51
|
Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290:51-67. [PMID: 15261571 DOI: 10.1016/j.jim.2004.04.008] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 11/30/2022]
Abstract
In-vitro display technologies combine two important advantages for identifying and optimizing ligands by evolutionary strategies. First, by obviating the need to transform cells in order to generate and select libraries, they allow a much higher library diversity. Second, by including PCR as an integral step in the procedure, they make PCR-based mutagenesis strategies convenient. The resulting iteration between diversification and selection allows true Darwinian protein evolution to occur in vitro. We describe two such selection methods, ribosome display and mRNA display. In ribosome display, the translated protein remains connected to the ribosome and to its encoding mRNA; the resulting ternary complex is used for selection. In mRNA display, mRNA is first translated and then covalently bonded to the protein it encodes, using puromycin as an adaptor molecule. The covalent mRNA-protein adduct is purified from the ribosome and used for selection. Successful examples of high-affinity, specific target-binding molecules selected by in-vitro display methods include peptides, antibodies, enzymes, and engineered scaffolds, such as fibronectin type III domains and synthetic ankyrins, which can mimic antibody function.
Collapse
Affiliation(s)
- Dasa Lipovsek
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
52
|
Abstract
The use of so-called protein scaffolds for the generation of novel binding proteins via combinatorial engineering has recently emerged as a powerful alternative to natural or recombinant antibodies. This concept requires an extraordinary stable protein architecture tolerating multiple substitutions or insertions at the primary structural level. With respect to broader applicability it should involve a type of polypeptide fold which is observed in differing natural contexts and with distinct biochemical functions, so that it is likely to be adaptable to novel molecular recognition purposes. The quickly growing number of approaches can be classified into three groups: carrier proteins for the display of single variegated loops, scaffolds providing rigid elements of secondary structure, and protein frameworks supporting a group of conformationally variable loops in a fixed spatial arrangement. Generally, such artificial receptor proteins should be based on monomeric and small polypeptides that are robust, easily engineered, and efficiently produced in inexpensive prokaryotic expression systems. Today, progress in protein library technology allows for the parallel development of immunoglobulin (Ig) as well as scaffold-based affinity reagents. Both biomolecular tools have the potential to complement each other, thus expanding the possibility to find an affinity reagent suitable for a given application. The repertoire of protein scaffolds hitherto recruited for combinatorial protein engineering purposes will probably be further expanded in the future, including both additional natural proteins and de novo designed proteins, contributing to the collection of libraries available at present. In this review both the structural features and the practical use of scaffold proteins will be discussed and exemplified.
Collapse
Affiliation(s)
- Per-Ake Nygren
- Department of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
53
|
Nuttall SD, Humberstone KS, Krishnan UV, Carmichael JA, Doughty L, Hattarki M, Coley AM, Casey JL, Anders RF, Foley M, Irving RA, Hudson PJ. Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMA1. Proteins 2004; 55:187-97. [PMID: 14997552 DOI: 10.1002/prot.20005] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage. Now, to test the efficacy of this library, and further explore the dynamics of V(NAR) antigen binding we have performed selection experiments against an infectious disease target, the malarial Apical Membrane Antigen-1 (AMA1) from Plasmodium falciparum. Two related V(NAR) clones were selected, characterized by long (16- and 18-residue) CDR3 loops. These recombinant V(NAR)s could be harvested at yields approaching 5mg/L of monomeric protein from the E. coli periplasm, and bound AMA1 with nanomolar affinities (K(D)= approximately 2 x 10(-7) M). One clone, designated 12Y-2, was affinity-matured by error prone PCR, resulting in several variants with mutations mapping to the CDR1 and CDR3 loops. The best of these variants showed approximately 10-fold enhanced affinity over 12Y-2 and was Plasmodium falciparum strain-specific. Importantly, we demonstrated that this monovalent V(NAR) co-localized with rabbit anti-AMA1 antisera on the surface of malarial parasites and thus may have utility in diagnostic applications.
