51
|
Effect of bradykinin on Na-K-2Cl cotransport and bumetanide binding in aortic endothelial cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45695-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
52
|
Anderson SE, Murphy E, Steenbergen C, London RE, Cala PM. Na-H exchange in myocardium: effects of hypoxia and acidification on Na and Ca. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:C940-8. [PMID: 2175547 DOI: 10.1152/ajpcell.1990.259.6.c940] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, increase in cell Na content during ischemic and hypoxic episodes were thought to result from impaired ATP production causing decreased Na(+)-K(+)-ATPase activity. Here we report the results of testing the alternate hypothesis that hypoxia-induced Na uptake is 1) the result of increased entry, as opposed to decreased extrusion 2) via Na-H exchange operating in a pH regulatory capacity and that cell Ca accumulation occurs via Na-Ca exchange secondary to collapse of the Na gradient. We used 23Na-, 19F-, and 31P-nuclear magnetic resonance (NMR) to measure intracellular Na content (Nai), Ca concentration [( Ca]i), pH (pHi), and high-energy phosphates in Langendorff-perfused rabbit hearts. When the Na(+)-K(+)-ATPase was inhibited by ouabain and/or K-free perfusion, hearts subjected to hypoxia gained Na at a rate greater than 10 times that of normoxic controls [during the first 12.5 min Nai increased from 7.9 +/- 5.8 to 34.9 +/- 11.0 (SD) meq/kg dry wt compared with 11.1 +/- 16.3 to 13.6 +/- 9.0 meq/kg dry wt, respectively]. When normoxic hearts were acidified using a 20 mM NH4Cl prepulse technique, pHi rapidly fell from 7.27 +/- 0.24 to 6.63 +/- 0.12 but returned to 7.07 +/- 0.10 within 20 min, while Na uptake was similar in rate and magnitude to that observed during hypoxia (24.5 +/- 13.4 to 132.1 +/- 17.7 meq/kg dry wt). During hypoxia and after NH4Cl washout, increases in [Ca]i were similar in time course to those observed for Na.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S E Anderson
- Department of Human Physiology, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
53
|
Haas M, Johnson LG, Boucher RC. Regulation of Na-K-Cl cotransport in cultured canine airway epithelia: a [3H]bumetanide binding study. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:C557-69. [PMID: 2221037 DOI: 10.1152/ajpcell.1990.259.4.c557] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We examined [3H]bumetanide binding to membranes isolated from canine tracheal and bronchial epithelia and to confluent primary cultures of these cells. Crude plasma membranes from trachea and bronchus bind [3H]bumetanide in a saturable manner; tracheal membranes have a higher affinity but lower maximal binding (K1/2 approximately equal to 0.7 microM; Bmax approximately equal to 2.5 pmol/mg protein) than do bronchial membranes (K1/2 approximately equal to 3.5 microM; B(max) approximately equal to 7.5 pmol/mg). In both cases, saturable binding is reduced by greater than 65% when either Na, K, or Cl is removed from the medium. In primary cultures, saturable [3H]bumetanide binding (inhibited by a 30-fold excess of unlabeled bumetanide) occurs when [3H]bumetanide (1.0 microM) is added to the solution bathing the basolateral side of tracheal (1.20 +/- 0.10 pmol bound/mg total cell protein) and bronchial (1.79 +/- 0.52 pmol/mg) cultures; minimal binding is seen with apical [3H]bumetanide. Isoproterenol (10(-5) M; basolateral exposure) produces approximately 100% increase in saturable basolateral [3H]bumetanide binding to tracheal cultures and approximately 30% increase in bronchial cultures. Similar augmentation of binding is seen when apical Cl is reduced from 134 to 4 mM and when both apical and basolateral media are made hypertonic by addition of 100 mM sucrose. Under these latter two conditions, isoproterenol produces little or no additional increase in binding. Our results indicate that the increase in basolateral Cl influx via Na-K-Cl cotransport that must occur during beta-adrenergic stimulation of net salt secretion in canine airway epithelia is related to an actual increase in the number of functioning cotransporters in the basolateral membrane and is not simply due to a change in ion gradients. The increase in cotransport sites, however, may be secondary to initial stimulation of apical Cl channels, with resultant cell shrinkage.
