51
|
|
52
|
|
53
|
Sircar R, Borbat PP, Lynch MJ, Bhatnagar J, Beyersdorf MS, Halkides CJ, Freed JH, Crane BR. Assembly states of FliM and FliG within the flagellar switch complex. J Mol Biol 2014; 427:867-886. [PMID: 25536293 DOI: 10.1016/j.jmb.2014.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023]
Abstract
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
Collapse
Affiliation(s)
- Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaya Bhatnagar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S Beyersdorf
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
54
|
Tsai CJ, Liu S, Hung CL, Jhong SR, Sung TC, Chiang YW. BAX-induced apoptosis can be initiated through a conformational selection mechanism. Structure 2014; 23:139-148. [PMID: 25497728 DOI: 10.1016/j.str.2014.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023]
Abstract
BAX protein plays a key role in the mitochondria-mediated apoptosis. However, it remains unclear by what mechanism BAX is triggered to initiate apoptosis. Here, we reveal the mechanism using electron spin resonance (ESR) techniques. An inactive BAX monomer was found to exhibit conformational heterogeneity and exist at equilibrium in two conformations, one of which has never been reported. We show that upon apoptotic stimulus by BH3-only peptides, BAX can be induced to convert into either a ligand-bound monomer or an oligomer through a conformational selection mechanism. The kinetics of reaction is studied by means of time-resolved ESR, allowing a direct in situ observation for the transformation of BAX from the native to the bound states. In vitro mitochondrial assays provide further discrimination between the proposed BAX states, thereby revealing a population-shift allosteric mechanism in the process. BAX's apoptotic function is shown to critically depend on excursions between different structural conformations.
Collapse
Affiliation(s)
- Chia-Jung Tsai
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sophia Liu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Lun Hung
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Siao-Ru Jhong
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tai-Ching Sung
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
55
|
Valera S, Bode BE. Strategies for the synthesis of yardsticks and abaci for nanometre distance measurements by pulsed EPR. Molecules 2014; 19:20227-56. [PMID: 25479188 PMCID: PMC6271543 DOI: 10.3390/molecules191220227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 01/18/2023] Open
Abstract
Pulsed electron paramagnetic resonance (EPR) techniques have been found to be efficient tools for the elucidation of structure in complex biological systems as they give access to distances in the nanometre range. These measurements can provide additional structural information such as relative orientations, structural flexibility or aggregation states. A wide variety of model systems for calibration and optimisation of pulsed experiments has been synthesised. Their design is based on mimicking biological systems or materials in specific properties such as the distances themselves and the distance distributions. Here, we review selected approaches to the synthesis of chemical systems bearing two or more spin centres, such as nitroxide or trityl radicals, metal ions or combinations thereof and outline their application in pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Silvia Valera
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK.
| |
Collapse
|
56
|
El Mkami H, Ward R, Bowman A, Owen-Hughes T, Norman DG. The spatial effect of protein deuteration on nitroxide spin-label relaxation: implications for EPR distance measurement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:36-41. [PMID: 25310878 PMCID: PMC4245719 DOI: 10.1016/j.jmr.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 05/27/2023]
Abstract
Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems.
Collapse
Affiliation(s)
- Hassane El Mkami
- School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK
| | - Richard Ward
- Nucleic Acids Structure Research Group, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew Bowman
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - David G Norman
- Nucleic Acids Structure Research Group, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
57
|
Valera S, Taylor JE, Daniels DSB, Dawson DM, Athukorala Arachchige KS, Ashbrook SE, Slawin AMZ, Bode BE. A modular approach for the synthesis of nanometer-sized polynitroxide multi-spin systems. J Org Chem 2014; 79:8313-23. [PMID: 25102422 DOI: 10.1021/jo5015678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of rigid symmetric polyradical model systems with inter-spin distances between 1.4 and 4 nm and their room temperature continuous wave (CW) EPR spectra are reported. Conditions for attachment of the spin-label via esterification have been optimized on the direct synthesis of polyradicals from commercially available polyphenols and the carboxylic acid functionalized nitroxide TPC. A common synthetic protocol utilizing 4-hydroxy-4'-iodobiphenyl as a key building block has been used to synthesize an equilateral biradical and a triradical in only two steps from commercially available starting materials. The first synthesis of a tetraradical based upon an adamantane core bearing six equivalent nitroxide-nitroxide distances is also reported. These systems are very promising candidates for studying multi-spin effects in pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Silvia Valera
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews , North Haugh, St Andrews KY16 9ST, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Kattnig DR, Reichenwallner J, Hinderberger D. Modeling Excluded Volume Effects for the Faithful Description of the Background Signal in Double Electron–Electron Resonance. J Phys Chem B 2013; 117:16542-57. [DOI: 10.1021/jp408338q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jörg Reichenwallner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| |
Collapse
|
59
|
Möbius K, Lubitz W, Savitsky A. High-field EPR on membrane proteins - crossing the gap to NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:1-49. [PMID: 24160760 DOI: 10.1016/j.pnmrs.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented.
Collapse
Affiliation(s)
- Klaus Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
60
|
Branigan E, Pliotas C, Hagelueken G, Naismith JH. Quantification of free cysteines in membrane and soluble proteins using a fluorescent dye and thermal unfolding. Nat Protoc 2013; 8:2090-7. [PMID: 24091556 PMCID: PMC3836627 DOI: 10.1038/nprot.2013.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cysteine is an extremely useful site for selective attachment of labels to proteins for many applications, including the study of protein structure in solution by electron paramagnetic resonance (EPR), fluorescence spectroscopy and medical imaging. The demand for quantitative data for these applications means that it is important to determine the extent of the cysteine labeling. The efficiency of labeling is sensitive to the 3D context of cysteine within the protein. Where the label or modification is not directly measurable by optical or magnetic spectroscopy, for example, in cysteine modification to dehydroalanine, assessing labeling efficiency is difficult. We describe a simple assay for determining the efficiency of modification of cysteine residues, which is based on an approach previously used to determine membrane protein stability. The assay involves a reaction between the thermally unfolded protein and a thiol-specific coumarin fluorophore that is only fluorescent upon conjugation with thiols. Monitoring fluorescence during thermal denaturation of the protein in the presence of the dye identifies the temperature at which the maximum fluorescence occurs; this temperature differs among proteins. Comparison of the fluorescence intensity at the identified temperature between modified, unmodified (positive control) and cysteine-less protein (negative control) allows for the quantification of free cysteine. We have quantified both site-directed spin labeling and dehydroalanine formation. The method relies on a commonly available fluorescence 96-well plate reader, which rapidly screens numerous samples within 1.5 h and uses <100 μg of material. The approach is robust for both soluble and detergent-solubilized membrane proteins.
