synthase (HAS) and morphological maturation of cortical neurons. RESULTS The amount of HA increased during perinatal development and decreased in the adult. HA existed as a soluble form in the early stages; however, its solubility markedly decreased during postnatal development. HA localized in cell-sparse regions in the embryonic stages, but was broadly distributed during the postnatal development of the cerebral cortex. Developing cortical neurons expressed both Has2 and Has3, but not Has1, suggesting the autonomous production of HA by neurons themselves. HA formed a pericellular matrix around the cell bodies and neurites of developing cortical neurons, and the inhibition of HA synthesis reduced neurite outgrowth. CONCLUSION The formation of the pericellular HA matrix is essential for the proper morphological maturation of developing neurons. GENERAL SIGNIFICANCE This study provides new insights into the roles of hyaluronan in the brain. DEVELOPMENT
Collapse
Affiliation(s)
- Mina Takechi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-Ku, Kobe 658-8558, Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
69
|
Spliid CB, Toledo AG, Salanti A, Esko JD, Clausen TM. Beware, commercial chondroitinases vary in activity and substrate specificity. Glycobiology 2020; 31:103-115. [PMID: 32573715 DOI: 10.1093/glycob/cwaa056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS)and dermatan sulfate (DS) are negatively charged polysaccharides found abundantly in animal tissue and have been extensively described to play key roles in health and disease. The most common method to analyze their structure is by digestion into disaccharides with bacterial chondroitinases, followed by chromatography and/or mass spectrometry. While studying the structure of oncofetal CS, we noted a large variation in the activity and specificity of commercially available chondroitinases. Here studied the kinetics of the enzymes and used high-performance liquid chromatography-mass spectrometry to determine the di- and oligosaccharide products resulting from the digestion of commercially available bovine CS A, shark CS C and porcine DS, focusing on chondroitinases ABC, AC and B from different vendors. Application of a standardized assay setup demonstrated large variations in the enzyme-specific activity compared to the values provided by vendors, large variation in enzyme specific activity of similar enzymes from different vendors and differences in the extent of cleavage of the substrates and the generated products. The high variability of different chondroitinases highlights the importance of testing enzyme activity and monitoring product formation in assessing the content and composition of chondroitin and DSs in cells and tissues.
Collapse
Affiliation(s)
- Charlotte B Spliid
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| |
Collapse
|
70
|
Bhattacharyya S, Feferman L, Han X, Xia K, Zhang F, Linhardt RJ, Tobacman JK. Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget 2020; 11:2327-2344. [PMID: 32595831 PMCID: PMC7299535 DOI: 10.18632/oncotarget.27634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, β-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, β-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|
71
|
Eggers R, de Winter F, Smit L, Luimens M, Muir EM, Bradbury EJ, Tannemaat MR, Verhaagen J. Combining timed GDNF and ChABC gene therapy to promote long-distance regeneration following ventral root avulsion and repair. FASEB J 2020; 34:10605-10622. [PMID: 32543730 DOI: 10.1096/fj.202000559r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Ventral root avulsion leads to severe motoneuron degeneration and prolonged distal nerve denervation. After a critical period, a state of chronic denervation develops as repair Schwann cells lose their pro-regenerative properties and inhibitory factors such as CSPGs accumulate in the denervated nerve. In rats with ventral root avulsion injuries, we combined timed GDNF gene therapy delivered to the proximal nerve roots with the digestion of inhibitory CSPGs in the distal denervated nerve using sustained lentiviral-mediated chondroitinase ABC (ChABC) enzyme expression. Following reimplantation of lumbar ventral roots, timed GDNF-gene therapy enhanced motoneuron survival up to 45 weeks and improved axonal outgrowth, electrophysiological recovery, and muscle reinnervation. Despite a timed GDNF expression period, a subset of animals displayed axonal coils. Lentiviral delivery of ChABC enabled digestion of inhibitory CSPGs for up to 45 weeks in the chronically denervated nerve. ChABC gene therapy alone did not enhance motoneuron survival, but led to improved muscle reinnervation and modest electrophysiological recovery during later stages of the regeneration process. Combining GDNF treatment with digestion of inhibitory CSPGs did not have a significant synergistic effect. This study suggests a delicate balance exists between treatment duration and concentration in order to achieve therapeutic effects.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lotte Smit
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Maruelle Luimens
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Elizabeth M Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, UK
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
72
|
Alonge KM, Logsdon AF, Murphree TA, Banks WA, Keene CD, Edgar JS, Whittington D, Schwartz MW, Guttman M. Quantitative analysis of chondroitin sulfate disaccharides from human and rodent fixed brain tissue by electrospray ionization-tandem mass spectrometry. Glycobiology 2020; 29:847-860. [PMID: 31361007 DOI: 10.1093/glycob/cwz060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Chondroitin sulfates (CS) are long, negatively charged, unbranched glycosaminoglycan (GAG) chains attached to CS-proteoglycan (CSPG) core proteins that comprise the glycan component in both loose interstitial extracellular matrices (ECMs) and in rigid, structured perineuronal net (PNN) scaffolds within the brain. As aberrant CS-PNN formations have been linked to a range of pathological states, including Alzheimer's disease (AD) and schizophrenia, the analysis of CS-GAGs in brain tissue at the disaccharide level has great potential to enhance disease diagnosis and prognosis. Two mass-spectrometry (MS)-based approaches were adapted to detect CS disaccharides from minute fixed tissue samples with low picomolar sensitivity and high reproducibility. The first approach employed a straightforward, quantitative direct infusion (DI)-tandem mass spectrometry (MS/MS) technique to determine the percentages of Δ4S- and Δ6S-CS disaccharides within the 4S/6S-CS ratio, while the second used a comprehensive liquid chromatography (LC)-MS/MS technique to determine the relative percentages of Δ0S-, Δ4S-, Δ6S-, Δ4S6S-CS and Δ2S6S-CS disaccharides, with internal validation by full chondroitin lyase activity. The quantitative accuracy of the five primary biologically relevant CS disaccharides was validated using a developmental time course series in fixed rodent brain tissue. We then analyzed the CS disaccharide composition in formalin-fixed human brain tissue, thus providing the first quantitative report of CS sulfation patterns in the human brain. The ability to comprehensively analyze the CS disaccharide composition from fixed brain tissue provides a means with which to identify alterations in the CS-GAG composition in relation to the onset and/or progression of neurological diseases.