Collapse
Affiliation(s)
- M Haas
- Department of Medicine, University of North Carolina, Chapel Hill 27514
| | | | | |
Collapse
|
54
|
Martinez-Maldonado M, Cordova HR. Cellular and molecular aspects of the renal effects of diuretic agents. Kidney Int 1990; 38:632-41. [PMID: 2172617 DOI: 10.1038/ki.1990.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the past few years, increased knowledge of the nature of transport proteins and their molecular regulation in the translocation of ions across kidney membranes has emerged. We are beginning to better understand the characteristics of the interaction of diuretics with these transport proteins. It is likely that this knowledge will permit further insight into nephron function regulation.
Collapse
|
55
|
Arumanayagam M, MacDonald D, Cockram CS, Swaminathan R. Erythrocyte sodium fluxes, ouabain binding sites, and Na+,K(+)-ATPase activity in hyperthyroidism. Metabolism 1990; 39:952-7. [PMID: 2168011 DOI: 10.1016/0026-0495(90)90307-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Erythrocyte sodium pump activity, in contrast to other tissues, is decreased in hyperthyroidism. In order to examine whether the effect of thyroid hormones on erythrocytes is part of a generalized effect on other transport pathways, we measured sodium pump activity, Na+,K(+)-adenosine triphosphatase (ATPase) activity, ouabain binding sites, bumetanide-sensitive sodium potassium cotransport (SPC), sodium lithium countertransport (SLC), and ouabain- and bumetanide-insensitive passive efflux of sodium (sodium "leak") in erythrocytes from 20 healthy subjects and 18 untreated hyperthyroid subjects. Sodium pump activity (ouabain-sensitive sodium efflux rate constant), Na+,K(+)-ATPase activity, and the number of ouabain binding sites were lower and the erythrocyte sodium content was higher in hyperthyroid subjects. The rate constants of erythrocyte SPC (P less than .05), SLC (P less than .001), and sodium "leak" (P less than .05) were also significantly lower in hyperthyroidism. In 11 of the hyperthyroid subjects, sodium flux measurements were repeated after 20 weeks of treatment. Sodium pump activity, the number of ouabain binding sites, and the rate constant for SLC increased. These results suggest that the effect of thyroid hormones on the erythrocyte sodium pump is part of a generalized effect on membrane proteins, rather than a specific effect.
Collapse
Affiliation(s)
- M Arumanayagam
- Department of Chemical Pathology and Chinese University of Hong Kong, Shatin, New Territories
| | | | | | | |
Collapse
|
56
|
Pewitt E, Hedge R, Palfrey H. [3H]bumetanide binding to avian erythrocyte membranes. Correlation with activation and deactivation of Na/K/2Cl cotransport. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77310-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
57
|
Altamirano AA, Watts BA, Russell JM. Binding of bumetanide to microsomes from optic ganglia of the squid, Loligo pealei. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C933-43. [PMID: 2333985 DOI: 10.1152/ajpcell.1990.258.5.c933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Saturable high-affinity binding of [3H] bumetanide [dissociation constant (KD) = 80 nM] was measured in microsomal membranes prepared from squid optic ganglia. Under control conditions, the maximal specific binding of labeled bumetanide (Bmax) was approximately 6-7 pmol/mg protein. Binding had a higher relative affinity for bumetanide than for furosemide and depended on the presence of Cl- and K+, but not Na+, in the incubation media. In the case of K+, [3H]bumetanide binding was half-saturated at [K+] = 100 mM. The Cl- effect was biphasic. At [Cl-] between 0 and 150 mM, [3H]bumetanide binding increased with increasing [Cl-]. However, when [Cl-] was increased above 150 mM, [3H]bumetanide binding was progressively reduced. ATP acted as a nonessential activator [mean affinity constant (K0.5) approximately 1 microM] of the ion-dependent [3H]bumetanide binding by increasing the apparent binding capacity. The activation by ATP did not require Mg2+. Other adenosine analogues also stimulated the binding of bumetanide.