Collapse
Affiliation(s)
- Emma Branigan
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| | - Christos Pliotas
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| | - Gregor Hagelueken
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK
| |
Collapse
|
61
|
Kunjir NC, Reginsson GW, Schiemann O, Sigurdsson ST. Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR. Phys Chem Chem Phys 2013; 15:19673-85. [PMID: 24135783 DOI: 10.1039/c3cp52789a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trityl based spin labels are emerging as a complement to nitroxides in nanometer distance measurements using EPR methods. The narrow spectral width of the trityl radicals prompts us to ask the question at which distance between these spin centers, the pseudo-secular part of the dipolar coupling and spin density delocalization have to be taken into account. For this, two trityl-trityl and one trityl-nitroxide model compounds were synthesized with well-defined interspin distances. Continuous wave (CW) EPR, double quantum coherence (DQC) and pulsed electron-electron double resonance (PELDOR) spectra were acquired from these compounds at commercial X-band frequencies. The data analysis shows that two of the compounds, with distances of up to 25 Å, fall into the strong coupling regime and that precise distances can only be obtained if both the spin density delocalization and the pseudo-secular part of the dipolar coupling are included in the analysis.
Collapse
Affiliation(s)
- Nitin C Kunjir
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavík, Iceland.
| | | | | | | |
Collapse
|
62
|
Razzaghi S, Brooks EK, Bordignon E, Hubbell WL, Yulikov M, Jeschke G. EPR relaxation-enhancement-based distance measurements on orthogonally spin-labeled T4-lysozyme. Chembiochem 2013; 14:1883-90. [PMID: 23775845 PMCID: PMC3804414 DOI: 10.1002/cbic.201300165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 12/20/2022]
Abstract
Lanthanide-induced enhancement of the longitudinal relaxation of nitroxide radicals in combination with orthogonal site-directed spin labeling is presented as a systematic distance measurement method intended for studies of bio-macromolecules and bio-macromolecular complexes. The approach is tested on a water-soluble protein (T4-lysozyme) for two different commercially available lanthanide labels, and complemented by previously reported data on a membrane-inserted polypeptide. Single temperature measurements are shown to be sufficient for reliable distance determination, with an upper measurable distance limit of about 5-6 nm. The extracted averaged distances represent the closest approach in Ln(III) -nitroxide distance distributions. Studies of conformational changes and of bio-macromolecule association-dissociation are proposed as possible application area of the relaxation-enhancement-based distance measurements.
Collapse
Affiliation(s)
| | - Evan K. Brooks
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | | | - Wayne L. Hubbell
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
63
|
Matalon E, Huber T, Hagelueken G, Graham B, Frydman V, Feintuch A, Otting G, Goldfarb D. Gadolinium(III) Spin Labels for High-Sensitivity Distance Measurements in Transmembrane Helices. Angew Chem Int Ed Engl 2013; 52:11831-4. [DOI: 10.1002/anie.201305574] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/14/2013] [Indexed: 12/28/2022]
|
64
|
Matalon E, Huber T, Hagelueken G, Graham B, Frydman V, Feintuch A, Otting G, Goldfarb D. Gadolinium(III) Spin Labels for High-Sensitivity Distance Measurements in Transmembrane Helices. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
65
|
Pornsuwan S, Giller K, Riedel D, Becker S, Griesinger C, Bennati M. Long-Range Distances in Amyloid Fibrils of α-Synuclein from PELDOR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
66
|
Pornsuwan S, Giller K, Riedel D, Becker S, Griesinger C, Bennati M. Long-range distances in amyloid fibrils of α-synuclein from PELDOR spectroscopy. Angew Chem Int Ed Engl 2013; 52:10290-4. [PMID: 23934970 PMCID: PMC4138985 DOI: 10.1002/anie.201304747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Indexed: 11/05/2022]
Affiliation(s)
- S Pornsuwan
- Research Group EPR Spectroscopy, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany) http://www.mpibpc.mpg.de/english/research/ags/bennati/; Current address: Department of Chemistry, Faculty of Science, Mahidol University, 10400 Bangkok (Thailand)
| | | | | | | | | | | |
Collapse
|
67
|
Matalon E, Faingold O, Eisenstein M, Shai Y, Goldfarb D. The topology, in model membranes, of the core peptide derived from the T-cell receptor transmembrane domain. Chembiochem 2013; 14:1867-75. [PMID: 23881822 DOI: 10.1002/cbic.201300191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 01/16/2023]
Abstract
The T-cell receptor-CD3 complex (TCR-CD3) serves a critical role in protecting organisms from infectious agents. The TCR is a heterodimer composed of α- and β-chains, which are responsible for antigen recognition. Within the transmembrane domain of the α-subunit, a region has been identified to be crucial for the assembly and function of the TCR. This region, termed core peptide (CP), consists of nine amino acids (GLRILLLKV), two of which are charged (lysine and arginine) and are crucial for the interaction with CD3. Earlier studies have shown that a synthetic peptide corresponding to the CP sequence can suppress the immune response in animal models of T-cell-mediated inflammation, by disrupting proper assembly of the TCR. As a step towards the understanding of the source of the CP activity, we focused on CP in egg phosphatidylcholine/cholesterol (9:1, mol/mol) model membranes and determined its secondary structure, oligomerization state, and orientation with respect to the membrane. To achieve this goal, 15-residue segments of TCRα, containing the CP, were synthesized and spin-labeled at different locations with a nitroxide derivative. Electron spin-echo envelope modulation spectroscopy was used to probe the position and orientation of the peptides within the membrane, and double electron-electron resonance measurements were used to probe its conformation and oligomerization state. We found that the peptide is predominantly helical in a membrane environment and tends to form oligomers (mostly dimers) that are parallel to the membrane plane.