Collapse
Affiliation(s)
- Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Aric F Logsdon
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, USA
| | - J Scott Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
73
|
Yung S, Hausser H, Thomas G, Schaefer L, Kresse H, Davies M. Catabolism of Newly Synthesized Decorin in vitro by Human Peritoneal Mesothelial Cells. Perit Dial Int 2020. [DOI: 10.1177/089686080402400205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Previous studies have shown that decorin and biglycan account for over 70% of the proteoglycans (PGs) synthesized by human peritoneal mesothelial cells (HPMCs). Since these PGs are involved in the control of cell growth, cell differentiation, and matrix assembly, we investigated their turnover in cultured HPMCs. Methods Confluent HPMCs were metabolically labeled with [35S]-sulfate and the labeled products isolated from the cell medium and the cell layer characterized by sensitivity to bacterial eliminases. Experiments were undertaken with exogenous labeled decorin, and its metabolic state was studied. Results In a 24-hour labeling period, 75% of the newly synthesized chondroitin sulfate/dermatan sulfate (CS/DS) PGs appeared in the culture medium, the majority of which (90%) was decorin. In the cell layer, protein-free glycosaminoglycan (GAG) chains accounted for 21% of the total CS/DS at 24 hours and exhibited constant specific activity at 12 – 16 hours. The latter material was turned over with a half-life of approximately 2.5 hours. Exogenous decorin underwent receptor-mediated endocytosis and subsequent intracellular degradation. Uptake but not degradation could be inhibited by heparin. Conclusions HPMCs are distinguished by a rapid turnover of decorin. A characteristic metabolic feature is the existence of a large intracellular pool of protein-free DS-GAGs. Understanding the control of decorin turnover in HPMCs might lead to delineation of its potential role in both the physiology and pathophysiology of the membrane in PD patients.
Collapse
Affiliation(s)
- Susan Yung
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, United Kingdom
| | - Heinz Hausser
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Gareth Thomas
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, United Kingdom
| | - Liliana Schaefer
- Medizinische Poliklinik D, University of Münster, Münster, Germany
| | - Hans Kresse
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Malcolm Davies
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, United Kingdom
| |
Collapse
|
74
|
Askaripour H, Vossoughi M, Khajeh K, Alemzadeh I. Examination of chondroitinase ABC I immobilization onto dextran-coated Fe 3O 4 nanoparticles and its in-vitro release. J Biotechnol 2020; 309:131-141. [PMID: 31935418 DOI: 10.1016/j.jbiotec.2019.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 01/22/2023]
Abstract
Chondroitinase ABC I (cABC I) has received notable attention in treatment of spinal cord injuries and its application as therapeutics has been limited due to low thermal stability at physiological temperature. In this study, cABC I enzyme was immobilized on the dextran-coated Fe3O4 nanoparticles through physical adsorption to improve the thermal stability. The nanoparticles were characterized using XRD, SEM, VSM, and FTIR analyses. Response surface methodology and central composite design were employed to assess factors affecting the activity of immobilized cABC I. Experimental results showed that pH 6.3, temperature 24 °C, enzyme/support mass ratio 1.27, and incubation time 5.7 h were the optimal immobilization conditions. It was found that thermal stability of immobilized cABC I was significantly improved. In-vitro cABC I release was studied under pH 7.5 and temperature 37 °C and the results indicated that 70 % release occurred after 9 h and the release mechanism was first-order kinetic model.