Collapse
Affiliation(s)
- A A Altamirano
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
58
|
Breitwieser GE, Altamirano AA, Russell JM. Osmotic stimulation of Na(+)-K(+)-Cl- cotransport in squid giant axon is [Cl-]i dependent. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C749-53. [PMID: 2333955 DOI: 10.1152/ajpcell.1990.258.4.c749] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of increasing extracellular osmolality on unidirectional Cl- fluxes through the Na(+)-K(+)-Cl- cotransporter were studied in internally dialyzed squid giant axons. Hyperosmotic seawater stimulated bumetanide-sensitive Cl-influx at 150 mM intracellular Cl- concentration ([Cl-]i), whereas Cl- efflux was unaffected under comparable ionic conditions. Stimulation of bumetanide-sensitive Cl- influx was proportional to the increase in extracellular osmolality. Bumetanide-sensitive Cl- influx began to increase after a latency of approximately 20 min after a stepwise increase of extracellular osmolality and continued to increase for at least 70 min. The increased bumetanide-sensitive Cl- influx measured after 65 min of exposure to hyperosmotic external fluid was a function of the intracellular Cl- concentration; stimulation by hyperosmotic external fluids was observed at physiological [Cl-]i levels (greater than 100 mM) but not at lower [Cl-]i levels. Under both normo- and hyperosmotic conditions, intracellular Cl- inhibited Na(+)-K(+)-Cl- cotransport influx in a concentration-dependent manner. However, in hyperosmotic seawater, the dose dependence of inhibition by intracellular Cl- was shifted to higher [Cl-]i values. Therefore, we conclude that hyperosmotic extracellular fluids stimulate influx via the Na(+)-K(+)-Cl- cotransport by resetting the relation between [Cl-]i and transport activity.
Collapse
Affiliation(s)
- G E Breitwieser
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
59
|
Turner RJ, George JN. Solubilization and partial purification of the rabbit parotid Na/K/Cl-dependent bumetanide binding site. J Membr Biol 1990; 113:203-10. [PMID: 2335808 DOI: 10.1007/bf01870072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We demonstrate that the high affinity bumetanide binding site of the rabbit parotid acinar cell can be extracted from a basolateral membrane fraction using relatively low concentrations (0.07%, wt/vol; 1 mg membrane protein/ml) of the nonionic detergent Triton X-100. This extracted site cannot be sedimented by ultracentrifugation at 100,000 x g x 1 hr. Bumetanide binding to this site retains the ionic characteristics of bumetanide binding to native membranes but shows a fivefold increase in binding affinity (Kd = 0.57 +/- 0.15 microM vs. Kd = 3.3 +/- 0.7 microM for native membranes). Inactivation of the extracted bumetanide binding site observed at detergent/protein ratios greater than 1 can be prevented or (partially) reversed by the addition of exogenous lipid (0.2% soybean phosphatidylcholine). When the 0.07% Triton extract is fractionated by sucrose density gradient centrifugation in 0.24% Triton X-100, 0.2% exogenous lipid and 200 mM salt, the high affinity bumetanide binding site sediments as a single band with S20,w = 8.8 +/- 0.8 S. This corresponds to a molecular weight approximately 200 kDa for the bumetanide binding protein-detergent-lipid complex and represents a sevenfold purification of this site relative to the starting membrane fraction. In contrast to previous attempts to purify Na/K/Cl cotransport proteins and their associated bumetanide binding sites, the present method avoids harsh detergent treatment as well as direct covalent modification (inactivation) of the transporter itself. As a consequence, one can follow the still active protein through a series of extraction and purification steps by directly monitoring its bumetanide binding properties.