Collapse
Affiliation(s)
- Erez Matalon
- Department of Chemical Physics, Weizmann Institute of Science, 234 Hertzl St, Rehovot, 7632700 (Israel)
| | | | | | | | | |
Collapse
|
68
|
Lai YC, Chen YF, Chiang YW. ESR study of interfacial hydration layers of polypeptides in water-filled nanochannels and in vitrified bulk solvents. PLoS One 2013; 8:e68264. [PMID: 23840841 PMCID: PMC3695931 DOI: 10.1371/journal.pone.0068264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/03/2013] [Indexed: 01/04/2023] Open
Abstract
There is considerable evidence for the essential role of surface water in protein function and structure. However, it is unclear to what extent the hydration water and protein are coupled and interact with each other. Here, we show by ESR experiments (cw, DEER, ESEEM, and ESE techniques) with spin-labeling and nanoconfinement techniques that the vitrified hydration layers can be evidently recognized in the ESR spectra, providing nanoscale understanding for the biological interfacial water. Two peptides of different secondary structures and lengths are studied in vitrified bulk solvents and in water-filled nanochannels of different pore diameter (6.1∼7.6 nm). The existence of surface hydration and bulk shells are demonstrated. Water in the immediate vicinity of the nitroxide label (within the van der Waals contacts, ∼0.35 nm) at the water-peptide interface is verified to be non-crystalline at 50 K, and the water accessibility changes little with the nanochannel dimension. Nevertheless, this water accessibility for the nanochannel cases is only half the value for the bulk solvent, even though the peptide structures remain largely the same as those immersed in the bulk solvents. On the other hand, the hydration density in the range of ∼2 nm from the nitroxide spin increases substantially with decreasing pore size, as the density for the largest pore size (7.6 nm) is comparable to that for the bulk solvent. The results demonstrate that while the peptides are confined but structurally unaltered in the nanochannels, their surrounding water exhibits density heterogeneity along the peptide surface normal. The causes and implications, especially those involving the interactions between the first hydration water and peptides, of these observations are discussed. Spin-label ESR techniques are proven useful for studying the structure and influences of interfacial hydration.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Fan Chen
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
69
|
Airola MV, Huh D, Sukomon N, Widom J, Sircar R, Borbat PP, Freed JH, Watts KJ, Crane BR. Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 2013; 425:886-901. [PMID: 23274111 PMCID: PMC3577987 DOI: 10.1016/j.jmb.2012.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/24/2023]
Abstract
Bacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per-Arnt-Sim) and poly-HAMP (histidine kinase-adenylyl cyclase-methyl-accepting chemotaxis protein-phosphatase) domain signaling. The crystal structure of the heme-binding PAS domain in the ferric, ligand-free form, in comparison to the previously determined cyanide-bound state, identifies conformational changes induced by ligand binding that are likely essential for the signaling mechanism. Heme-pocket alternations share some similarities with the heme-based PAS sensors FixL and EcDOS but propagate to the Iβ strand in a manner predicted to alter PAS-PAS associations and the downstream HAMP junction within full-length Aer2. Small-angle X-ray scattering of PAS and poly-HAMP domain fragments of increasing complexity allow unambiguous domain assignments and reveal a linear quaternary structure. The Aer2 PAS dimeric crystal structure fits well within ab initio small-angle X-ray scattering molecular envelopes, and pulsed dipolar ESR measurements of inter-PAS distances confirm the crystallographic PAS arrangement within Aer2. Spectroscopic and pull-down assays fail to detect direct interactions between the PAS and HAMP domains. Overall, the Aer2 signaling mechanism differs from the Escherichia coli Aer paradigm, where side-on PAS-HAMP contacts are key. We propose an in-line model for Aer2 signaling, where ligand binding induces alterations in PAS domain structure and subunit association that is relayed through the poly-HAMP junction to downstream domains.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Doowon Huh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
70
|
Matalon E, Kaminker I, Zimmermann H, Eisenstein M, Shai Y, Goldfarb D. Topology of the trans-membrane peptide WALP23 in model membranes under negative mismatch conditions. J Phys Chem B 2013; 117:2280-93. [PMID: 23311473 DOI: 10.1021/jp310056h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organization and orientation of membrane-inserted helices is important for better understanding the mode of action of membrane-active peptides and of protein-membrane interactions. Here we report on the application of ESEEM (electron spin-echo envelope modulation) and DEER (double electron-electron resonance) techniques to probe the orientation and oligomeric state of an α-helical trans-membrane model peptide, WALP23, under conditions of negative mismatch between the hydrophobic cores of the model membrane and the peptide. Using ESEEM, we measured weak dipolar interactions between spin-labeled WALP23 and (2)H nuclei of either the solvent (D2O) or of lipids specifically deuterated at the choline group. The ESEEM data obtained from the deuterated lipids were fitted using a model that provided the spin label average distance from a layer of (2)H nuclei in the hydrophilic region of the membrane and the density of the (2)H nuclei in the layer. DEER was used to probe oligomerization through the dipolar interaction between two spin-labels on different peptides. We observed that the center of WALP23 does not coincide with the bilayer midplane and its N-terminus is more buried than the C-terminus. In addition, the ESEEM data fitting yielded a (2)H layer density that was much lower than expected. The DEER experiments revealed the presence of oligomers, the presence of which was attributable to the negative mismatch and the electrostatic dipole of the peptide. A discussion of a possible arrangement of the individual helices in the oligomers that is consistent with the ESEEM and DEER data is presented.
