51
|
Molina A, Velot L, Ghouinem L, Abdelkarim M, Bouchet BP, Luissint AC, Bouhlel I, Morel M, Sapharikas E, Di Tommaso A, Honoré S, Braguer D, Gruel N, Vincent-Salomon A, Delattre O, Sigal-Zafrani B, André F, Terris B, Akhmanova A, Di Benedetto M, Nahmias C, Rodrigues-Ferreira S. ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res 2013; 73:2905-15. [PMID: 23396587 DOI: 10.1158/0008-5472.can-12-3565] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis, a fatal complication of breast cancer, does not fully benefit from available therapies. In this study, we investigated whether ATIP3, the major product of 8p22 MTUS1 gene, may be a novel biomarker and therapeutic target for metastatic breast tumors. We show that ATIP3 is a prognostic marker for overall survival among patients with breast cancer. Notably, among metastatic tumors, low ATIP3 levels associate with decreased survival of the patients. By using a well-defined experimental mouse model of cancer metastasis, we show that ATIP3 expression delays the time-course of metastatic progression and limits the number and size of metastases in vivo. In functional studies, ATIP3 silencing increases breast cancer cell migration, whereas ATIP3 expression significantly reduces cell motility and directionality. We report here that ATIP3 is a potent microtubule-stabilizing protein whose depletion increases microtubule dynamics. Our data support the notion that by decreasing microtubule dynamics, ATIP3 controls the ability of microtubule tips to reach the cell cortex during migration, a mechanism that may account for reduced cancer cell motility and metastasis. Of interest, we identify a functional ATIP3 domain that associates with microtubules and recapitulates the effects of ATIP3 on microtubule dynamics, cell proliferation, and migration. Our study is a major step toward the development of new personalized treatments against metastatic breast tumors that have lost ATIP3 expression.
Collapse
Affiliation(s)
- Angie Molina
- Institut National de la Santé et de la Recherche Medicale (Inserm), U1016, Institut Cochin, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Almog N. Genes and regulatory pathways involved in persistence of dormant micro-tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:3-17. [PMID: 23143972 DOI: 10.1007/978-1-4614-1445-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micro-tumors can remain dormant for prolonged periods of time before they switch and enter the rapid growth phase. This initial stage in tumor progression is clearly understudied. In spite of high prevalence, significant clinical implications and increased interest by the research community, tumor dormancy is still poorly understood. The topic of tumor dormancy also suffers from a lack of definition and an agreed upon terminology to describe it. Additionally, the number of reproducible experimental models available for studying indolence of human micro-tumors is quite limited. Here, we describe the development of a general class of in vivo models of indolent human tumors and how these models can be used to elucidate molecular and cellular mechanisms involved in the regulation of dormancy. The models consist of human tumor cell lines that form microscopic cancerous lesions in mice. Although these lesions contain viable and fully malignant cancer cells, the tumors do not expand in size but remain occult for prolonged periods until they eventually spontaneously switch and become fast-growing tumors. Consistent with Judah Folkman's vision that tumors will remain occult and microscopic until they acquire the ability to recruit new and functional blood vessels, the dormancy period of the micro-tumors is associated with impaired angiogenic capacity. Such models can be used for dissecting the host and the tumor-derived regulatory mechanisms of tumor dormancy. Understanding the process by which dormant tumors can overcome growth constraints and emerge from dormancy, resuming size expansion, may provide insights into novel strategies to prolong the dormancy state or to block tumor formation in the early stages, before they are physically detected or become symptomatic.