Collapse
Affiliation(s)
- Stewart D Nuttall
- CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Lu D, Shen J, Vil MD, Zhang H, Jimenez X, Bohlen P, Witte L, Zhu Z. Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem 2003; 278:43496-507. [PMID: 12917408 DOI: 10.1074/jbc.m307742200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptors have been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. We previously identified several fully human neutralizing anti-VEGF receptor 2 (or kinase inserting domain-containing receptor (KDR)) antibodies from a large antibody phage display library. These antibodies bind specifically to KDR, block VEGF/KDR interaction, and inhibit VEGF-induced proliferation of human endothelial cells and migration of KDR+ leukemia cells. Three of these antibodies, interestingly, share an identical heavy chain variable (VH) sequence. In this report, we constructed a new library comprising the single VH paired with the variable light chain (VL) repertoire obtained from the original naïve human library. Initial in vitro selection revealed that the single VH could pair with a number of different VL while retaining its specificity for KDR. However, a consensus VH/VL pair, clone 1121, was identified after three or four rounds of selection by tailoring the stringency of the panning conditions. Clone 1121 showed a >30-fold higher binding affinity to KDR (Kd, 100 pm) because of improvement on both association and dissociation constants and blocked VEGF/KDR interaction with an IC50 of approximately 1 nm, compared with that of 3-4 nm for the parent Fab fragments. Further, clone 1121 was more potent in inhibiting VEGF-stimulated KDR phosphorylation in endothelial cells. A binding epitope mapping study on clone 1121 and one of the parent clones, 2C6, demonstrated that both antibodies interacted with the third immunoglobulin domain within the extracellular region of KDR. Several peptide phage display libraries were utilized to further examine the fine binding specificities of the two antibodies. All of the 2C6-binding peptides are cysteine-constrained, whereas clone 1121 binds to both cysteine-constrained and linear peptides. It is noteworthy that most of the 2C6-binding peptides also cross-react with clone 1121, but none of the clone 1121-specific peptides binds to 2C6, indicating that clone 1121 retained part of the original binding epitope(s) of 2C6 while gaining new binding specificity. Taken together, our observation suggests that clone 1121 may have great clinical potential in anti-angiogenesis therapy. It further underscores the efforts to identify antibodies of high affinity for enhanced biological activities.
Collapse
Affiliation(s)
- Dan Lu
- Departments of Antibody Technology, Molecular and Cell Biology, and Research, ImClone Systems Incorporated, New York, New York 10014, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Osbourn J, Jermutus L, Duncan A. Current methods for the generation of human antibodies for the treatment of autoimmune diseases. Drug Discov Today 2003; 8:845-51. [PMID: 12963321 DOI: 10.1016/s1359-6446(03)02803-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Autoimmune diseases are a significant area of unmet medical need in the Western World, but human antibodies are an emerging drug class that could address this demand. Some autoimmune diseases, such as rheumatoid arthritis, are currently benefiting from antibody treatment and new and existing technologies for antibody generation could facilitate the production of effective human antibodies as future drug candidates for other autoimmune diseases. Several methods of generating human antibodies for use as therapeutics have been established, the most commonly used being phage display and transgenic mouse technologies and more recently, cell-free display technologies have also emerged. In this review, we explain the principles behind the various methods of antibody generation and highlight some potential benefits of certain approaches in the context of treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jane Osbourn
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge, UK CB1 6GH.
| | | | | |
Collapse
|
56
|
Abstract
Recombinant antibodies currently represent over 30% of biopharmaceuticals in clinical trials, highlighted by the recent Food and Drug Administration (FDA) approvals of Zevalin(TM) (ibritumomab-tiuxetan; IDEC Pharmaceuticals, San Dieago, CA, USA) for cancer radioimmunotherapy and Humira(TM) (adalimumab; Abbott Laboratories, IL, USA) for rheumatoid arthritis. Together, these FDA approvals have excited the biotechnology industry, particularly since sales of recombinant antibodies are increasing rapidly to a predicted US dollar 4 billion per annum worldwide in 2003. To date, 10 engineered therapeutic antibodies have gained FDA approval and many others are in Phase III trials. Many recent FDA-approved antibodies are simple molecular designs that have taken 10 years to be developed into effective therapeutic reagents. Emerging new technologies have created a vast range of recombinant, antibody-based reagents, which specifically target clinical biomarkers of disease. Radiolabelling of antibodies has increased their potential for cancer imaging and targeting. Recombinant antibodies have also been reduced in size and rebuilt into multivalent molecules for higher affinity. In addition, antibodies have been fused with many molecules, including toxins, enzymes, drugs and viruses, for prodrug therapy, cancer treatment and gene delivery. Recombinant antibody technology has enabled clever manipulations in the construction of complex in vitro libraries for the selection of high-affinity reagents against refractory targets. Furthermore, innovative affinity maturation methods have been developed which enable rapid selection of extremely high-affinity reagents. This review focuses on developments in the last 12 months and describes the latest developments in the design, production and clinical use of recombinant antibodies for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christelle Souriau
- CRC for Diagnostics and CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville,Victoria, Australia 3052.