Collapse
Affiliation(s)
- Erez Matalon
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | |
Collapse
|
71
|
Airola MV, Sukomon N, Samanta D, Borbat PP, Freed JH, Watts KJ, Crane BR. HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 2013; 11:e1001479. [PMID: 23424282 PMCID: PMC3570549 DOI: 10.1371/journal.pbio.1001479] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/02/2013] [Indexed: 01/07/2023] Open
Abstract
HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between "on" and "off" conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Dipanjan Samanta
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York, United States of America
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York, United States of America
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York, United States of America
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California, United States of America
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
72
|
Tkach I, Pornsuwan S, Höbartner C, Wachowius F, Sigurdsson ST, Baranova TY, Diederichsen U, Sicoli G, Bennati M. Orientation selection in distance measurements between nitroxide spin labels at 94 GHz EPR with variable dual frequency irradiation. Phys Chem Chem Phys 2013; 15:3433-7. [PMID: 23381580 DOI: 10.1039/c3cp44415e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulsed electron-electron double resonance (PELDOR, also known as DEER) has become a method of choice to measure distances in biomolecules. In this work we show how the performance of the method can be improved at high EPR frequencies (94 GHz) using variable dual frequency irradiation in a dual mode cavity in order to obtain enhanced resolution toward orientation selection. Dipolar evolution traces of a representative RNA duplex and an α-helical peptide were analysed in terms of possible bi-radical structures by considering the inherent ambiguity of symmetry-related solutions.
Collapse
Affiliation(s)
- Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Kaminker I, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D. W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:66-71. [PMID: 23314001 DOI: 10.1016/j.jmr.2012.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd(3+) chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to access long distances, a major difficulty arises from the large frequency spacing (about 700 MHz) between the narrow, intense signal of the Gd(3+) central transition and the nitroxide signal. This is particularly problematic when using standard single-mode cavities. Here we show that a novel dual-mode cavity that matches this large frequency separation dramatically increases the sensitivity of DEER measurements, allowing evolution times as long as 12 μs in a protein. This opens the possibility of accessing distances of 8 nm and longer. In addition, orientation selection can be resolved and analyzed, thus providing additional structural information. In the case of W-band DEER on a Gd(3+)-nitroxide pair, only two angles and their distributions have to be determined, which is a much simpler problem to solve than the five angles and their distributions associated with two nitroxide spin labels.
Collapse
Affiliation(s)
- Ilia Kaminker
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 2013; 20:215-21. [PMID: 23334289 PMCID: PMC3565060 DOI: 10.1038/nsmb.2494] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/17/2012] [Indexed: 01/03/2023]
Abstract
Sodium and aspartate symporter from Pyrococcus horikoshii, GltPh, is a homologue of the mammalian glutamate transporters, homotrimeric integral membrane proteins controlling the neurotransmitter levels in brain synapses. These transporters function by alternating between outward and inward facing states, in which the substrate binding site is oriented toward the extracellular space and the cytoplasm, respectively. Here we employ double electron-electron resonance (DEER) spectroscopy to probe the structure and the state distribution of the subunits in the trimer within distinct hydrophobic environments of detergent micelles and lipid bilayers. Our experiments reveal a conformational ensemble of protomers sampling the outward and inward facing states with nearly equal probabilities, indicative of comparable energies, and independently of each other. On average, the distributions vary only modestly in detergent and in bilayers, but in several mutants unique conformations are stabilized by the latter.
Collapse
|
75
|
Borbat PP, Georgieva ER, Freed JH. Improved Sensitivity for Long-Distance Measurements in Biomolecules: Five-Pulse Double Electron-Electron Resonance. J Phys Chem Lett 2013; 4:170-175. [PMID: 23301118 PMCID: PMC3538160 DOI: 10.1021/jz301788n] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/19/2012] [Indexed: 05/15/2023]
Abstract
We describe significantly improved long-distance measurements in biomolecules by use of the new multipulse double electron-electron spin resonance (DEER) illustrated with the example of a five-pulse DEER sequence. In this sequence, an extra pulse at the pump frequency is used compared with standard four-pulse DEER. The position of the extra pulse is fixed relative to the three pulses of the detection sequence. This significantly reduces the effect of nuclear spin-diffusion on the electron-spin phase relaxation, thereby enabling longer dipolar evolution times that are required to measure longer distances. Using spin-labeled T4 lysozyme at a concentration less than 50 μM, as an example, we show that the evolution time increases by a factor of 1.8 in protonated solution and 1.4 in deuterated solution to 8 and 12 μs, respectively, with the potential to increase them further. This enables a significant increase in the measurable distances, improved distance resolution, or both.
Collapse
Affiliation(s)
- Peter P. Borbat
- E-mail: ; Tel: (607) 255-6132;
Fax: (607) 255-6969 (P.P.B.). E-mail: ; Tel: (607)
255-3647; Fax: (607) 255-6969 (J.H.F.)
| | | | - Jack H. Freed
- E-mail: ; Tel: (607) 255-6132;
Fax: (607) 255-6969 (P.P.B.). E-mail: ; Tel: (607)
255-3647; Fax: (607) 255-6969 (J.H.F.)