Collapse
Affiliation(s)
- R J Turner
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
60
|
Deuticke B, Grebe R, Haest CWM. Action of Drugs on the Erythrocyte Membrane. BLOOD CELL BIOCHEMISTRY 1990. [DOI: 10.1007/978-1-4757-9528-8_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
61
|
|
62
|
|
63
|
Kort JJ, Koch G. The Na+,K+,2Cl- -cotransport system in HeLa cells and HeLa cell mutants exhibiting an altered efflux pathway. J Cell Physiol 1989; 141:181-90. [PMID: 2777900 DOI: 10.1002/jcp.1041410126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have investigated the characteristics of a transport system in HeLa cells, which turned out to be very similar to a previously described Na+, K+, 2Cl- -cotransport system. For further understanding about the physiological role of the cotransporter, we have mutagenized HeLa cells and selected progeny cells for growth in low potassium (0.2 mM) medium. The selected HeLa cells (LK1) exhibited alterations in the Na+,K+,2Cl- -cotransport system. LK1 cells showed a remarkable reduction of 86Rb+ efflux via the cotransporter when compared to the parental HeLa cells. In contrast, bumetanide-sensitive potassium influx, measured by 86Rb+ uptake, was increased in the LK1 cells (increase in Vmax). Km values of the cotransporter in HeLa cells and LK1 mutants revealed similar properties for 86Rb+ and 22Na+ uptake. In addition, (3H)-bumetanide binding studies were carried out on intact HeLa cells; 1.7 pmol/mg protein (3H)-bumetanide was specifically bound to HeLa parental cells, which could be calculated to a number of 103,000 binding sites/cell. LK1 cells present, 1.44 pmol/mg protein, specifically bound (3H)-bumetanide and, respectively, 137,000 binding sites/cell. The LK1 cells also exhibited an increase in the number of (3H)-ouabain binding sites as well as an increase in the activity of the Na+,K+-ATPase, expressed as a function of ouabain-sensitive 86Rb+ uptake. Furthermore, LK1 cells were different in the concentrations of intracellular Na+ (increases) and K+ (decreases) when compared to the HeLa parental cells. When grown in low K+ medium (0.2 mM K+), protein content and cell volume were increased in the LK1 cells, while the DNA content was not significantly different between both cell lines.
Collapse
Affiliation(s)
- J J Kort
- Department of Molecular Biology, University of Hamburg, Federal Republic of Germany
| | | |
Collapse
|
64
|
Wiener H, van Os CH. Rabbit distal colon epithelium: II. Characterization of (Na+,K+,Cl-)-cotransport and [3H]-bumetanide binding. J Membr Biol 1989; 110:163-74. [PMID: 2810347 DOI: 10.1007/bf01869471] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Loop diuretic-sensitive (Na+,K+,Cl-)-cotransport activity was found to be present in basolateral membrane vesicles of surface and crypt cells of rabbit distal colon epithelium. The presence of gradients of all three ions was essential for optimal transport activity. (Na+,K+) gradient-driven 36Cl fluxes were half-maximally inhibited by 0.14 microM bumetanide and 44 microM furosemide. While 86Rb uptake rates showed hyperbolic dependencies on Na+ and K+ concentrations with Hill coefficients of 0.8 and 0.9, respectively, uptakes were sigmoidally related to the Cl concentration, Hill coefficient 1.8, indicating a 1 Na+:1 K+:2 Cl stoichiometry of ion transport. The interaction of putative (Na+,K+,Cl-)-cotransport proteins with loop diuretics was studied from equilibrium-binding experiments using [3H]-bumetanide. The requirement for the simultaneous presence of Na+,K+, and Cl-, saturability, reversibility, and specificity for diuretics suggest specific binding to the (Na+,K+,Cl-)-cotransporter. [3H]-bumetanide recognizes a minimum of two classes of diuretic receptor sites, high-affinity (KD1 = 0.13 microM; Bmax1 = 6.4 pmol/mg of protein) and low-affinity (KD2 = 34 microM; Bmax2 = 153 pmol/mg of protein) sites. The specific binding to the high-affinity receptor was found to be linearly competitive with Cl- (Ki = 60 mM), whereas low-affinity sites seem to be unaffected by Cl-. We have shown that only high-affinity [3H]-bumetanide binding correlates with transport inhibition raising questions on the physiological significance of diuretic receptor site heterogeneity observed in rabbit distal colon epithelium.