Collapse
Affiliation(s)
- Hossein Askaripour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
75
|
Efficient expression of chondroitinase ABC I for specific disaccharides detection of chondroitin sulfate. Int J Biol Macromol 2020; 143:41-48. [DOI: 10.1016/j.ijbiomac.2019.11.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
|
76
|
Rezaei S, Dabirmanesh B, Zare L, Golestani A, Javan M, Khajeh K. Enhancing myelin repair in experimental model of multiple sclerosis using immobilized chondroitinase ABC I on porous silicon nanoparticles. Int J Biol Macromol 2019; 146:162-170. [PMID: 31899243 DOI: 10.1016/j.ijbiomac.2019.12.258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Removal of chondroitin sulfate proteoglycans (CSPGs) with chondroitinase ABC I (ChABC) facilitates axonal plasticity, axonal regeneration and remyelination, following injury to the central nervous system (CNS). However, the ChABC rapidly undergoes thermal inactivity and needs to be injected repeatedly. Here this limitation was overcame by immobilizing the ChABC on porous silicon (PSi) nanoparticles (ChABC@PSi). The efficacy of immobilized ChABC on CSPGs level and the demyelination insult was assessed in mice corpora callosa demyelinated by 6 weeks cuprizone (CPZ) feeding. ChABC@PSi was able to reduce the amount of CSPGs two weeks after animals treatment. CSPGs digestion by ChABC@PSi reduced the extent of demyelinated area as well as the astrogliosis. Furthermore, ChABC@PSi treatment increased the number of newly generated oligodendrocyte lineage cells which imply for enhanced myelin repair. Our results showed that effective CSPGs digestion by ChABC@PSi enhanced remyelination in CPZ model. Accordingly, ChABC@PSi may have a great potential to be used for treatment of diseases like multiple sclerosis and spinal cord injury by promoting the regeneration of damaged nerves.
Collapse
Affiliation(s)
- Safoura Rezaei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
77
|
Valcarcel J, García MR, Varela UR, Vázquez JA. Hyaluronic acid of tailored molecular weight by enzymatic and acid depolymerization. Int J Biol Macromol 2019; 145:788-794. [PMID: 31887382 DOI: 10.1016/j.ijbiomac.2019.12.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan crucial for the homeostasis of tissues, and its role on cell signalling and regulation of tissue injury and repair largely depends on HA molecular weight. Therefore, HA application in a variety of fields requires HA of defined size. While a number of enzymatic, chemical and physical methods exist for HA depolymerization, limited information is currently available for accurate planning of experiments. In the present work, we propose a pseudo-mechanistic model to describe depolymerization kinetics of HA with hyaluronidase, chondroitinase ABC and phosphoric acid. Data to feed the model was provided by monitoring molecular weight reduction by gel permeation chromatography with light scattering detection over 24 h. Five enzyme to substrate ratios and three temperatures were used for enzymatic and chemical reactions respectively, allowing for selection of operational parameters in a range of conditions. The model adequately reproduces the resulting data providing flexibility in the planning of the reactions to obtain HA of the desired molecular weight.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Míriam R García
- Bioprocess Engineering Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Uxía R Varela
- Group of Recycling and Valorization of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
78
|
Sun J, Han X, Song G, Gong Q, Yu W. Cloning, Expression, and Characterization of a New Glycosaminoglycan Lyase from Microbacterium sp. H14. Mar Drugs 2019; 17:md17120681. [PMID: 31810166 PMCID: PMC6950261 DOI: 10.3390/md17120681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
Glycosaminoglycan (GAG) lyase is an effective tool for the structural and functional studies of glycosaminoglycans and preparation of functional oligosaccharides. A new GAG lyase from Microbacterium sp. H14 was cloned, expressed, purified, and characterized, with a molecular weight of approximately 85.9 kDa. The deduced lyase HCLaseM belonged to the polysaccharide lyase (PL) family 8. Based on the phylogenetic tree, HCLaseM could not be classified into the existing three subfamilies of this family. HCLaseM showed almost the same enzyme activity towards hyaluronan (HA), chondroitin sulfate A (CS-A), CS-B, CS-C, and CS-D, which was different from reported GAG lyases. HCLaseM exhibited the highest activities to both HA and CS-A at its optimal temperature (35 °C) and pH (pH 7.0). HCLaseM was stable in the range of pH 5.0–8.0 and temperature below 30 °C. The enzyme activity was independent of divalent metal ions and was not obviously affected by most metal ions. HCLaseM is an endo-type enzyme yielding unsaturated disaccharides as the end products. The facilitated diffusion effect of HCLaseM is dose-dependent in animal experiments. These properties make it a candidate for further basic research and application.
Collapse
Affiliation(s)
- Junhao Sun
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xu Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Guanrui Song
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (Q.G.); (W.Y.); Tel.: +86-532-8203-2067 (Q.G.); +86-532-8203-1680 (W.Y.)