| | | |
Collapse
|
57
|
Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2003; 2:52-62. [PMID: 12509759 DOI: 10.1038/nrd984] [Citation(s) in RCA: 554] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibodies are highly specific, naturally evolved molecules that recognize and eliminate pathogenic and disease antigens. The past 30 years of antibody research have hinted at the promise of new versatile therapeutic agents to fight cancer, autoimmune diseases and infection. Technology development and the testing of new generations of antibody reagents have altered our view of how they might be used for prophylactic and therapeutic purposes. The therapeutic antibodies of today are genetically engineered molecules that are designed to ensure high specificity and functionality. Some antibodies are loaded with toxic modules, whereas others are designed to function naturally, depending on the therapeutic application. In this review, we discuss various aspects of antibodies that are relevant to their use as as therapeutic agents.
Collapse
|
58
|
Affiliation(s)
- Peter J Hudson
- CRC for Diagnostics at CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | |
Collapse
|
59
|
Dower WJ, Mattheakis LC. In vitro selection as a powerful tool for the applied evolution of proteins and peptides. Curr Opin Chem Biol 2002; 6:390-8. [PMID: 12023121 DOI: 10.1016/s1367-5931(02)00332-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
New in vitro methods for the applied evolution of protein structure and function complement conventional cellular and phage-based methods. Strategies employing the direct physical linkage of genotype and phenotype, and the compartmental association of gene and product to select desired properties are discussed, and recent useful applications are described. Engineering of antibodies and other proteins, selection from cDNA libraries, and the creation of functional protein domains from completely random starting sequences illustrate the value of the in vitro approaches. Also discussed is an emerging new direction for in vitro display technology: the self-assembly of protein arrays.
Collapse
Affiliation(s)
- William J Dower
- XenoPort, Inc., 3410 Central Expressway, Santa Clara, CA 95051, USA.
| | | |
Collapse
|
60
|
Zhou JM, Fujita S, Warashina M, Baba T, Taira K. A novel strategy by the action of ricin that connects phenotype and genotype without loss of the diversity of libraries. J Am Chem Soc 2002; 124:538-43. [PMID: 11804482 DOI: 10.1021/ja011885x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a novel strategy for connection of phenotype and genotype in vitro that can be used for the selection of functional proteins even at room temperature. The strategy involves generation of a stable complex between a ribosome, an mRNA, and its translated protein, without removal of the termination codon, as a result of the action of the ricin A chain during translation. We demonstrate the potential selection capacity of this novel strategy by isolating such complexes that contain newly synthesized streptavidin and glutathione-S-transferase (GST) using appropriate ligands. The technique requires no transfection, no chemical synthesis, no ligation, and no removal of the termination codon. Thus our novel "Ribosome-Inactivation Display System (RIDS)" should provide, without loss of the pool population, a reliable, simple, and robust selection system for in vitro evolution of the properties of proteins in a predictable direction by a combination of randomization and appropriate selection strategies.
Collapse
Affiliation(s)
- Jing-Min Zhou
- Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
61
|
Abstract
Recombinant antibodies now represent over 30% of biopharmaceuticals in clinical trials, highlighted by the recent approvals for cancer immunotherapy from the FDA which has awoken the biotechnology industry. Sales of these antibodies are increasing very rapidly to a predicted US$ 3 billion per annum worldwide by 2002. Since the development of new therapeutic reagent into commercial product takes 10 years, the recent FDA-approved antibodies are based on early antibody designs which are now considered primitive. Emerging technologies have created a vast range of novel, recombinant, antibody-based reagents which specifically target clinical biomarkers of disease. In the past year, radiolabelling of antibodies has increased their potential for cancer imaging and targeting. Recombinant antibodies have also been reduced in size and rebuilt into multivalent molecules for higher affinity. In addition, antibodies have been fused with many molecules including toxins, enzymes and viruses for prodrug therapy, cancer treatment and gene delivery. Recombinant antibody technology has enabled clever manipulations in the construction of complex antibody library repertoires for the selection of high-affinity reagents against refractory targets. Although phage display remains the most extensively used method, this year high affinity reagents have been isolated using alternative display and selection systems such as ribosome display and yeast display confirming the emergence of new display methods. Furthermore, innovative affinity maturation strategies have been developed to obtain high affinity reagents. This review focuses on developments in the last 12 months and describes the latest developments in the design, production and clinical use of recombinant antibodies for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- P J Hudson
- CRC for Diagnostics at CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria, 3052, Australia.
