51
|
Krantz BA, Dothager RS, Sosnick TR. Discerning the Structure and Energy of Multiple Transition States in Protein Folding using ψ-Analysis. J Mol Biol 2004; 337:463-75. [PMID: 15003460 DOI: 10.1016/j.jmb.2004.01.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 11/24/2022]
Abstract
We quantify the degree to which folding occurs along a complex landscape with structurally distinct pathways using psi-analysis in combination with a protein engineering method that identifies native, non-covalent polypeptide interactions and their relative populations at the rate-limiting step. By probing the proximity of two specific partners, this method is extremely well-suited for comparison to theoretical simulations. Using ubiquitin as a model system, we detect individual pathways with site-resolved resolution, demonstrating that the protein folds through a native-like transition state ensemble with a common nucleus that contains heterogeneous features on its periphery. The consensus transition state topology has part of the major helix docked against four properly aligned beta-strands. However, structural heterogeneity exists in the transition state ensemble, wherein peripheral regions are differentially populated according to their relative stability. Pathway diversity reflects the variable order of formation of these peripheral elements, which radiate outward from the common nucleus. These results, which show only moderate agreement with traditional mutational phi-analysis, provide an extraordinarily detailed and quantitative description of protein folding.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th St., Chicago, IL 60637, USA
| | | | | |
Collapse
|
52
|
de Jong AS, Melchers WJG, Glaudemans DHRF, Willems PHGM, van Kuppeveld FJM. Mutational analysis of different regions in the coxsackievirus 2B protein: requirements for homo-multimerization, membrane permeabilization, subcellular localization, and virus replication. J Biol Chem 2004; 279:19924-35. [PMID: 14976211 DOI: 10.1074/jbc.m314094200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coxsackievirus 2B protein is a small hydrophobic protein (99 amino acids) that increases host cell membrane permeability, possibly by forming homo-multimers that build membrane-integral pores. Previously, we defined the functional role of the two hydrophobic regions HR1 and HR2. Here, we investigated the importance of regions outside HR1 and HR2 for multimerization, increasing membrane permeability, subcellular localization, and virus replication through analysis of linker insertion and substitution mutants. From these studies, the following conclusions could be drawn. (i) The hydrophilic region ((58)RNHDD(62)) between HR1 and HR2 is critical for multimerization and increasing membrane permeability. Substitution analysis of Asn(61) and Asn(62) demonstrated the preference for short polar side chains (Asp, Asn), residues that are often present in turns, over long polar side chains (Glu, Gln). This finding supports the idea that the hydrophilic region is involved in pore formation by facilitating a turn between HR1 and HR2 to reverse chain direction. (ii) Studies undertaken to define the downstream boundary of HR2 demonstrated that the aromatic residues Trp(80) and Trp(82), but not the positively charged residues Arg(81), Lys(84), and Lys(86) are important for increasing membrane permeability. (iii) The N terminus is not required for multimerization but does contribute to the membrane-active character of 2B. (iv) The subcellular localization of 2B does not rely on regions outside HR1 and HR2 and does not require multimerization. (v) Virus replication requires both the membrane-active character and an additional function of 2B that is not connected to this activity.
Collapse
Affiliation(s)
- Arjan S de Jong
- Department of Medical Microbiology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
53
|
Spudich GM, Miller EJ, Marqusee S. Destabilization of the Escherichia coli RNase H kinetic intermediate: switching between a two-state and three-state folding mechanism. J Mol Biol 2004; 335:609-18. [PMID: 14672667 DOI: 10.1016/j.jmb.2003.10.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli RNase H folds through a partially folded kinetic intermediate that mirrors a rarely populated, partially unfolded form detectable by native-state hydrogen exchange under equilibrium conditions. Residue 53 is at the interface of two helices known to be structured in this intermediate. Kinetic refolding studies on mutant proteins varying in size and hydrophobicity at residue 53 support a contribution of hydrophobicity to the stabilities of the kinetic intermediate and the transition state. Packing interactions also play a significant role in the stability of these two states, though they play a much larger role in the native-state stability. One dramatic mutation, I53D, results in the conversion from a three-state to a two-state folding mechanism, which is explained most easily through a simple destabilization of the kinetic intermediate such that it is no longer stable with respect to the unfolded state. These results demonstrate that interactions that stabilize an intermediate can accelerate folding if these same interactions are present in the transition state. Our results are consistent with a hierarchical model of folding, where the intermediate consists of native-like interactions, is on-pathway, and is productive for folding.