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (Q.G.); (W.Y.); Tel.: +86-532-8203-2067 (Q.G.); +86-532-8203-1680 (W.Y.)
| |
Collapse
|
79
|
Recent advances in the therapeutic uses of chondroitinase ABC. Exp Neurol 2019; 321:113032. [PMID: 31398353 DOI: 10.1016/j.expneurol.2019.113032] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/19/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
Many studies, using pre-clinical models of SCI, have demonstrated the efficacy of chondroitinase ABC as a treatment for spinal cord injury and this has been confirmed in laboratories worldwide and in several animal models. The aim of this review is report the current state of research in the field and to compare the relative efficacies of these new interventions to improve outcomes in both acute and chronic models of SCI. We also report new methods of chondroitinase delivery and the outcomes of two clinical trials using the enzyme to treat spinal cord injury in dogs and disc herniation in human patients. Recent studies have assessed the outcomes of combining chondroitinase with other strategies known to promote recovery following spinal cord injury and new approaches. Evidence is emerging that one of the most powerful combinations is that of chondroitinase with cell transplants. The particular benefits of each of the different cell types used for these transplant experiments are discussed. Combining chondroitinase with rehabilitation also improves outcomes. Gene therapy is an efficient method of enzyme delivery to the injured spinal cord and circumvents the issue of the enzyme's thermo-instability. Other methods of delivery, such as via nanoparticles or synthetic scaffolds, have shown promise; however, the outcomes from these experiments suggest that these methods of delivery require further optimization to achieve similar levels of efficacy to that obtained by a gene therapy approach. Pre-clinical models have also shown chondroitinase is efficacious in the treatment of other conditions, such as peripheral nerve injury, stroke, coronary reperfusion, Parkinson's disease and certain types of cancer. The wide range of conditions where the benefits of chondroitinase treatment have been demonstrated reflects the complex roles that chondroitin sulphate proteoglycans (its substrate) play in health and disease and warrants the enzyme's further development as a therapy.
Collapse
|
80
|
Secretory expression of biologically active chondroitinase ABC I for production of chondroitin sulfate oligosaccharides. Carbohydr Polym 2019; 224:115135. [DOI: 10.1016/j.carbpol.2019.115135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
|
81
|
Askaripour H, Vossoughi M, Khajeh K, Alemzadeh I. Magnetite nanoparticle as a support for stabilization of chondroitinase ABCI. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2721-2728. [DOI: 10.1080/21691401.2019.1577879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hossein Askaripour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
82
|
Fang Y, Fu X, Xie W, Li L, Liu Z, Zhu C, Mou H. Expression, purification and characterisation of chondroitinase AC II with glyceraldehyde-3-phosphate dehydrogenase tag and chaperone (GroEs-GroEL) from Arthrobacter sp. CS01. Int J Biol Macromol 2019; 129:471-476. [DOI: 10.1016/j.ijbiomac.2019.02.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|
83
|
Wang S, Guan J, Zhang Q, Chen X, Li F. Identification and Signature Sequences of Bacterial Δ 4,5Hexuronate-2- O-Sulfatases. Front Microbiol 2019; 10:704. [PMID: 31024490 PMCID: PMC6460246 DOI: 10.3389/fmicb.2019.00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycan (GAG) sulfatases, which catalyze the hydrolysis of sulfate esters from GAGs, belong to a large and conserved sulfatase family. Bacterial GAG sulfatases are essential in the process of sulfur cycling and are useful for the structural analysis of GAGs. Only a few GAG-specific sulfatases have been studied in detail and reported to date. Herein, the GAG-degrading Photobacterium sp. FC615 was isolated from marine sediment, and a novel Δ4,5hexuronate-2-O-sulfatase (PB2SF) was identified from this bacterium. PB2SF specifically removed 2-O-sulfate from the unsaturated hexuronate residue located at the non-reducing end of GAG oligosaccharides produced by GAG lyases. A structural model of PB2SF was constructed through a homology-modeling method. Six conserved amino acids around the active site were chosen for further analysis using site-directed mutagenesis. N113A, K141A, K141H, H143A, H143K, H205A, and H205K mutants exhibited only feeble activity, while the H310A, H310K, and D52A mutants were totally inactive, indicating that these conserved residues, particularly Asp52 and His310, were essential in the catalytic mechanism. Furthermore, bioinformatic analysis revealed that GAG sulfatases with specific degradative properties clustered together in the neighbor-joining phylogenetic tree. Based on this finding, 60 Δ4,5hexuronate-2-O-sulfatases were predicted in the NCBI protein database, and one with relatively low identity to PB2SF was characterized to confirm our prediction. Moreover, the signature sequences of bacterial Δ4,5hexuronate-2-O-sulfatases were identified. With the reported signature motifs, the sulfatase sequence of the Δ4,5hexuronate-2-O-sulfatase family could be simply identified before cloning. Taken together, the results of this study should aid in the identification and further application of novel GAG sulfatases.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jingwen Guan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Qingdong Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xiangxue Chen
- Dongying Tiandong Pharmaceutical, Co., Ltd., Dongying, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
84
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|
85
|
Ho CPS, Lai TYY. Pharmacotherapy for Choroidal Neovascularization Due to Uncommon Causes. Curr Pharm Des 2019; 24:4882-4895. [PMID: 30727875 DOI: 10.2174/1381612825666190206105943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Choroidal neovascularization (CNV) in adults is most commonly associated with neovascular age-related macular degeneration (AMD) and pathologic myopia. Though less common, CNV can also develop from other conditions such as uveitis, central serous chorioretinopathy, angioid streaks, intraocular tumors, hereditary chorioretinal dystrophies, or can be idiopathic in origin. If left untreated, CNV may cause visual loss because of exudation of intraretinal or subretinal fluid, retinal or subretinal hemorrhage, or fibrosis involving the macula. It is well known that one of the main drivers of angiogenesis in CNV development is vascular endothelial growth factor (VEGF) and therefore inhibitors of VEGF might be an effective treatment for CNV. METHODS The goal of this review is to provide an overview and summary in the use of pharmacotherapy especially anti-VEGF therapy, in the treatment of CNV due to uncommon causes. RESULTS Results from uncontrolled case series and controlled clinical trials have reported good efficacy and safety in using anti-VEGF agents including bevacizumab, ranibizumab, aflibercept and ziv-aflibercept in the treatment of CNV due to uncommon causes. Anti-VEGF has also been used in combination with verteporfin PDT and anti-inflammatory agents for treating CNV of various causes. CONCLUSION Pharmacotherapy with anti-VEGF agents is an effective treatment option for CNV due to uncommon etiologies.