Collapse
Affiliation(s)
- Nava Almog
- Tufts University School of Medicine, Boston, MA 02135, USA.
| |
Collapse
|
53
|
Takes RP, Rinaldo A, Silver CE, Haigentz M, Woolgar JA, Triantafyllou A, Mondin V, Paccagnella D, de Bree R, Shaha AR, Hartl DM, Ferlito A. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol 2012; 48:775-9. [DOI: 10.1016/j.oraloncology.2012.03.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/09/2012] [Accepted: 03/17/2012] [Indexed: 11/24/2022]
|
54
|
Morisaki T, Umebayashi M, Kiyota A, Koya N, Tanaka H, Onishi H, Katano M. Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro. Anticancer Res 2012; 22:261-71. [PMID: 22641659 DOI: 10.1016/j.semcancer.2012.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 12/31/2022]
Abstract
AIM We explored the possibility of combining adoptive immunotherapy with cytokine-activated killer (CAK) cells and the epidermal growth factor receptor monoclonal antibody, cetuximab, as a treatment for cholangiocarcinoma. MATERIALS AND METHODS CAK cells were cultured with a high-dose of interleukin-2 and anti-CD3 monoclonal antibodies. This cell population contained both activated CD16+/CD56+ (NK) cells and CD3+/NKG2D(high+) T-cells. The effect of CAK cells and cetuximab, alone and in combination, on the viability of human cholangiocarcinoma cells was evaluated. RESULTS Culture of CAK cells alone, but not cetuximab alone, exhibited modest cytotoxicity toward cholangiocarcinoma cells. However, combining CAK cells with cetuximab significantly enhanced cytotoxicity. This enhancement was inhibited by the addition of excess human immunoglobulins, suggesting that antibody-dependent cytotoxicity, mediated by activated NK cells in the CAK cell culture was involved in this mechanism. CONCLUSION Cetuximab may be used to enhance CAK cell therapeutic activity in patients with cholangiocarcinoma, by potentiating antibody-dependent cellular cytotoxicity.
Collapse
Affiliation(s)
- Takashi Morisaki
- Fukuoka General Cancer Clinic, 3-1-1 Sumiyoshi, Hakata-ku, Fukuoka 812-0018, Japan.
| | | | | | | | | | | | | |
Collapse
|
55
|
Shibue T, Brooks MW, Inan MF, Reinhardt F, Weinberg RA. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov 2012; 2:706-21. [PMID: 22609699 DOI: 10.1158/2159-8290.cd-11-0239] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Disseminated cancer cells that have extravasated into the tissue parenchyma must interact productively with its extracellular matrix components to survive, proliferate, and form macroscopic metastases. The biochemical and cell biologic mechanisms enabling this interaction remain poorly understood. We find that the formation of elongated integrin β(1)-containing adhesion plaques by cancer cells that have extravasated into the lung parenchyma enables the proliferation of these cells via activation of focal adhesion kinase. These plaques originate in and appear only after the formation of filopodium-like protrusions (FLP) that harbor integrin β(1) along their shafts. The cytoskeleton-regulating proteins Rif and mDia2 contribute critically to the formation of these protrusions and thereby enable the proliferation of extravasated cancer cells. Hence, the formation of FLPs represents a critical rate-limiting step for the subsequent development of macroscopic metastases. SIGNIFICANCE Although the mechanisms of metastatic dissemination have begun to be uncovered, those involved in the establishment of extravasated cancer cells in foreign tissue microenvironments remained largely obscure. We have studied the behavior of recently extravasated cancer cells in the lungs and identified a series of cell biologic processes involving the formation of filopodium-like protrusions and the subsequent development of elongated, mature adhesion plaques, which contribute critically to the rapid proliferation of the micrometastatic cells and thus are prerequisites to the eventual lung colonization by these cells.
Collapse
Affiliation(s)
- Tsukasa Shibue
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
56
|
Recurrence Dynamics for Non–Small-Cell Lung Cancer: Effect of Surgery on the Development of Metastases. J Thorac Oncol 2012; 7:723-30. [DOI: 10.1097/jto.0b013e31824a9022] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Analysis of Circulating Tumor Cells in Patients with Non-small Cell Lung Cancer Using Epithelial Marker-Dependent and -Independent Approaches. J Thorac Oncol 2012; 7:306-15. [DOI: 10.1097/jto.0b013e31823c5c16] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
58
|
Mathot L, Stenninger J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci 2012; 103:626-31. [PMID: 22212856 DOI: 10.1111/j.1349-7006.2011.02195.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/22/2011] [Accepted: 12/07/2011] [Indexed: 12/27/2022] Open
Abstract
The so-called "seed and soil" hypothesis proposed by Stephen Paget in 1889 to explain the metastatic behavior of cancer cells and the homing of certain cancers to "selected" sites has been a well-recognized phenomenon for over a century. What advances have been made to increase our understanding of this phenomenon and what does it really implicate in terms of targets for therapy?