| | | |
Collapse
|
62
|
Abstract
The past year has seen further maturation of the techniques used to display populations of proteins and peptides and to select members with desired properties. Many protein domains have now been displayed on genetic packages, diverse populations have been made, and binders with specific useful properties have been selected. Affinity maturation has been demonstrated so that binding in the low nanomolar to subnanomolar range by non-antibodies is now achievable.
Collapse
Affiliation(s)
- R C Ladner
- Dyax Corp, One Kendall Square, Building 600, Suite 623, Cambridge, MA 02139, USA.
| | | |
Collapse
|
63
|
Amstutz P, Forrer P, Zahnd C, Plückthun A. In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 2001; 12:400-5. [PMID: 11551470 DOI: 10.1016/s0958-1669(00)00234-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro display techniques are powerful tools to select polypeptide binders against various target molecules. Novel applications include maturation of protein affinity and stability, selection for enzymatic activity, and the display of cDNA and random polypeptide libraries. Taken together, these display techniques have great potential for biotechnological, medical and proteomic applications.
Collapse
Affiliation(s)
- P Amstutz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
64
|
Nuttall SD, Krishnan UV, Hattarki M, De Gori R, Irving RA, Hudson PJ. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 2001; 38:313-26. [PMID: 11566324 DOI: 10.1016/s0161-5890(01)00057-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The new antigen receptor (NAR) from nurse sharks consists of an immunoglobulin variable domain attached to five constant domains, and is hypothesised to function as an antigen-binding antibody-like molecule. To determine whether the NAR is present in other species we have isolated a number of new antigen receptor variable domains from the spotted wobbegong shark (Orectolobus maculatus) and compared their structure to that of the nurse shark protein. To determine whether these wNARs can function as antigen-binding proteins, we have used them as scaffolds for the construction of protein libraries in which the CDR3 loop was randomised, and displayed the resulting recombinant domains on the surface of fd bacteriophages. On selection against several protein antigens, the highest affinity wNAR proteins were generated against the Gingipain K protease from Porphyromonas gingivalis. One wNAR protein bound Gingipain K specifically by ELISA and BIAcore analysis and, when expressed in E. coli and purified by affinity chromatography, eluted from an FPLC column as a single peak consistent with folding into a monomeric protein. Naturally occurring nurse shark and wobbegong NAR variable domains exhibit conserved cysteine residues within the CDR1 and CDR3 loops which potentially form disulphide linkages and enhance protein stability; proteins isolated from the in vitro NAR wobbegong library showed similar selection for such paired cysteine residues. Thus, the New Antigen Receptor represents a protein scaffold with possible stability advantages over conventional antibodies when used in in vitro molecular libraries.
Collapse
Affiliation(s)
- S D Nuttall
- CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
65
|
Coia G, Pontes-Braz L, Nuttall SD, Hudson PJ, Irving RA. Panning and selection of proteins using ribosome display. J Immunol Methods 2001; 254:191-7. [PMID: 11406164 DOI: 10.1016/s0022-1759(01)00409-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic ribosome complexes can be used as a means to display a library of proteins, and isolate specific binding reagents by screening against target molecules. Here we present, as an example, a method for the display of a library of immunoglobulin variable-like domains (VLDs) for the production of stable mRNA/ribosome/protein complexes. These complexes are produced by the addition of specific in vitro transcriptional promoter elements and translation control sequences to the template DNA. Furthermore, an appropriate spacer (anchor) domain is included for efficient folding of the nascent translated protein, which remains attached to the ribosome complex. Ribosome complexes are panned against hen egg lysozyme-conjugated magnetic beads and genes encoding specific, binding, V-like domains are recovered by RT-PCR and cloned into an Escherichia coli expression vector.
Collapse
Affiliation(s)
- G Coia
- CRC for Diagnostic Technologies, CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|