Collapse
Affiliation(s)
- Christine P S Ho
- Faculty of Medicine, The University of Hong Kong, Kowloon, Hong Kong
| | - Timothy Y Y Lai
- Hong Kong Eye Hospital, Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong.,2010 Retina & Macula Centre, Kowloon, Hong Kong
| |
Collapse
|
86
|
Lin R, Xia S, Shan C, Chen D, Liu Y, Gao X, Wang M, Kang HB, Pan Y, Liu S, Chung YR, Abdel-Wahab O, Merghoub T, Rossi M, Kudchadkar RR, Lawson DH, Khuri FR, Lonial S, Chen J. The Dietary Supplement Chondroitin-4-Sulfate Exhibits Oncogene-Specific Pro-tumor Effects on BRAF V600E Melanoma Cells. Mol Cell 2019; 69:923-937.e8. [PMID: 29547721 DOI: 10.1016/j.molcel.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/12/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.
Collapse
Affiliation(s)
- Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changliang Shan
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Dong Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yijie Liu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xue Gao
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hee-Bum Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA; General Hospital of Lanzhou Military Region, Lanzhou 730050, China
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology, Medical College, Dalian University, Dalian 116622, China
| | | | | | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Rossi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ragini R Kudchadkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David H Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
87
|
Li Y, Zhou Z, Chen Z. High-level production of ChSase ABC I by co-expressing molecular chaperones in Escherichia coli. Int J Biol Macromol 2018; 119:779-784. [DOI: 10.1016/j.ijbiomac.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
88
|
Viscera of fishes as raw material for extraction of glycosaminoglycans of pharmacological interest. Int J Biol Macromol 2018; 121:239-248. [PMID: 30267823 DOI: 10.1016/j.ijbiomac.2018.09.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/21/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
World fisheries and aquaculture production totaled 167 million tons in 2014. This high fish production generates a lot of waste that could be used as raw material for extraction of substances of pharmacological interest. In this work, we extract and characterize glycosaminoglycans (GAGs) present in the viscera of Nile tilapia (Oreochromis niloticus) and Pacu (Piaractus mesopotamicus), which are among the most vastly produced fishes in inland aquaculture in Brazil. Moreover, the anticoagulant activity of the GAGs fractions was evaluated. GAGs were obtained from total defatted viscera, after proteolysis, precipitation with ethanol, anion exchange chromatography and treatment with chondroitinase. Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) were identified by agarose gel electrophoresis and NMR analyses. CS, DS and HS were identified in equivalent fractions obtained from both fishes, and all GAGs fractions showed anticoagulant activity.
Collapse
|
89
|
Investigating the role of loop 131–140 in activity and thermal stability of chondroitinase ABC I. Int J Biol Macromol 2018; 116:811-816. [DOI: 10.1016/j.ijbiomac.2018.05.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/22/2022]
|
90
|
Abstract
STUDY DESIGN A randomized, double-blind, placebo-controlled, multicenter phase III clinical trial. OBJECTIVE To evaluate the efficacy and safety of chemonucleolysis with condoliase in patients with lumbar disc herniation (LDH). SUMMARY OF BACKGROUND DATA Condoliase is a pure mucopolysaccharidase derived from a bacterium, Proteus vulgaris that has high substrate specificity for chondroitin sulfate and hyaluronic acid in the nucleus pulposus of the intervertebral disc. METHODS In this study, patients aged 20 to 70 years with unilateral leg pain, positive straight leg raise test, and a contained LDH were recruited in Japan. Patients were treated with a single injection of condoliase (1.25 U) or placebo and were followed for 1 year after administration. The primary endpoint was change in worst leg pain from baseline to week 13. The secondary endpoints included responder rate, and the changes from baseline up to week 52 in the worst leg pain, worst back pain, Oswestry Disability Index, 36-Item Short-Form Health Survey, neurologic examinations, and imaging parameters. RESULTS A total of 82 and 81 patients received an injection of condoliase and placebo, respectively. The average changes in worst leg pain from baseline to week 13 (primary endpoint) were -49.5 mm in the condoliase group and -34.3 mm in the placebo group, and the difference of -15.2 mm was significant (95% confidence interval, -24.2 to -6.2; P = 0.001). Significant improvements were observed in the condoliase groups, compared with the placebo group, in most secondary endpoints at 1 year after administration. In the condoliase group, back pain, Modic type 1 change, and decrease in disc height were frequently reported, without any clinically relevant consequences. CONCLUSION Condoliase significantly improved symptoms in patients with LDH and was well tolerated. Condoliase is a novel and potent chemonucleolytic drug for the treatment of LDH. LEVEL OF EVIDENCE 1.