| |
Collapse
|
76
|
Borbat PP, Freed JH. Pulse Dipolar Electron Spin Resonance: Distance Measurements. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_82] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
77
|
Marko A, Prisner TF. An algorithm to analyze PELDOR data of rigid spin label pairs. Phys Chem Chem Phys 2013. [DOI: 10.1039/c2cp42942j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Bhatnagar J, Sircar R, Borbat PP, Freed JH, Crane BR. Self-association of the histidine kinase CheA as studied by pulsed dipolar ESR spectroscopy. Biophys J 2012; 102:2192-201. [PMID: 22824284 DOI: 10.1016/j.bpj.2012.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022] Open
Abstract
Biologically important protein complexes often involve molecular interactions that are low affinity or transient. We apply pulsed dipolar electron spin resonance spectroscopy and site-directed spin labeling in what to our knowledge is a new approach to study aggregation and to identify regions on protein surfaces that participate in weak, but specific molecular interactions. As a test case, we have probed the self-association of the chemotaxis kinase CheA, which forms signaling clusters with chemoreceptors and the coupling protein CheW at the poles of bacterial cells. By measuring the intermolecular dipolar interactions sensed by spin-labels distributed over the protein surface, we show that the soluble CheA kinase aggregates to a small extent through interactions mediated by its regulatory (P5) domain. Direct dipolar distance measurements confirm that a hydrophobic surface at the periphery of P5 subdomain 2 associates CheA dimers in solution. This result is further supported by differential disulfide cross-linking from engineered cysteine reporter sites. We suggest that the periphery of P5 is an interaction site on CheA for other similar hydrophobic surfaces and plays an important role in structuring the signaling particle.
Collapse
Affiliation(s)
- Jaya Bhatnagar
- Advanced Center for ESR Studies (ACERT), Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
79
|
Gaffney BJ, Bradshaw MD, Frausto SD, Wu F, Freed JH, Borbat P. Locating a lipid at the portal to the lipoxygenase active site. Biophys J 2012; 103:2134-44. [PMID: 23200047 PMCID: PMC3512035 DOI: 10.1016/j.bpj.2012.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022] Open
Abstract
Lipoxygenase enzymes initiate diverse signaling pathways by specifically directing oxygen to different carbons of arachidonate and other polyunsaturated acyl chains, but structural origins of this specificity have remained unclear. We therefore determined the nature of the lipoxygenase interaction with the polar-end of a paramagnetic lipid by electron paramagnetic resonance spectroscopy. Distances between selected grid points on soybean seed lipoxygenase-1 (SBL1) and a lysolecithin spin-labeled on choline were measured by pulsed (electron) dipolar spectroscopy. The protein grid was designed by structure-based modeling so that five natural side chains were replaced with spin labels. Pairwise distances in 10 doubly spin-labeled mutants were examined by pulsed dipolar spectroscopy, and a fit to the model was optimized. Finally, experimental distances between the lysolecithin spin and each single spin site on SBL1 were also obtained. With these 15 distances, distance geometry localized the polar-end and the spin of the lysolecithin to the region between the two domains in the SBL1 structure, nearest to E236, K260, Q264, and Q544. Mutation of a nearby residue, E256A, relieved the high pH requirement for enzyme activity of SBL1 and allowed lipid binding at pH 7.2. This general approach could be used to locate other flexible molecules in macromolecular complexes.
Collapse
Affiliation(s)
- Betty J Gaffney
- Department of Biological Science Department, Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Sun Y, Zhang Z, Grigoryants VM, Myers WK, Liu F, Earle KA, Freed JH, Scholes CP. The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 2012; 51:8530-41. [PMID: 23009298 DOI: 10.1021/bi301058q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) at 236.6 and 9.5 GHz probed the tumbling of nitroxide spin probes in the lower stem, in the upper loop, and near the bulge of mini c TAR DNA. High-frequency 236.6 GHz EPR, not previously applied to spin-labeled oligonucleotides, was notably sensitive to fast, anisotropic, hindered local rotational motion of the spin probe, occurring approximately about the NO nitroxide axis. Labels attached to the 2'-aminocytidine sugar in the mini c TAR DNA showed such anisotropic motion, which was faster in the lower stem, a region previously thought to be partially melted. More flexible labels attached to phosphorothioates at the end of the lower stem tumbled isotropically in mini c TAR DNA, mini TAR RNA, and ψ(3) RNA, but at 5 °C, the motion became more anisotropic for the labeled RNAs, implying more order within the RNA lower stems. As observed by 9.5 GHz EPR, the slowing of nanosecond motions of large segments of the oligonucleotide was enhanced by increasing the ratio of the nucleocapsid protein NCp7 to mini c TAR DNA from 0 to 2. The slowing was most significant at labels in the loop and near the bulge. At a 4:1 ratio of NCp7 to mini c TAR DNA, all labels reported tumbling times of >5 ns, indicating a condensation of NCp7 and TAR DNA. At the 4:1 ratio, pulse dipolar EPR spectroscopy of bilabels attached near the 3' and 5' termini showed evidence of an NCp7-induced increase in the 3'-5' end-to-end distance distribution and a partially melted stem.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Lovett JE, Lovett BW, Harmer J. DEER-Stitch: combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:98-106. [PMID: 22975240 DOI: 10.1016/j.jmr.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Over approximately the last 15 years the electron paramagnetic resonance (EPR) technique of double electron electron resonance (DEER) has attracted considerable attention since it allows for the precise measurement of the dipole-dipole coupling between radicals and thus can lead to distance information between pairs of radicals separated by up to ca. 8 nm. The "deadtime free" 4-pulse DEER sequence is widely used but can suffer from poor sensitivity if the electron spin-echo decays too quickly to allow collection of a sufficiently long time trace. In this paper we present a method which takes advantage of the much greater sensitivity that the 3-pulse sequence offers over the 4-pulse sequence since the measured electron spin-echo intensity (for equal sequence lengths) is greater. By combining 3- and 4-pulse DEER time traces using a method coined DEER-Stitch (DEERS) accurate dipole-dipole coupling measurements can be made which combine the sensitivity of the 3-pulse DEER sequence with the deadtime free advantage of the 4-pulse DEER sequence. To develop the DEER-Stitch method three systems were measured: a semi-rigid bis-nitroxide labeled nanowire, the bis-nitroxide labeled protein CD55 with a distance between labels of almost 8 nm and a dimeric copper amine oxidase from Arthrobacter globiformis (AGAO).