Collapse
|
59
|
Raviraj V, Zhang H, Chien HY, Cole L, Thompson EW, Soon L. Dormant but migratory tumour cells in desmoplastic stroma of invasive ductal carcinomas. Clin Exp Metastasis 2012; 29:273-92. [PMID: 22271313 DOI: 10.1007/s10585-011-9450-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022]
Abstract
Mortality in breast cancer is linked to metastasis and recurrence yet there is no acceptable biological model for cancer relapse. We hypothesise that there might exist primary tumour cells capable of escaping surgery by migration and resisting radiotherapy and chemotherapy to cause cancer recurrence. We investigated this possibility in invasive ductal carcinoma (IDC) tissue and observed the presence of solitary primary tumour cells (SPCs) in the dense collagen stroma that encapsulates intratumoural cells (ICs). In IDC tissue sections, collagen was detected with either Masson's Trichrome or by second harmonics imaging. Cytokeratin-19 (CK-19) and vimentin (VIM) antibodies were, respectively, used to identify epithelial-derived tumour cells and to indicate epithelial to mesenchymal transition (EMT). Confocal/multiphoton microscopy showed that ICs from acini were mainly CK-19(+ve) and were encapsulated by dense stromal collagen. Within the stroma, SPCs were detected by their staining for both CK-19 and VIM (confirming EMT). ICs and SPCs were subsequently isolated by laser capture microdissection followed by multiplex tandem-PCR studies. SPCs were found to be enriched for pro-migratory and anti-proliferative genes relative to ICs. In vitro experiments using collagen matrices at 20 mg/cm(3), similar in density to tumour matrices, demonstrated that SPC-like cells were highly migratory but dormant, phenotypes that recapitulated the genotypes of SPCs in clinical tissue. These data suggest that SPCs located at the breast cancer perimeter are invasive and dormant such that they may exceed surgical margins and resist local and adjuvant therapies. This study has important connotations for a role of SPCs in local recurrence.
Collapse
Affiliation(s)
- Vanisri Raviraj
- Australian Centre for Microscopy and Microanalysis (ACMM), AMMRF, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
60
|
Tavare AN, Perry NJ, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: Direct and indirect effects of anesthetic agents*. Int J Cancer 2011; 130:1237-50. [DOI: 10.1002/ijc.26448] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/02/2011] [Indexed: 11/11/2022]
|
61
|
Bromodomain-Containing Protein 4: A Dynamic Regulator of Breast Cancer Metastasis through Modulation of the Extracellular Matrix. Int J Breast Cancer 2011; 2012:670632. [PMID: 22295248 PMCID: PMC3262604 DOI: 10.1155/2012/670632] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/11/2022] Open
Abstract
Metastasis is an extremely complex process that accounts for most cancer-related deaths. Malignant primary tumors can be removed surgically, but the cells that migrate, invade, and proliferate at distant organs are often the cells that prove most difficult to target therapeutically. There is growing evidence that host factors outside of the primary tumors are of major importance in the development of metastasis. Recently, we have shown that the bromodomain-containing protein 4 or bromodomain 4 (Brd4) functions as an inherited susceptibility gene for breast cancer progression and metastasis. In this paper, we will discuss that host genetic background on which a tumor arises can significantly alter the biology of the subsequent metastatic disease, and we will focus on the role of Brd4 in regulating metastasis susceptibility.