Collapse
|
91
|
The Impact of Perineuronal Net Digestion Using Chondroitinase ABC on the Intrinsic Physiology of Cortical Neurons. Neuroscience 2018; 388:23-35. [PMID: 30004010 DOI: 10.1016/j.neuroscience.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
Abstract
Perineuronal nets (PNNs) are a form of aggregate Extracellular Matrix (ECM) in the brain. Recent evidence suggests that the postnatal deposition of PNNs may play an active role in regulating neuroplasticity and, potentially, neurological disorders. Observations of high levels of PNN expression around somas, proximal dendrites, and axon initial segments of a subtype of neurons have also led to proposals that PNNs may modulate the intrinsic properties of the neurons they ensheathe. While high levels of PNNs are postnatally expressed throughout the neocortex, it is still unclear how they impact the neuronal physiology of the many classes and subtypes of neurons that exist. In this study, we demonstrate that Chondroitinase ABC digestion of PNNs from acute cortical slices from juvenile mice (P28-35) resulted in neuron-specific impacts on intrinsic physiology. Fast spiking (FS) interneurons showed decreased input resistance, resting membrane potential (RMP), reduced action potential (AP) peaks and altered spontaneous synaptic inputs. Low-Threshold Spiking interneurons showed altered rebound depolarizations and decreased frequency of spontaneous synaptic inputs. Putative excitatory neurons; regular spiking, bursting, and doublet phenotypes did not demonstrate any alterations. Our data indicate that chABC-sensitive PNNs may specifically regulate the intrinsic and synaptic physiology of inhibitory interneurons.
Collapse
|
92
|
Raspa A, Bolla E, Cuscona C, Gelain F. Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury. CNS Neurosci Ther 2018; 25:86-100. [PMID: 29855151 DOI: 10.1111/cns.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS Usually, spinal cord injury (SCI) develops into a glial scar containing extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs). Chondroitinase ABC (ChABC), from Proteus vulgaris degrading the glycosaminoglycan (GAG) side chains of CSPGs, offers the opportunity to improve the final outcome of SCI. However, ChABC usage is limited by its thermal instability, requiring protein structure modifications, consecutive injections at the lesion site, or implantation of infusion pumps. METHODS Aiming at more feasible strategy to preserve ChABC catalytic activity, we assessed various stabilizing agents in different solutions and demonstrated, via a spectrophotometric protocol, that the 2.5 mol/L Sucrose solution best stabilized ChABC as far as 14 days in vitro. RESULTS ChABC activity was improved in both stabilizing and diluted solutions at +37°C, that is, mimicking their usage in vivo. We also verified the safety of the proposed aqueous sucrose solution in terms of viability/cytotoxicity of mouse neural stem cells (NSCs) in both proliferating and differentiating conditions in vitro. Furthermore, we showed that a single intraspinal treatment with ChABC and sucrose reduced reactive gliosis at the injury site in chronic contusive SCI in rats and slightly enhanced their locomotor recovery. CONCLUSION Usage of aqueous sucrose solutions may be a feasible strategy, in combination with rehabilitation, to ameliorate ChABC-based treatments to promote the regeneration of central nervous system injuries.