Collapse
Affiliation(s)
- Giulietta M Spudich
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206, USA
| | | | | |
Collapse
|
54
|
Sánchez IE, Kiefhaber T. Origin of unusual phi-values in protein folding: evidence against specific nucleation sites. J Mol Biol 2004; 334:1077-85. [PMID: 14643667 DOI: 10.1016/j.jmb.2003.10.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
phi(f)-value analysis is one of the most common methods to characterize the structure of protein folding transition states. It compares the effects of mutations on the folding kinetics with the respective effects on equilibrium stability. The interpretation of the results usually focuses on a few unusual phi(f)-values, which are either particularly high or which are larger than 1 or smaller than 0. These mutations are believed to affect the most important regions for the folding process. A major uncertainty in experimental phi(f)-values is introduced by the commonly used analysis of only a single mutant at various positions in a protein (two-point analysis). To test the reliability of two-point phi(f)-values we used reference data from three positions in two different proteins at which multiple mutations have been introduced. The results show that two-point phi(f)-values are highly inaccurate if the difference in stability between two variants is less than 7 kJ/mol, corresponding to a 20-fold difference in equilibrium constant. Comparison with reported phi(f)-values for 11 proteins shows that most unusual phi(f)-values are observed in mutants which show changes in protein stability that are too small to allow a reliable analysis. The results argue against specific nucleation sites in protein folding and give a picture of transition states as distorted native states for the major part of a protein or for large substructures.
Collapse
Affiliation(s)
- Ignacio E Sánchez
- Department of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelberstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
55
|
Bystroff C, Shao Y, Yuan X. Five Hierarchical Levels of Sequence-Structure Correlation in Proteins. ACTA ACUST UNITED AC 2004; 3:97-104. [PMID: 15693735 DOI: 10.2165/00822942-200403020-00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This article reviews recent work towards modelling protein folding pathways using a bioinformatics approach. Statistical models have been developed for sequence-structure correlations in proteins at five levels of structural complexity: (i) short motifs; (ii) extended motifs; (iii) nonlocal pairs of motifs; (iv) 3-dimensional arrangements of multiple motifs; and (v) global structural homology. We review statistical models, including sequence profiles, hidden Markov models (HMMs) and interaction potentials, for the first four levels of structural detail. The I-sites (folding Initiation sites) Library models short local structure motifs. Each succeeding level has a statistical model, as follows: HMMSTR (HMM for STRucture) is an HMM for extended motifs; HMMSTR-CM (Contact Maps) is a model for pairwise interactions between motifs; and SCALI-HMM (HMMs for Structural Core ALIgnments) is a set of HMMs for the spatial arrangements of motifs. The parallels between the statistical models and theoretical models for folding pathways are discussed in this article; however, global sequence models are not discussed because they have been extensively reviewed elsewhere. The data used and algorithms presented in this article are available at http://www.bioinfo.rpi.edu/~bystrc/ (click on "servers" or "downloads") or by request to bystrc@rpi.edu .
Collapse
Affiliation(s)
- Christopher Bystroff
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| | | | | |
Collapse
|
56
|
Karanicolas J, Brooks CL. Improved Gō-like Models Demonstrate the Robustness of Protein Folding Mechanisms Towards Non-native Interactions. J Mol Biol 2003; 334:309-25. [PMID: 14607121 DOI: 10.1016/j.jmb.2003.09.047] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of simple theoretical models has provided a considerable contribution to our present understanding of the means by which proteins adopt their native fold from the plethora of available unfolded states. A common assumption in building computationally tractable models has been the neglect of stabilizing non-native interactions in the class of models described as "Gō-like." The focus of this study is the characterization of the folding of a number of proteins via a Gō-like model, which aims to map a maximal amount of information reflecting the protein sequence onto a "minimalist" skeleton. This model is shown to contain sufficient information to reproduce the folding transition states of a number of proteins, including topologically analogous proteins that fold via different transition states. Remarkably, these models also demonstrate consistency with the general features of folding transition states thought to be stabilized by non-native interactions. This suggests that native interactions are the primary determinant of most protein folding transition states, and that non-native interactions lead only to local structural perturbations. A prediction is also included for an asymmetrical folding transition state of bacteriophage lambda protein W, which has yet to be subjected to experimental characterization.
Collapse
Affiliation(s)
- John Karanicolas
- Department of Molecular Biology (TPC6), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
57
|
Larson SM, Pande VS. Sequence optimization for native state stability determines the evolution and folding kinetics of a small protein. J Mol Biol 2003; 332:275-86. [PMID: 12946364 DOI: 10.1016/s0022-2836(03)00832-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the relative importance of protein stability, function, and folding kinetics in driving protein evolution has long been hindered by the fact that we can only compare modern natural proteins, the products of the very process we seek to understand, to each other, with no external references or baselines. Through a large-scale all-atom simulation of protein evolution, we have created a large diverse alignment of SH3 domain sequences which have been selected only for native state stability, with no other influencing factors. Although the average pairwise identity between computationally evolved and natural sequences is only 17%, the residue frequency distributions of the computationally evolved sequences are similar to natural SH3 sequences at 86% of the positions in the domain, suggesting that optimization for the native state structure has dominated the evolution of natural SH3 domains. Additionally, the positions which play a consistent role in the transition state of three well-characterized SH3 domains (by phi-value analysis) are structurally optimized for the native state, and vice versa. Indeed, we see a specific and significant correlation between sequence optimization for native state stability and conservation of transition state structure.