Collapse
|
62
|
Wang L, Wang J. MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene 2011; 31:2499-511. [PMID: 21963843 DOI: 10.1038/onc.2011.444] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent upsurge of interest in microRNA (miRNA) is partly attributed to the discovery of the novel roles of miRNAs in many physiological and pathological processes, including tumor development. Research on breast cancer metastasis has also focused on the concept of miRNA, which can act either as promoters or as suppressors of metastases. This review will focus on a series of recent studies that demonstrate the involvement of miRNAs in breast cancer metastasis and will briefly describe various pathways of miRNA-regulated metastasis. Finally, future prospects will be discussed for the potential role of miRNAs as predictive markers and therapeutic agents for patients with breast cancer metastases.
Collapse
Affiliation(s)
- L Wang
- Department of Medical Research, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.
| | | |
Collapse
|
63
|
Abstract
All human cells, including cancer cells, need oxygen and nutrients to survive. A widely used strategy to combat cancer is therefore the starvation of tumor cells by cutting off the blood supply of tumors. Clinical experience indeed shows that tumor progression can be delayed by anti-angiogenic agents. However, emerging evidence indicates that in certain experimental conditions, hypoxia as a result of pruning of the tumor microvasculature can promote tumor invasion and metastasis, although these findings are contextual and debated. Genetic studies in mice unveiled that vascular-targeting strategies that avoid aggravation of tumor hypoxia or even promote tumor oxygenation might prevent such an invasive metastatic switch. In this article, we will discuss the emerging link between hypoxia signaling and the various steps of metastasis.
Collapse
|
64
|
Day CP, Carter J, Bonomi C, Hollingshead M, Merlino G. Preclinical therapeutic response of residual metastatic disease is distinct from its primary tumor of origin. Int J Cancer 2011; 130:190-9. [PMID: 21312195 DOI: 10.1002/ijc.25978] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/05/2011] [Indexed: 12/13/2022]
Abstract
Cancer-related deaths are caused principally by recurrence and metastasis arising from residual disease, whose therapeutic responses has been suggested to be substantially different from primary tumors. However, experimental animal models designed for evaluating the therapeutic responses of residual disease are mostly lacking. To overcome this deficiency, we have developed a preclinical model that recapitulates the progression for advanced nonsmall cell lung cancer (NSCLC). An archived Lewis lung carcinoma mouse tumor, propagated only through serial in vivo transplantation and never adapted to cell culture, was stably labeled using lentivirus-encoded biomarkers, consistently expressed through an RNA polymerase II promoter. Labeled tumors were inoculated into syngeneic immunocompetent mice to ensure superior tumor-host interactions. Primary tumors were resected on reaching a predetermined size, followed by treatment in a setting akin to postsurgical first-line adjuvant chemotherapy and routine imaging to monitor the progression of pulmonary metastasis. We discovered that efficacious treatment, instead of reducing disease growth rates, significantly prolonged disease-free survival and overall survival. As in the clinic, cisplatin-based regimes were more effective in this model. However, the response of metastases to specific agents could not be predicted from, and often opposed, their effects on subcutaneous "primary" tumors, possibly due to their distinct growth kinetics and host interactions. We here introduce a clinically relevant model of residual metastatic disease that may more accurately predict the therapeutic response of recurrent, metastatic disease.
Collapse
Affiliation(s)
- Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | | | |
Collapse
|
65
|
Benton G, Kleinman HK, George J, Arnaoutova I. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int J Cancer 2011; 128:1751-7. [PMID: 21344372 DOI: 10.1002/ijc.25781] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Significant advances in our understanding of cancer cell behavior, growth, and metastasis have been facilitated by studies using a basement membrane-like extracellular matrix extract, also known as Matrigel. The basement membrane is a thin extracellular matrix that is found in normal tissues and contacts epithelial and endothelial cells, smooth muscle, fat, Schwann cells, etc. It is composed of mainly laminin-111, collagen IV, heparan sulfate proteoglycan, entactin/nidogen, and various growth factors (fibroblast growth factor, transforming growth factor beta, epidermal growth factor, etc.). Most tumors of epithelial origin produce significant amounts of basement membrane matrix and interact with it particularly during metastasis. Cancer cells metastasize via degradation of the vessel basement membrane matrix to extravasate into the blood stream and colonize distant sites. This review will focus on the interaction of cancer cells and cancer stem cells with the basement membrane-like matrix and the various uses of this interaction to accelerate tumor growth in vivo and to develop in vitro assays for invasion, morphology, and dormancy. Such assays and methods have advanced our understanding of the process of cancer progression, the genes and pathways that are involved, the potential of various therapeutic agents, the effects of neighboring cells, and the role of stem cells.