Collapse
Affiliation(s)
- Andrea Raspa
- Opera di San Pio da Pietrelcina, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Edoardo Bolla
- Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Claudia Cuscona
- Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Fabrizio Gelain
- Opera di San Pio da Pietrelcina, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| |
Collapse
|
93
|
Matsuyama Y, Chiba K, Iwata H, Seo T, Toyama Y. A multicenter, randomized, double-blind, dose-finding study of condoliase in patients with lumbar disc herniation. J Neurosurg Spine 2018; 28:499-511. [DOI: 10.3171/2017.7.spine161327] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEChemonucleolysis with condoliase has the potential to be a new, less invasive therapeutic option for patients with lumbar disc herniation (LDH). The aim of the present study was to determine the most suitable therapeutic dose of condoliase.METHODSPatients between 20 and 70 years of age with unilateral leg pain, positive findings on the straight leg raise test, and LDH were recruited. All eligible patients were randomly assigned to receive condoliase (1.25, 2.5, or 5 U) or placebo. The primary end point was a change in the worst leg pain from preadministration (baseline) to week 13. The secondary end points were changes from baseline in the following items: worst back pain, Oswestry Disability Index (ODI), SF-36, and neurological examination. For pharmacokinetic and pharmacodynamic analyses, plasma condoliase concentrations and serum keratan sulfate concentrations were measured. The safety end points were adverse events (AEs) and radiographic and MRI parameters. Data on leg pain, back pain, abnormal neurological findings, and imaging parameters were collected until week 52.RESULTSA total of 194 patients received an injection of condoliase or placebo. The mean change in worst leg pain from baseline to week 13 was −31.7 mm (placebo), −46.7 mm (1.25 U), −41.1 mm (2.5 U), and −47.6 mm (5 U). The differences were significant at week 13 in the 1.25-U group (−14.9 mm; 95% CI −28.4 to −1.4 mm; p = 0.03) and 5-U group (−15.9 mm; 95% CI −29.0 to −2.7 mm; p = 0.01) compared with the placebo group. The dose-response improvement in the worst leg pain at week 13 was not significant (p = 0.14). The decrease in the worst leg pain in all 3 condoliase groups was observed from week 1 through week 52. Regarding the other end points, the worst back pain and results of the straight leg raise test, ODI, and SF-36 showed a tendency for sustained improvement in each of the condoliase groups until week 52. In all patients at all time points, plasma condoliase concentrations were below the detectable limit (< 100 μU/ml). Serum keratan sulfate concentrations significantly increased from baseline to 6 hours and 6 weeks after administration in all 3 condoliase groups. No patient died or developed anaphylaxis or neurological sequelae. Five serious AEs occurred in 5 patients (3 patients in the condoliase groups and 2 patients in the placebo group), resolved, and were considered unrelated to the investigational drug. Severe AEs occurred in 10 patients in the condoliase groups and resolved or improved. In the condoliase groups, back pain was the most frequent AE. Modic type 1 change and decrease in disc height were frequent imaging findings. Dose-response relationships were observed for the incidence of adverse drug reactions and decrease in disc height.CONCLUSIONSCondoliase significantly improved clinical symptoms in patients with LDH and was well tolerated. While all 3 doses had similar efficacy, the incidence of adverse drug reactions and decrease in disc height were dose dependent, thereby suggesting that 1.25 U would be the recommended clinical dose of condoliase.Clinical trial registration no.: NCT00634946 (clinicaltrials.gov)
Collapse
Affiliation(s)
- Yukihiro Matsuyama
- 1Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka
| | - Kazuhiro Chiba
- 2Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo
| | - Hisashi Iwata
- 3Department of Orthopaedic Surgery, Nagoya Kyoritsu Hospital, Nagoya, Aichi; and
| | - Takayuki Seo
- 4Biostatistics & Data Management Group, Clinical Development, Research & Development Division, Seikagaku Corporation, Tokyo, Japan
| | - Yoshiaki Toyama
- 2Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo
| |
Collapse
|
94
|
The extracellular matrix: Focus on oligodendrocyte biology and targeting CSPGs for remyelination therapies. Glia 2018; 66:1809-1825. [DOI: 10.1002/glia.23333] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
|
95
|
2,3-Di-O-sulfo glucuronic acid: An unmodified and unusual residue in a highly sulfated chondroitin sulfate from Litopenaeus vannamei. Carbohydr Polym 2018; 183:192-200. [DOI: 10.1016/j.carbpol.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
|
96
|
Peng C, Wang Q, Wang S, Wang W, Jiao R, Han W, Li F. A chondroitin sulfate and hyaluronic acid lyase with poor activity to glucuronyl 4,6- O-disulfated N-acetylgalactosamine (E-type)-containing structures. J Biol Chem 2018; 293:4230-4243. [PMID: 29414785 DOI: 10.1074/jbc.ra117.001238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
GlcUAβ1-3GalNAc(4S,6S) (E unit)-rich domains have been shown to play key roles in various biological functions of chondroitin sulfate (CS). However, an enzyme that can specifically isolate such domains through the selective digestion of other domains in polysaccharides has not yet been reported. Here, we identified a glycosaminoglycan lyase from a marine bacterium Vibrio sp. FC509. This enzyme efficiently degraded hyaluronic acid (HA) and CS variants, but not E unit-rich CS-E, into unsaturated disaccharides; therefore, we designated this enzyme a CS-E-resisted HA/CS lyase (HCLase Er). We isolated a series of resistant oligosaccharides from the final product of a low-sulfated CS-E exhaustively digested by HCLase Er and found that the E units were dramatically accumulate in these resistant oligosaccharides. By determining the structures of several resistant tetrasaccharides, we observed that all of them possessed a Δ4,5HexUAα1-3GalNAc(4S,6S) at their non-reducing ends, indicating that the disulfation of GalNAc abrogates HCLase Er activity on the β1-4 linkage between the E unit and the following disaccharide. Δ4,5HexUAα1-3GalNAc(4S,6S)β1-4GlcUAβ1-3GalNAc(4S,6S) was most strongly resistant to HCLase Er. To our knowledge, this study is the first reporting a glycosaminoglycan lyase specifically inhibited by both 4-O- and 6-O-sulfation of GalNAc. Site-directed and truncation mutagenesis experiments indicated that HCLase Er may use a general acid-base catalysis mechanism and that an extra domain (Gly739-Gln796) is critical for its activity. This enzyme will be a useful tool for structural analyses and for preparing bioactive oligosaccharides of HA and CS variants, particularly from E unit-rich CS chains.