Collapse
Affiliation(s)
- H Wiener
- Department of Pharmacology, University of Vienna, Austria
| | | |
Collapse
|
65
|
Franklin CC, Turner JT, Kim HD. Regulation of Na+/K+/Cl- Cotransport and [3H]Bumetanide Binding Site Density by Phorbol Esters in HT29 Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83479-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
66
|
Babila T, Gottlieb Y, Lutz RA, Lichtstein D. A bumetanide-sensitive, potassium carrier-mediated transport system in excitable tissues. Life Sci 1989; 44:1665-75. [PMID: 2733546 DOI: 10.1016/0024-3205(89)90483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The binding of [3H]-bumetanide to rat brain synaptosomes revealed the existence of two binding sites. The high affinity site (R1 = 46.6 fmoles/mg protein) binds bumetanide and furosemide with Kd1 of 13 nM and 1.5 microM respectively, while the low affinity site (R2 = 1.37 nmoles/mg protein) is characterized by Kd2 of 200 microM and 680 microM for bumetanide and furosemide, respectively. Bumetanide sensitive 86Rb uptake was 34 +/- 14.5, 38.3 +/- 1.4, 18.6 +/- 1.3 and 29.0 +/- 6.1% of total 86Rb uptake in synaptic plasma membrane vesicles, rat brain synaptosomes, Neuroblastoma N1E115 cell line and chick chest muscle cells, respectively. Furosemide and bumetanide inhibited 86Rb uptake to rat brain SPM- vesicles in a dose dependent fashion. Half maximal inhibition (IC50) was observed at 20 nM and 4 microM for bumetanide and furosemide, respectively. Bumetanide-sensitive transport was dependent on extravesicular sodium and chloride concentrations with a Km of 21 and 25 mM for the two ions, respectively. These results demonstrate the existence of a "loop diuretic" sensitive carrier-mediated K+ transport system in brain and other excitable cells.
Collapse
Affiliation(s)
- T Babila
- Department of Physiology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
67
|
Abstract
Two methods have been described for the study of cation-chloride cotransport systems. The zero-trans efflux method is designed to determine stoichiometric relationships between cotransported ions under conditions where ion exchanges cannot occur. These exchanges (e.g., Na+/Na+, K+/K+) may occur as partial or incomplete reactions of a cotransport process and can lead to erroneous determinations of the stoichiometry of the cotransport process. The zero-trans efflux method can also be used to study the effects of cell volume, pH, and intracellular ion concentrations on cotransport processes. The valinomycin method is used to determine the electrogenicity or electroneutrality of transport, and in this regard can be used in conjunction with other methods such as those employing potential-sensitive dyes or microelectrodes. Other, more recently developed ionophores with specificity for lithium rather than potassium have now been used to study the effect of Em on the ATP-dependent Na+/K+ pump. It may be possible to use such ionophores to confirm the suspected electroneutrality of (K+ + Cl-) cotransport systems, as well as for other studies of specific potassium transport processes in which valinomycin obviously cannot be used. Both methods discussed in detail in this chapter, and particularly the valinomycin method, were originally devised for use in red blood cells in order to take advantage of (or circumvent) properties of the red cell membrane, such as its low permeability to sodium and potassium and relatively high permeability to chloride. However, valinomycin has been used successfully to demonstrate the electroneutrality of (Na+ + K+ + 2Cl-) cotransport in MDCK cells, and the zero-trans efflux method should be applicable to the study of transport processes in other types of cells in suspension, so long as the transport system being studied can be accurately defined (e.g., as an inhibitor-sensitive or chloride-dependent cation flux) and comprises a significant fraction of the total salt efflux.
Collapse
|
68
|