Collapse
Affiliation(s)
- J E Lovett
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
82
|
Yang Z, Liu Y, Borbat P, Zweier JL, Freed JH, Hubbell WL. Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J Am Chem Soc 2012; 134:9950-2. [PMID: 22676043 PMCID: PMC3409244 DOI: 10.1021/ja303791p] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulsed electron spin resonance (ESR) dipolar spectroscopy (PDS) in combination with site-directed spin labeling is unique in providing nanometer-range distances and distributions in biological systems. To date, most of the pulsed ESR techniques require frozen solutions at cryogenic temperatures to reduce the rapid electron spin relaxation rate and to prevent averaging of electron-electron dipolar interaction due to the rapid molecular tumbling. To enable measurements in liquid solution, we are exploring a triarylmethyl (TAM)-based spin label with a relatively long relaxation time where the protein is immobilized by attachment to a solid support. In this preliminary study, TAM radicals were attached via disulfide linkages to substituted cysteine residues at positions 65 and 80 or 65 and 76 in T4 lysozyme immobilized on Sepharose. Interspin distances determined using double quantum coherence (DQC) in solution are close to those expected from models, and the narrow distance distribution in each case indicates that the TAM-based spin label is relatively localized.
Collapse
Affiliation(s)
- Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
83
|
Georgieva ER, Roy AS, Grigoryants VM, Borbat PP, Earle KA, Scholes CP, Freed JH. Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:69-77. [PMID: 22341208 PMCID: PMC3323113 DOI: 10.1016/j.jmr.2012.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 05/11/2023]
Abstract
Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the conformation of biomacromolecule and/or spin-label. We studied in detail the effect of these experimental variables on the distance distributions obtained by DEER from a series of doubly spin-labeled T4 lysozyme mutants. We found that the rate of sample freezing affects mainly the ensemble of spin-label rotamers, but the distance maxima remain essentially unchanged. This suggests that proteins frozen in a regular manner in liquid nitrogen faithfully maintain the distance-dependent structural properties in solution. We compared the results from rapidly freeze-quenched (≤100 μs) samples to those from commonly shock-frozen (slow freeze, 1 s or longer) samples. For all the mutants studied we obtained inter-spin distance distributions, which were broader for rapidly frozen samples than for slowly frozen ones. We infer that rapid freezing trapped a larger ensemble of spin label rotamers; whereas, on the time-scale of slower freezing the protein and spin-label achieve a population showing fewer low-energy conformers. We used glycerol as a cryoprotectant in concentrations of 10% and 30% by weight. With 10% glycerol and slow freezing, we observed an increased slope of background signals, which in DEER is related to increased local spin concentration, in this case due to insufficient solvent vitrification, and therefore protein aggregation. This effect was considerably suppressed in slowly frozen samples containing 30% glycerol and rapidly frozen samples containing 10% glycerol. The assignment of bimodal distributions to tether rotamers as opposed to protein conformations is aided by comparing results using MTSL and 4-Bromo MTSL spin-labels. The latter usually produce narrower distance distributions.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Distance distributions between paramagnetic centers in the range of 1.8 to 6 nm in membrane proteins and up to 10 nm in deuterated soluble proteins can be measured by the DEER technique. The number of paramagnetic centers and their relative orientation can be characterized. DEER does not require crystallization and is not limited with respect to the size of the protein or protein complex. Diamagnetic proteins are accessible by site-directed spin labeling. To characterize structure or structural changes, experimental protocols were optimized and techniques for artifact suppression were introduced. Data analysis programs were developed, and it was realized that interpretation of the distance distributions must take into account the conformational distribution of spin labels. First methods have appeared for deriving structural models from a small number of distance constraints. The present scope and limitations of the technique are illustrated.
Collapse
Affiliation(s)
- Gunnar Jeschke
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Switzerland.
| |
Collapse
|
85
|
Metal-Based Spin Labeling for Distance Determination. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2012. [DOI: 10.1007/430_2011_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
86
|
Eliezer D. Distance information for disordered proteins from NMR and ESR measurements using paramagnetic spin labels. Methods Mol Biol 2012; 895:127-38. [PMID: 22760317 PMCID: PMC8193837 DOI: 10.1007/978-1-61779-927-3_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The growing recognition of the many roles that disordered protein states play in biology places an increasing importance on developing approaches to characterize the structural properties of this class of proteins and to clarify the links between these properties and the associated biological functions. Disordered proteins, when isolated in solution, do not adopt a fixed structure, but can and often do contain detectable and significant residual or transient structure, including both secondary and long-range structure. Such residual structure can play a role in nucleating local structural transitions as well as modulating intramolecular or intermolecular tertiary interactions, including those involved in ordered protein aggregation. An increasing array of tools has been recruited to help characterize the structural properties of disordered proteins. While a number of methods can report on residual secondary structure, detecting and quantifying transient long-range structure has proven to be more difficult. This chapter describes the use of paramagnetic spin labeling in combination with paramagnetic relaxation enhancement (PRE) in NMR spectroscopy and pulsed dipolar ESR spectroscopy (PDS) for this purpose.