Collapse
|
66
|
Langley RR, Fidler IJ. The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 2011; 128:2527-35. [PMID: 21365651 DOI: 10.1002/ijc.26031] [Citation(s) in RCA: 632] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/01/2011] [Indexed: 12/14/2022]
Abstract
The fact that certain tumors exhibit a predilection for metastasis to specific organs has been recognized for well over a century now. An extensive body of clinical data and experimental research has confirmed Stephen Paget's original "seed and soil" hypothesis that proposed the organ-preference patterns of tumor metastasis are the product of favorable interactions between metastatic tumor cells (the "seed") and their organ microenvironment (the "soil"). Indeed, many of the first-line therapeutic regimens, currently in use for the treatment of human cancer are designed to target cancer cells (such as chemotherapy) and also to modulate the tumor microenvironment (such as antiangiogenic therapy). While some types of tumors are capable of forming metastases in virtually every organ in the body, the most frequent target organs of metastasis are bone, brain, liver and the lung. In this review, we discuss how tumor-stromal interactions influence metastasis in each of these organs.
Collapse
Affiliation(s)
- Robert R Langley
- Department of Cancer Biology, Cancer Metastasis Research Center, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
67
|
Metastatic tumor dormancy in cutaneous melanoma: does surgery induce escape? Cancers (Basel) 2011; 3:730-46. [PMID: 24212638 PMCID: PMC3756387 DOI: 10.3390/cancers3010730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 01/05/2023] Open
Abstract
According to the concept of tumor dormancy, tumor cells may exist as single cells or microscopic clusters of cells that are clinically undetectable, but remain viable and have the potential for malignant outgrowth. At metastatic sites, escape from tumor dormancy under more favorable local microenvironmental conditions or through other, yet undefined stimuli, may account for distant recurrence after supposed "cure" following surgical treatment of the primary tumor. The vast majority of evidence to date in support of the concept of tumor dormancy originates from animal studies; however, extensive epidemiologic data from breast cancer strongly suggests that this process does occur in human disease. In this review, we aim to demonstrate that metastatic tumor dormancy does exist in cutaneous melanoma based on evidence from mouse models and clinical observations of late recurrence and occult transmission by organ transplantation. Experimental data underscores the critical role of impaired angiogenesis and immune regulation as major mechanisms for maintenance of tumor dormancy. Finally, we examine evidence for the role of surgery in promoting escape from tumor dormancy at metastatic sites in cutaneous melanoma.
Collapse
|
68
|
Flaberg E, Markasz L, Petranyi G, Stuber G, Dicso F, Alchihabi N, Oláh È, Csízy I, Józsa T, Andrén O, Johansson JE, Andersson SO, Klein G, Szekely L. High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int J Cancer 2010; 128:2793-802. [PMID: 20715102 DOI: 10.1002/ijc.25612] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
Increasing evidence indicates that cancer development requires changes both in the precancerous cells and in their microenvironment. To study one aspect of the microenvironmental control, we departed from Michael Stoker's observation (Stroker et al, J Cell Sci 1966;1:297-310) that normal fibroblasts can inhibit the growth of admixed cancer cells (neighbour suppression). We have developed a high-throughput microscopy and image analysis system permitting the examination of live mixed cell cultures growing on 384-well plates, at the single cell level and over time. We have tested the effect of 107 samples of low passage number (<5) primary human fibroblasts from pediatric and adult donors, on the growth of six human tumor cell lines. Three of the lines were derived from prostate carcinomas, two from lung carcinomas and one was an EBV transformed lymphoblastoid line. Labeled tumor cells were grown in the presence of unlabeled fibroblasts. The majority of the tested fibroblasts inhibited the proliferation of the tumor cells, compared to the control cultures where labeled tumor cells were co-cultured with unlabeled tumor cells. The proliferation inhibiting effect of the fibroblasts differed depending on their site of origin and the age of the donor. Inhibition required direct cell contact. Mouse 3T3 fibroblasts inhibited the growth of SV40-transformed 3T3 cells and human tumor cells, showing that the inhibitory effect could prevail across the species barrier. Our high-throughput system allows the quantitative analysis of the inhibitory effect of fibroblasts on the population level and the exploration of differences depending on the source of the normal cells.