O'Donnell ME, Owen NE. Reduced Na-K-Cl cotransport in vascular smooth muscle cells from spontaneously hypertensive rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 255:C169-80. [PMID: 2841860 DOI: 10.1152/ajpcell.1988.255.2.c169] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have previously demonstrated the presence of a prominent, cyclic nucleotide-sensitive Na-K-Cl cotransport in vascular smooth muscle cells (VSMC). Others have observed that Na-K-Cl cotransport levels are reduced in erythrocytes of patients with essential hypertension and have proposed that a defect in this Na transport system may play a role in the pathogenesis of the disease. However, such a defect has not been demonstrated in the putative target tissue for essential hypertension, i.e., the VSMC. In the present study, we compared Na-K-Cl cotransport of VSMC from spontaneously hypertensive rats (SHR) with Na-K-Cl cotransport of VSMC from normotensive Wistar-Kyoto rats (WKY). We found that Na-K-Cl cotransport of SHR VSMC is significantly reduced relative to that of WKY VSMC (3.09 vs. 4.39 mumol K.g protein-1.min-1). The apparent ion affinities for Na-K-Cl cotransport of SHR VSMC did not differ from those determined for WKY VSMC. Furthermore, cyclic nucleotide regulation of cotransport also appeared to be the same for the two types of VSMC. In contrast, maximal saturable binding of [3H]bumetanide observed in SHR VSMC was markedly reduced compared with that of WKY VSMC, but the Kd values were similar. Our data suggest that the reduction in cotransport observed in SHR VSMC is the result of a decrease in the number of available cotransport sites.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Atrial Natriuretic Factor/pharmacology
- Bumetanide/pharmacology
- Carrier Proteins/metabolism
- Cells, Cultured
- Chlorides/metabolism
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Norepinephrine/pharmacology
- Potassium/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred Strains
- Rats, Inbred WKY
- Sodium/metabolism
- Sodium-Potassium-Chloride Symporters
- Species Specificity
Collapse
Affiliation(s)
- M E O'Donnell
- Department of Biological Chemistry and Structure, University of Health Sciences, Chicago Medical School, Illinois 60064
| | | |
Collapse
|
69
|
Feit PW, Hoffmann EK, Schiødt M, Kristensen P, Jessen F, Dunham PB. Purification of proteins of the Na/Cl cotransporter from membranes of Ehrlich ascites cells using a bumetanide-sepharose affinity column. J Membr Biol 1988; 103:135-47. [PMID: 3184172 DOI: 10.1007/bf01870944] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bumetanide-binding proteins were isolated from membranes of Ehrlich ascites tumor cells by affinity chromatography. An affinity column was constructed with the active moiety of bumetanide as a ligand using 4'-azidobumetanide, a photoactive analogue which inhibits Na/Cl cotransport in Ehrlich cells with high specificity. Covalent binding of the 4'-azidobumetanide with Sepharose was promoted by photolysis. Membranes isolated from Ehrlich cells were solubilized with n-octylglucoside. Solubilized proteins retarded by the affinity column were readily eluted by bumetanide. In reducing gels the major proteins eluted by bumetanide were approximately 76 kDa and 38-39 kDa. There were also two proteins of 32 to 35 kDa eluted in lesser amounts. No proteins retarded by the affinity column were eluted with extensive washing without bumetanide. Furthermore, bumetanide eluted no proteins from a "control" column lacking the specific ligand. Upon rechromatography with bumetanide in solution, bumetanide-eluted proteins were not retarded, but their purity was increased by the retardation of contaminating proteins. Bumetanide-binding protein purified in this manner were characterized further by electrophoresis in nonreducing, nondenaturing gels.
Collapse
Affiliation(s)
- P W Feit
- Leo Pharmaceutical Products, Ballerup, Denmark
| | | | | | | | | | | |
Collapse
|
70
|
Giesen-Crouse E, Fandeleur P, Welsch C, Englert H, Lang HJ, Schmidt M, Imbs JL. Binding of loop diuretics to their renal receptors: use as a screening model for potential diuretic activity. Fundam Clin Pharmacol 1988; 2:145-57. [PMID: 3402896 DOI: 10.1111/j.1472-8206.1988.tb00628.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loop diuretics of the benzoic acid and aryloxyacetic acid families inhibit Na+K+Cl- cotransport. The ranking order of potencies measured in the thick ascending limb of Henle's loop and the ranking order of affinities for [3H]piretanide receptors on renal plasma membranes are the same. Potencies and affinities correlate well (correlation coefficient r = 0.959 for the medulla and r = 0.951 for the cortex). Therefore, measurement of [3H]piretanide binding is proposed to facilitate screening for loop diuretic action.