Collapse
Affiliation(s)
- David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
87
|
Savitsky A, Dubinskii AA, Zimmermann H, Lubitz W, Möbius K. High-Field Dipolar Electron Paramagnetic Resonance (EPR) Spectroscopy of Nitroxide Biradicals for Determining Three-Dimensional Structures of Biomacromolecules in Disordered Solids. J Phys Chem B 2011; 115:11950-63. [DOI: 10.1021/jp206841v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anton Savitsky
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany
| | | | - Herbert Zimmermann
- Max-Planck-Institut für Medizinische Forschung, Abt. Biophysik, 69120 Heidelberg, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany
| | - Klaus Möbius
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany
- Department of Physics, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
88
|
Mesopores provide an amorphous state suitable for studying biomolecular structures at cryogenic temperatures. Proc Natl Acad Sci U S A 2011; 108:14145-50. [PMID: 21844377 DOI: 10.1073/pnas.1102395108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In nano-confinements, aqueous solutions can be found to remain in a liquid state at subfreezing temperatures. The finding provides a means of entering into previously inaccessible temperature regions for studying the dynamics and structure of bulk liquid. Here we show that studying biomolecular structures in nano-confinements improves the accuracy of cryostructures and provides better insight into the relationship between hydration water and biomolecules. Synthetic prion protein peptides are studied in two experimental conditions: (i) in confined nanochannels within mesoporous materials, and (ii) in vitrified bulk solvents, with a temperature range of 50-275 K, using cw/pulse ESR techniques. A large inhomogeneous lineshape broadening is only observed for the spectra from the vitrified bulk solvent below 70 K, suggesting a possible peptide clustering in the solution. The spin-counting and distance measurements by DEER-ESR provide further evidence that peptides are dispersed homogeneously in mesopores but heterogeneously in vitrified solvents wherein the biomolecular structure is disturbed due to heterogeneity in the bulk solvent structure. Our study demonstrates that the nanospace within mesoporous materials provides an amorphous environment that is better than vitrified bulk solvent for studying biostructures at cryogenic temperatures.
Collapse
|
89
|
Sezer D, Sigurdsson ST. Simulating electron spin resonance spectra of macromolecules labeled with two dipolar-coupled nitroxide spin labels from trajectories. Phys Chem Chem Phys 2011; 13:12785-97. [PMID: 21691643 DOI: 10.1039/c1cp20430k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for simulating continuous-wave electron spin resonance spectra (ESR) of molecules labeled with two dipolar-coupled nitroxides from trajectories of the molecular motion is presented. Two approximate treatments of the dipolar spin evolution, resulting in significantly shorter simulation times, are examined in order to determine their range of applicability. The approach is illustrated in the context of a double-helical B-DNA. ESR spectra for DNA undergoing anisotropic global diffusion and internal stretching dynamics are calculated for three different labeling geometries with the spin labels bracketing, respectively, three, two and one base pairs. While multifrequency spectra of all three labeling schemes are very sensitive to DNA tumbling, the last one is found to be most informative about the local DNA dynamics.
Collapse
Affiliation(s)
- Deniz Sezer
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla, 34956 Istanbul, Turkey.
| | | |
Collapse
|
90
|
Braun P, Nägele B, Wittmann V, Drescher M. Mechanistische Untersuchung multivalenter Kohlenhydrat-Protein-Wechselwirkungen durch EPR-Spektroskopie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
91
|
Mechanism of Multivalent Carbohydrate-Protein Interactions Studied by EPR Spectroscopy. Angew Chem Int Ed Engl 2011; 50:8428-31. [DOI: 10.1002/anie.201101074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Indexed: 11/07/2022]
|
92
|
Benson MA, Komas SM, Schmalzer KM, Casey MS, Frank DW, Feix JB. Induced conformational changes in the activation of the Pseudomonas aeruginosa type III toxin, ExoU. Biophys J 2011; 100:1335-43. [PMID: 21354407 DOI: 10.1016/j.bpj.2011.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
ExoU is a 74-kDa, water-soluble toxin injected directly into mammalian cells through the type III secretion system of the opportunistic pathogen, Pseudomonas aeruginosa. Previous studies have shown that ExoU is a Ca(2+)-independent phospholipase that requires a eukaryotic protein cofactor. One protein capable of activating ExoU and serving as a required cofactor was identified by biochemical and proteomic methods as superoxide dismutase (SOD1). In these studies, we carried out site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the effects of SOD1 and substrate liposomes on the structure and dynamics of ExoU. Local conformational changes within the catalytic site were observed in the presence of substrate liposomes, and were enhanced by the addition of SOD1 in a concentration-dependent manner. Conformational changes in the C-terminal domain of ExoU were observed upon addition of cofactor, even in the absence of liposomes. Double electron-electron resonance experiments indicated that ExoU samples multiple conformations in the resting state. In contrast, addition of SOD1 induced ExoU to adopt a single, well-defined conformation. These studies provide, to our knowledge, the first direct evidence for cofactor- and membrane-induced conformational changes in the mechanism of activation of ExoU.
Collapse
Affiliation(s)
- Marc A Benson
- Center for Infectious Disease Research, Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
93
|
Song Y, Meade TJ, Astashkin A, Klein E, Enemark J, Raitsimring A. Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 210:59-68. [PMID: 21388847 PMCID: PMC3081411 DOI: 10.1016/j.jmr.2011.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 05/11/2023]
Abstract
This work demonstrates the feasibility of using Gd(III) tags for long-range Double Electron Electron Resonance (DEER) distance measurements in biomacromolecules. Double-stranded 14- base pair Gd(III)-DNA conjugates were synthesized and investigated at K(a) band. For the longest Gd(III) tag the average distance and average deviation between Gd(III) ions determined from the DEER time domains was about 59±12Å. This result demonstrates that DEER measurements with Gd(III) tags can be routinely carried out for distances of at least 60Å, and analysis indicates that distance measurements up to 100Å are possible. Compared with commonly used nitroxide labels, Gd(III)-based labels will be most beneficial for the detection of distance variations in large biomacromolecules, with an emphasis on large scale changes in shape or distance. Tracking the folding/unfolding and domain interactions of proteins and the conformational changes in DNA are examples of such applications.