Collapse
Affiliation(s)
- Emilie Flaberg
- Department of Microbiology, Tumor and Cell Biology and Center for Integrative Recognition in the Immune System, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Said N, Smith S, Sanchez-Carbayo M, Theodorescu D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J Clin Invest 2010; 121:132-47. [PMID: 21183790 DOI: 10.1172/jci42912] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/27/2010] [Indexed: 12/14/2022] Open
Abstract
Many patients with advanced bladder cancer develop lethal metastases to the lung. The vasoconstricting protein endothelin-1 (ET-1) has been implicated in this process, although the mechanism(s) by which it promotes metastasis remains unclear. Here, we have evaluated whether tumor ET-1 expression can serve as a biomarker for lung metastasis and whether it is required for metastatic disease. Evaluation of ET-1 mRNA and protein expression in four patient cohorts revealed that levels of ET-1 are higher in patients with muscle-invasive bladder cancers, which are associated with higher incidence of metastasis, and that high ET-1 levels are associated with decreased disease-specific survival. Consistent with its proinflammatory activity, we found that tumor-derived ET-1 acts through endothelin-1 receptor A (ETAR) to enhance migration and invasion of both tumor cells and macrophages and induces expression of inflammatory cytokines and proteases. Using human and mouse cancer cells depleted of ET-1 and pharmacologic blockade of ET receptors in lung metastasis models, we found that tumor ET-1 expression and ETAR activity are necessary for metastatic lung colonization and that this process is preceded by and dependent on macrophage infiltration of the lung. In contrast, tumor ET-1 expression and ETAR activity appeared less important in established primary or metastatic tumor growth. These findings strongly suggest that ETAR inhibitors might be more effective as adjuvant therapeutic agents than as initial treatment for advanced primary or metastatic disease.
Collapse
Affiliation(s)
- Neveen Said
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
70
|
Lianidou ES, Mavroudis D, Sotiropoulou G, Agelaki S, Pantel K. What's new on circulating tumor cells? A meeting report. Breast Cancer Res 2010; 12:307. [PMID: 20727231 PMCID: PMC2949631 DOI: 10.1186/bcr2601] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Circulating tumor cells (CTCs) provide unique information for the management of cancer patients. The 7th International Symposium on Minimal Residual Cancer has focused on state of the art research, including exciting advances in understanding the biology of metastasis, CTCs and tumor dormancy. Particular emphasis was placed on the relationship of CTCs to cancer stem cells (CSCs) and the relevance of most recent findings for the development of new targeted therapies. CTCs were evaluated as promising tumor biomarkers and the design and results of the first clinical trials to determine their clinical utility were discussed together with state of the art technology platforms for CTC imaging, detection, quantification and molecular characterization. A liquid biopsy approach that can be used for prognostic and predictive purposes was proposed for the analysis of CTCs.