Collapse
Affiliation(s)
- Stefan M Larson
- Department of Chemistry and Biophysics Program, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
58
|
Lindorff-Larsen K, Paci E, Serrano L, Dobson CM, Vendruscolo M. Calculation of mutational free energy changes in transition states for protein folding. Biophys J 2003; 85:1207-14. [PMID: 12885664 PMCID: PMC1303238 DOI: 10.1016/s0006-3495(03)74556-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent advances in experimental and computational methods have made it possible to determine with considerable accuracy the structures whose formation is rate limiting for the folding of some small proteins-the transition state ensemble, or TSE. We present a method to analyze and validate all-atom models of such structures. The method is based on the comparison of experimental data with the computation of the change in free energy of the TSE resulting from specific mutations. Each mutation is modeled individually in all members of an ensemble of transition state structures using a method originally developed to predict mutational changes in the stability of native proteins. We first apply this method to six proteins for which we have determined the TSEs with a technique that uses experimental mutational data (Phi-values) as restraints in the structure determination and find a highly significant correlation between the calculated free energy changes and those derived from experimental kinetic data. We then use the procedure to analyze transition state structures determined by molecular dynamics simulations of unfolding, again finding a high correlation. Finally, we use the method to estimate changes in folding rates of several hydrophobic core mutants of Fyn SH3. Taken together, these results show that the procedure developed here is a tool of general validity for analyzing, assessing, and improving the quality of the structures of transition states for protein folding.
Collapse
|
59
|
Sánchez IE, Kiefhaber T. Hammond behavior versus ground state effects in protein folding: evidence for narrow free energy barriers and residual structure in unfolded states. J Mol Biol 2003; 327:867-84. [PMID: 12654269 DOI: 10.1016/s0022-2836(03)00171-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Apparent transition state movement upon mutation or changes in solvent conditions is frequently observed in protein folding and is often interpreted in terms of Hammond behavior. This led to the conclusion that barrier regions in protein folding are broad maxima on the free energy landscape. Here, we use the concept of self-interaction and cross-interaction parameters to test experimental data of 21 well-characterized proteins for Hammond behavior. This allows us to characterize the origin of transition state movements along different reaction coordinates. Only one of the 21 proteins shows a small but coherent transition state movement in agreement with the Hammond postulate. In most proteins the structure of the transition state is insensitive to changes in protein stability. The apparent change in the position of the transition state upon mutation, which is frequently observed in phi-value analysis, is in most cases due to ground-state effects caused by structural changes in the unfolded state. This argues for significant residual structure in unfolded polypeptide chains of many proteins. Disruption of these residual interactions by mutation often leads to decreased folding rates, which implies that these interactions are still present in the transition state. The failure to detect Hammond behavior shows that the free energy barriers encountered by a folding polypeptide chain are generally rather narrow and robust maxima for all experimentally explorable reaction coordinates.
Collapse
Affiliation(s)
- Ignacio E Sánchez
- Department of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
60
|
Yi Q, Rajagopal P, Klevit RE, Baker D. Structural and kinetic characterization of the simplified SH3 domain FP1. Protein Sci 2003; 12:776-83. [PMID: 12649436 PMCID: PMC2323857 DOI: 10.1110/ps.0238603] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The simplified SH3 domain sequence, FP1, obtained in phage display selection experiments has an amino acid composition that is 95% Ile, Lys, Glu, Ala, Gly. Here we use NMR to investigate the tertiary structure of FP1. We find that the overall topology of FP1 resembles that of the src SH3 domain, the hydrogen-deuterium exchange and chemical shift perturbation profiles are similar to those of naturally occurring SH3 domains, and the (15)N relaxation rates are in the range of naturally occurring small proteins. Guided by the structure, we further simplify the FP1 sequence and compare the effects on folding kinetics of point mutations in FP1 and the wild-type src SH3 domain. The results suggest that the folding transition state of FP1 is similar to but somewhat less polarized than that of the wild-type src SH3 domain.
Collapse
Affiliation(s)
- Qian Yi
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
61
|
Dokholyan NV, Borreguero JM, Buldyrev SV, Ding F, Stanley HE, Shakhnovich EI. Identifying importance of amino acids for protein folding from crystal structures. Methods Enzymol 2003; 374:616-38. [PMID: 14696390 DOI: 10.1016/s0076-6879(03)74025-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|