Collapse
Affiliation(s)
- E Giesen-Crouse
- Institut de Pharmacologie (UA 589 CNRS), Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
71
|
Turner RJ, George JN. Ionic dependence of bumetanide binding to the rabbit parotid Na/K/Cl cotransporter. J Membr Biol 1988; 102:71-7. [PMID: 3398036 DOI: 10.1007/bf01875354] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Na/K/Cl-dependent component of the binding of the loop diuretic bumetanide to basolateral membrane vesicles from the rabbit parotid is studied. A Scatchard analysis indicates that this binding is due to a single high-affinity site with KD = 3.2 +/- 0.3 microM (n = 9) at 100 mM sodium, 100 mM potassium and 5 mM chloride. When KCl-dependent 22Na transport and tracer [3H]-bumetanide binding are monitored simultaneously as a function of (unlabeled) bumetanide concentration it is found that the K0.5 for bumetanide inhibition of both processes are identical indicating that the high-affinity bumetanide binding site studied here is identical with a bumetanide-inhibitory site on the Na/K/Cl cotransport system previously identified in this preparation (R.J. Turner. J.N. George and B.J. Baum, J. Membrane Biol. 94:143-152, 1986). High-affinity bumetanide binding exhibits a hyperbolic dependence on both [Na] and [K] consistent with Na/bumetanide and K/bumetanide binding stoichiometries of 1:1 and K0.5 values of approximately 33 mM for sodium and 23 mM for potassium. In contrast, the dependence on [Cl] is biphasic, with bumetanide binding increasing from 0 to 5 mM chloride and decreasing toward baseline levels thereafter. Scatchard analysis of this latter inhibitory effect of chloride indicates a competitive interaction with bumetanide in agreement with earlier indications that bumetanide inhibits Na/K/Cl cotransport at a chloride site. However, studies of the effects of various anions on bumetanide binding and 22Na transport show a poor correlation between the specificities of these two processes, suggesting that the inhibitory chloride site is not a chloride transport site.
Collapse
Affiliation(s)
- R J Turner
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, Bethesda, Maryland 20892
| | | |
Collapse
|
72
|
Kracke GR, Anatra MA, Dunham PB. Asymmetry of Na-K-Cl cotransport in human erythrocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 254:C243-50. [PMID: 3348364 DOI: 10.1152/ajpcell.1988.254.2.c243] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Na-K-Cl cotransport system in human erythrocytes was studied by measuring net influxes and effluxes of Na and K. The influx of K was shown to be stimulated by Na and the influx of Na was stimulated by K, satisfying the fundamental criterion of cotransport. In addition, these mutually stimulating cation influxes had a stoichiometry of 1:1 and were entirely inhibited by furosemide; these results are also consistent with cotransport. Furthermore, the mutually stimulating influxes were entirely dependent on Cl, since they were abolished when nitrate was substituted for Cl. In contrast, cotransport, defined by mutual dependence of fluxes, was not detected in the outward direction over a range of cellular Na and K concentrations from 0 to 50 mmol/l cells. The cotransport pathway did, however, appear to mediate a Na-stimulated K efflux (but no K-stimulated Na efflux), and furosemide-inhibitable effluxes of both Na and K. Nitrate (but not sulfate) appeared to substitute for chloride in promoting Na-stimulated K efflux. Thus the Na-K-Cl cotransport system in human red cells is intrinsically asymmetric, and mediates coupled cation fluxes readily only in the inward direction.
Collapse
Affiliation(s)
- G R Kracke
- Department of Biology, Syracuse University, New York 13244
| | | | | |
Collapse
|
73
|
Giesen-Crouse EM, McRoberts JA. Coordinate expression of piretanide receptors and Na+,K+,Cl- cotransport activity in Madin-Darby canine kidney cell mutants. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45391-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
74
|
Liu S, Jacob R, Piwnica-Worms D, Lieberman M. (Na + K + 2Cl) cotransport in cultured embryonic chick heart cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C721-30. [PMID: 3688219 DOI: 10.1152/ajpcell.1987.253.5.c721] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The coupled movements of Na, K, and Cl were studied in cultured chick embryonic heart cells using ion-selective microelectrodes. Movements of K and Cl in response to changes in extracellular [K] ([K]o) showed a furosemide-sensitive coupled process. The movement of Na was then studied. Lowering extracellular [Na] ([Na]o) to 27 mM caused a decrease in intracellular Cl activity (aicl). Upon restoring [Na]o to 143 mM, Cl was taken up against its electrochemical gradient (delta mu Cl). In Cl-free solution, cells lost Na against delta mu Na and simultaneously lost Cl. Upon restoring extracellular [Cl] ([Cl]o), Cl was taken up against delta mu Cl; this was accompanied by an uptake of Na. The Cl uptake was 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS)-insensitive (0.1 mM) but inhibited by removing Nao. Both Cl and Na uptakes were potentiated by raising [K]o from 5.4 to 15 mM, and Na uptake was diminished by lowering [K]o to 1 mM. In all experiments, Cl and Na movements were furosemide (0.3 mM) or bumetanide-sensitive (0.1 mM). Removal of Nao, with resultant depletion of intracellular [Na] ([Na]i), blocked the furosemide or bumetanide-sensitive Cl loss or uptake upon exposure to zero or 133 mM [K]o + SITS (0.1 mM), respectively. These results suggest that cultured heart cells possess an electroneutral (Na + K + 2Cl) cotransport.