Collapse
Affiliation(s)
- Evi S Lianidou
- Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | | | | | | | | |
Collapse
|
71
|
Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, Wang E. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 2010; 10:318. [PMID: 20569443 PMCID: PMC2903529 DOI: 10.1186/1471-2407-10-318] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/22/2010] [Indexed: 12/16/2022] Open
Abstract
Background Two mature microRNAs (miRNAs), hsa-miR-125a-3p and hsa-miR-125a-5p (collectively referred to as hsa-miR-125a-3p/5p), are derived from 3' and 5' ends of pre-miR-125a, respectively. Although impaired regulation of hsa-miR-125a-5p has been observed in some tumors, the role of this miRNA in invasion and metastasis remains unclear, and few studies have examined the function of hsa-miR-125a-3p. In order to characterize the functions of hsa-miR-125a-3p/5p in invasion and metastasis of non-small cell lung cancer (NSCLC), we investigated the relationships between hsa-miR-125a-3p/5p expression and lymph node metastasis in NSCLC tissues. We also explored the impact of expression of these miRNAs on invasive and migratory capabilities of lung cancer cells. Methods Expression of hsa-miR-125a-3p/5p in NSCLC tissues was explored using real-time PCR. The relationships between hsa-miR-125a-3p/5p expression and pathological stage or lymph node metastasis were assessed using the Spearman correlation test. For in vitro studies, lung cancer cells were transfected with sense and antisense 2'-O-methyl oligonucleotides for gain-of-function and loss-of-function experiments. Transwell experiments were performed to evaluate cellular migration and invasion. Results Expression of hsa-miR-125a-3p/5p was lower in NSCLC tissues than in adjacent normal lung tissues (LAC). Furthermore, the results from the Spearman correlation test showed a negative relationship between hsa-miR-125a-3p expression and pathological stage or lymph node metastasis and an inverse relationship between hsa-miR-125a-5p expression and pathological stage or lymph node metastasis. In vitro gain-of-function experiments indicated that hsa-miR-125a-3p and hsa-miR-125a-5p function in an opposing manner, suppressing or enhancing cell migration and invasion in A549 and SPC-A-1 cell lines, respectively. These opposing functions were further validated by suppression of hsa-miR-125a-3p and hsa-miR-125a-5p expression in loss-of-function experiments. Conclusion Hsa-miR-125a-3p and hsa-miR-125a-5p play distinct roles in regulation of invasive and metastatic capabilities of lung cancer cells, consistent with the opposing correlations between the expression of these miRNAs and lymph node metastasis in NSCLC. These results provide new insights into the roles of miR-125a family members in the development of NSCLC.
Collapse
Affiliation(s)
- Lili Jiang
- Department of Pathology, the First Affiliated Hospital of China Medical University, Heping District, Shenyang, Liaoning 110001, China
| | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson EW, Polette M, Gilles C. Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 2010; 15:261-73. [PMID: 20449641 DOI: 10.1007/s10911-010-9174-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/20/2010] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) phenomena endow epithelial cells with enhanced migratory and invasive potential, and as such, have been implicated in many physiological and pathological processes requiring cell migration/invasion. Although their involvement in the metastatic cascade is still a subject of debate, data are accumulating to demonstrate the existence of EMT phenotypes in primary human tumors, describe enhanced metastatic potential of EMT derivatives in animal models, and report EMT attributes in circulating tumor cells (CTCs). The relationships between EMT and CTCs remain largely unexplored, and we review here in vitro and in vivo data supporting a putative role of EMT processes in CTC generation and survival.
Collapse
Affiliation(s)
- Arnaud Bonnomet
- Laboratory of Tumor and Developmental Biology, Liège University, GIGA - Cancer, C.H.U. Sart-Tilman, Tour de Pathologie B23, 4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
74
|
Almog N, Klement GL. Platelet proteome and tumor dormancy: can platelets content serve as predictive biomarkers for exit of tumors from dormancy? Cancers (Basel) 2010; 2:842-58. [PMID: 24281097 PMCID: PMC3835108 DOI: 10.3390/cancers2020842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 01/05/2023] Open
Abstract
Although tumor dormancy is highly prevalent, the underling mechanisms are still mostly unknown. It is unclear which lesions will progress and become a disseminated cancer, and which will remain dormant and asymptomatic. Yet, an improved ability to predict progression would open the possibility of timely treatment and improvement in outcomes. We have recently described the ability of platelets to selectively uptake angiogenesis regulators very early in tumor growth, and proposed their use as an early marker of malignancy. In this review we will summarize current knowledge about these processes and will discuss the possibility of using platelet content to predict presence of occult tumors.