Collapse
Affiliation(s)
- Chune Peng
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Qingbin Wang
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Shumin Wang
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Wenshuang Wang
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Runmiao Jiao
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Wenjun Han
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Fuchuan Li
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| |
Collapse
|
97
|
Stryker C, Camperchioli DW, Mayer CA, Alilain WJ, Martin RJ, MacFarlane PM. Respiratory dysfunction following neonatal sustained hypoxia exposure during a critical window of brain stem extracellular matrix formation. Am J Physiol Regul Integr Comp Physiol 2018; 314:R216-R227. [PMID: 29046314 PMCID: PMC5867672 DOI: 10.1152/ajpregu.00199.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 01/02/2023]
Abstract
The extracellular matrix (ECM) modulates brain maturation and plays a major role in regulating neuronal plasticity during critical periods of development. We examined 1) whether there is a critical postnatal period of ECM expression in brain stem cardiorespiratory control regions and 2) whether the attenuated hypoxic ventilatory response (HVR) following neonatal sustained (5 days) hypoxia [SH (11% O2, 24 h/day)] exposure is associated with altered ECM formation. The nucleus tractus solitarius (nTS), dorsal motor nucleus of the vagus, hypoglossal motor nucleus, cuneate nucleus, and area postrema were immunofluorescently processed for aggrecan and Wisteria floribunda agglutinin (WFA), a key proteoglycan of the ECM and the perineuronal net. From postnatal day ( P) 5 ( P5), aggrecan and WFA expression increased postnatally in all regions. We observed an abrupt increase in aggrecan expression in the nTS, a region that integrates and receives afferent inputs from the carotid body, between P10 and P15 followed by a distinct and transient plateau between P15 and P20. WFA expression in the nTS exhibited an analogous transient plateau, but it occurred earlier (between P10 and P15). SH between P11 and P15 attenuated the HVR (assessed at P16) and increased aggrecan (but not WFA) expression in the nTS, dorsal motor nucleus of the vagus, and area postrema. An intracisternal microinjection of chondroitinase ABC, an enzyme that digests chondroitin sulfate proteoglycans, rescued the HVR and the increased aggrecan expression. These data indicate that important stages of ECM formation take place in key brain stem respiratory neural control regions and appear to be associated with a heightened vulnerability to hypoxia.
Collapse
Affiliation(s)
- C. Stryker
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | - C. A. Mayer
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - W. J. Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - R. J. Martin
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| | - P. M. MacFarlane
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
98
|
Improving the stability of chondroitinase ABC I via interaction with gold nanorods. Int J Biol Macromol 2018; 107:297-304. [DOI: 10.1016/j.ijbiomac.2017.08.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023]
|
99
|
Yagi H, Isobe N, Itabashi N, Fujise A, Ohshiro T. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1. Mar Drugs 2017; 16:md16010004. [PMID: 29280943 PMCID: PMC5793052 DOI: 10.3390/md16010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides) have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7) was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme.
Collapse
Affiliation(s)
- Hisashi Yagi
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Natsuki Isobe
- Department of Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Narumi Itabashi
- Department of Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Asako Fujise
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| |
Collapse
|
100
|
Maleki M, Khajeh K, Amanlou M, Golestani A. Role of His-His interaction in Ser 474-His 475-Tyr 476 sequence of chondroitinase ABC I in the enzyme activity and stability. Int J Biol Macromol 2017; 109:941-949. [PMID: 29146558 DOI: 10.1016/j.ijbiomac.2017.11.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022]
Abstract
Despite clinical importance of chondroitinase ABC I, its application has been limited due to thermal instability as reported in the literature. There are various approaches to improve thermal stability of enzymes, among them, His-His interactions are believed generally as an effective means. In the present study and for preparing a His-His interaction, various mutations in the sequence of Ser474-His475-Tyr476 at catalytic domain of the enzyme were performed using site directed mutagenesis method. The effect of these mutations on activity, stability and structural features of cABC I was assessed. The study showed that establishment of His475-His476 pair in cABC I, did not improve thermal stability of the enzyme and inactivated it. The study also revealed the existence a hydrogen bond network in the central domain of the enzyme with a specific role for tyrosine 476. In this network, replacement of His475 with Ala and Try476 with His and Ala, deactivated and destabilized the enzyme; confirming their importance in the enzyme catalysis and stability. Also, it was found that Tyr476 has some important role in substrate binding, an issue which should be more investigated.
Collapse
Affiliation(s)
- Monireh Maleki
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Massoud Amanlou
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|