Collapse
Affiliation(s)
- S Liu
- Department of Physiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
75
|
Haas M, Forbush B. Photolabeling of a 150-kDa (Na + K + Cl) cotransport protein from dog kidney with a bumetanide analogue. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C243-52. [PMID: 3618761 DOI: 10.1152/ajpcell.1987.253.2.c243] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
(Na + K + Cl) cotransport is the major mechanism of salt transport across the apical membrane of the epithelial cells of the thick ascending limb of Henle's loop of mammalian kidney and the site of action of "loop" diuretics such as furosemide and bumetanide. We have identified a 150-kDa protein in membranes from dog kidney cortex that is photolabeled by a radiolabeled, benzophenone analogue of bumetanide, [3H]4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)benzoic acid ([3H]BSTBA). Several pieces of evidence strongly suggest that this 150-kDa protein is at least part of the (Na + K + Cl) cotransport system. 1) Photoincorporation of [3H]BSTBA into this protein is completely blocked by inclusion of 10 microM unlabeled bumetanide in the photolysis medium. 2) Photoincorporation of [3H]BSTBA into this protein shows a saturable dependence on [3H]BSTBA concentration, with a K 1/2 (approximately 0.1 microM) very similar to that for reversible [3H]BSTBA binding to kidney membranes. 3) Photolabeling of this protein by [3H]BSTBA requires the simultaneous presence of Na, K, and Cl in the photolysis medium. 4) When crude membranes from dog kidney cortex are centrifuged on sucrose density gradients, saturable [3H]bumetanide binding and photoincorporation of [3H]BSTBA in the 150-kDa region show a very similar distribution among the 15 gradient fractions collected. [3H]BSTBA is also photoincorporated into at least two lower molecular mass proteins, the largest of which is approximately 50 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
76
|
O'Grady SM, Palfrey HC, Field M. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C177-92. [PMID: 3303961 DOI: 10.1152/ajpcell.1987.253.2.c177] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review summarizes our present understanding of Na-K-Cl cotransport and its physiological role in absorption and secretion of electrolytes and water in epithelial tissues. In the past several years an extensive literature about this cotransporter has developed due to its widespread distribution in a variety of cell types and its essential role in fluid and electrolyte transport in several epithelial tissues. We summarize this literature and speculate on the future characterization of this transport system. Although this review focuses on cotransport as it relates to absorptive and secretory processes in epithelia, important information concerning the pharmacology, stoichiometry, and regulation of Na-K-Cl cotransport in nonepithelial systems (i.e., erythrocytes, fibroblasts, squid axon, etc.) has been included to supplement areas that are less well established in the epithelial literature.
Collapse
|
77
|
Duhm J. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide. J Membr Biol 1987; 98:15-32. [PMID: 3669063 DOI: 10.1007/bf01871042] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of extracellular and intracellular Na+ (Nao+, Nai+) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na+ + 1 K+ + 2 Cl-) cotransport system operates in two different modes: mode i) promoting bidirectional 1:1 (Na+-K+) cotransport, and mode ii) a Nao+-independent 1:1 ki+ exchange requiring Nai+ which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rbo+/Ki+ exchange contributes about 25% to total Rb+ uptake in 145 mM NaCl media containing 5 mM RbCl at normal Nai+ (pH 7.4). Na+-K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+-Rb+ cotransport exhibits a substrate inhibition at high Rbo+. With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparent KmRbo+ of Na+-K+ cotransport is low (2 mM) and almost independent of pH, and high for K+/K+ exchange (10 to 15 mM), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na+ + 1 K+ + 2 Cl-) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987, Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl--dependent K+ transport pathway that is independent of both Nao+ and Nai+. This pathway differs in many properties from the basal, Nao+-independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Nao+-independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. Ko+ less than Nao+ less than Lio+ less than Mgo2+ reduce furosemide-resistant Rb+ inward leakage relative to cholineo+.
Collapse
Affiliation(s)
- J Duhm
- Physiologisches Institut, Universität München, Germany
| |
Collapse
|
78
|
|