Collapse
Affiliation(s)
- Nava Almog
- Center of Cancer Systems Biology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Giannoula Lakka Klement
- Center of Cancer Systems Biology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
75
|
Saha A, Lee YC, Zhang Z, Chandra G, Su SB, Mukherjee AB. Lack of an endogenous anti-inflammatory protein in mice enhances colonization of B16F10 melanoma cells in the lungs. J Biol Chem 2010; 285:10822-31. [PMID: 20118237 DOI: 10.1074/jbc.m109.083550] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence indicates a link between inflammation and cancer metastasis, but the molecular mechanism(s) remains unclear. Uteroglobin (UG), a potent anti-inflammatory protein, is constitutively expressed in the lungs of virtually all mammals. UG-knock-out (UG-KO) mice, which are susceptible to pulmonary inflammation, and B16F10 melanoma cells, which preferentially metastasize to the lungs, provide the components of a model system to determine how inflammation and metastasis are linked. We report here that B16F10 cells, injected into the tail vein of UG-KO mice, form markedly elevated numbers of tumor colonies in the lungs compared with their wild type littermates. Remarkably, UG-KO mouse lungs overexpress two calcium-binding proteins, S100A8 and S100A9, whereas B16F10 cells express the receptor for advanced glycation end products (RAGE), which is a known receptor for these proteins. Moreover, S100A8 and S100A9 are potent chemoattractants for RAGE-expressing B16F10 cells, and pretreatment of these cells with a blocking antibody to RAGE suppressed migration and invasion. Interestingly, in UG-KO mice S100A8/S100A9 concentrations in blood are lowest in tail vein and highest in the lungs, which most likely guide B16F10 cells to migrate to the lungs. Further, B16F10 cells treated with S100A8 or S100A9 overexpress matrix metalloproteinases, which are known to promote tumor invasion. Most notably, the metastasized B16F10 cells in UG-KO mouse lungs express MMP-2, MMP-9, and MMP-14 as well as furin, a pro-protein convertase that activates MMPs. Taken together, our results suggest that a lack of an anti-inflammatory protein leads to increased pulmonary colonization of melanoma cells and identify RAGE as a potential anti-metastatic drug target.
Collapse
Affiliation(s)
- Arjun Saha
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | | | | | | | |
Collapse
|
76
|
Li Q, Wei D, Wang L, Wang L, Jia Z, Le X, Gao Y, Huang S, Xie K. Modeling liver metastasis using a tumor cell line derived from an enhanced green fluorescent protein transgenic mouse. Clin Exp Metastasis 2009; 27:11-8. [PMID: 19882218 DOI: 10.1007/s10585-009-9296-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
The liver is a common repository for metastases, second only to lymph nodes. The majority of gastrointestinal cancer deaths are attributed to liver metastasis. Researchers have widely used stable transfection of green florescent protein (GFP) to track tumor cells in the liver metastasis cascade. However, stable, sustained GFP expression in these tumor cells requires proper drug selection to avoid its loss in animal models. To overcome this, we generated a pancreatic tumor cell line that stably expressed enhanced GFP (EGFP). First, we induced a pancreatic tumor by administering 3-methylcholanthrene in the pancreas of an EGFP transgenic mouse, which had stable ubiquitous EGFP expression. Second, we established the parental pancreatic cancer cell line LG as a culture from a tumor. Third, we selected the cell line LG-L7, a highly liver-metastatic variant of LG. Both LG and LG-L7 cells exhibited a stable EGFP genotype and constant EGFP protein expression both in vitro and in vivo. Also, we could track disseminated LG cells at the single-cell level in vivo. Therefore, this novel cell model system is a useful tool for studying tumor-cell dissemination and metastasis, their underlying mechanisms, and potential therapeutic approaches for them.
Collapse
Affiliation(s)
- Qiang Li
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|