Collapse
Affiliation(s)
- Y. Song
- Departments of Chemistry; Molecular Biosciences; Neurobiology & Physiology; and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - T. J. Meade
- Departments of Chemistry; Molecular Biosciences; Neurobiology & Physiology; and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - A.V. Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA
| | - E.L. Klein
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA
| | - J.H. Enemark
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA
| | - A. Raitsimring
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA
- Corresponding Author: Arnold Raitsimring, Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA.
| |
Collapse
|
94
|
Dzikovski BG, Borbat PP, Freed JH. Channel and nonchannel forms of spin-labeled gramicidin in membranes and their equilibria. J Phys Chem B 2011; 115:176-85. [PMID: 21142163 PMCID: PMC3076037 DOI: 10.1021/jp108105k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Channel and nonchannel forms of gramicidin A (GA) were studied by ESR in various lipid environments using new mono- and double-spin-labeled compounds. For GA channels, we demonstrate here how pulse dipolar ESR can be used to determine the orientation of the membrane-traversing molecule relative to the membrane normal and to study subtle effects of lipid environment on the interspin distance in the spin-labeled gramicidin channel. To study nonchannel forms of gramicidin, pulse dipolar ESR was used first to determine interspin distances corresponding to monomers and double-helical dimers of spin-labeled GA molecules in the organic solvents trifluoroethanol and octanol. The same distances were then observed in membranes. Since detection of nonchannel forms in the membrane is complicated by aggregation, we suppressed any dipolar spectra from intermolecular interspin distances arising from the aggregates by using double-labeled GA in a mixture with excess unlabeled GA. In hydrophobic mismatching lipids (L(β) phase of DPPC), gramicidin channels dissociate into free monomers. The backbone structure of the monomeric form is similar to a monomeric unit of the channel dimer. In addition to channels and monomers, the double-helical conformation of gramicidin is present in some membrane environments. In the gel phase of saturated phosphatidylcholines, the fraction of double helices increases in the following order: DLPC < DMPC < DSPC < DPPC. The equilibrium DHD/monomer ratio in DPPC was determined. In membranes, the double-helical form is present only in aggregates. In addition, we studied the effect of N-terminal substitution in the GA molecule upon channel formation. This work demonstrates how pulsed dipolar ESR may be utilized to study complex equilibria of peptides in membranes.
Collapse
Affiliation(s)
- Boris G Dzikovski
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
95
|
Kaminker I, Florent M, Epel B, Goldfarb D. Simultaneous acquisition of pulse EPR orientation selective spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:95-102. [PMID: 21075028 DOI: 10.1016/j.jmr.2010.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 05/30/2023]
Abstract
High resolution pulse EPR methods are usually applied to resolve weak magnetic electron-nuclear or electron-electron interactions that are otherwise unresolved in the EPR spectrum. Complete information regarding different magnetic interactions, namely, principal components and orientation of principal axis system with respect to the molecular frame, can be derived from orientation selective pulsed EPR measurements that are performed at different magnetic field positions within the inhomogeneously broadened EPR spectrum. These experiments are usually carried out consecutively, namely a particular field position is chosen, data are accumulated until the signal to noise ratio is satisfactory, and then the next field position is chosen and data are accumulated. Here we present a new approach for data acquisition of pulsed EPR experiments referred to as parallel acquisition. It is applicable when the spectral width is much broader than the excitation bandwidth of the applied pulse sequence and it is particularly useful for orientation selective pulse EPR experiments. In this approach several pulse EPR measurements are performed within the waiting (repetition) time between consecutive pulse sequences during which spin lattice relaxation takes place. This is achieved by rapidly changing the main magnetic field, B(0), to different values within the EPR spectrum, performing the same experiment on the otherwise idle spins. This scheme represents an efficient utilization of the spectrometer and provides the same spectral information in a shorter time. This approach is demonstrated on W-band orientation selective electron-nuclear double resonance (ENDOR), electron spin echo envelope modulation (ESEEM), electron-electron double resonance (ELDOR)--detected NMR and double electron-electron resonance (DEER) measurements on frozen solutions of nitroxides. We show that a factors of 3-6 reduction in total acquisition time can be obtained, depending on the experiment applied.
Collapse
Affiliation(s)
- Ilia Kaminker
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
96
|
Kazmier K, Alexander NS, Meiler J, McHaourab HS. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination. J Struct Biol 2010; 173:549-57. [PMID: 21074624 DOI: 10.1016/j.jsb.2010.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/25/2010] [Accepted: 11/04/2010] [Indexed: 11/29/2022]
Abstract
A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al. (2008)). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 54% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance.
Collapse
Affiliation(s)
- Kelli Kazmier
- Chemical and Physical Biology Program, 340 Light Hall, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
97
|
Potapov A, Song Y, Meade TJ, Goldfarb D, Astashkin A, Raitsimring A. Distance measurements in model bis-Gd(III) complexes with flexible "bridge". Emulation of biological molecules having flexible structure with Gd(III) labels attached. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:38-49. [PMID: 20418132 PMCID: PMC2885582 DOI: 10.1016/j.jmr.2010.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 05/18/2023]
Abstract
In this work, we continue to explore Gd(III) as a possible spin label for high-field Double Electron-Electron Resonance (DEER) based distance measurements in biological molecules with flexible geometry. For this purpose, a bis-Gd(III) complex with a flexible "bridge" was used as a model. The distances in the model were expected to be distributed in the range of 5-26 A, allowing us to probe the shortest limits of accessible distances which were found to be as small as 13 A. The upper distance limit for these labels was also evaluated and was found to be about 60 A. Various pulse duration setups can result in apparent differences in the distribution function derived from DEER kinetics due to short distance limit variations. The advantages, such as the ability to perform measurements at cryogenic temperatures and high repetition rates simultaneously, the use of very short pumping and observation pulses without mutual interference, the lack of orientational selectivity, as well as the shortcomings, such as the limited mw operational frequency range and intrinsically smaller amplitude of oscillation related to dipolar interaction as compared with nitroxide spin labels are discussed. Most probably the use of nitroxide and Gd-based labels for distance measurements will be complementary depending on the particulars of the problem and the availability of instrumentation.
Collapse
Affiliation(s)
- A. Potapov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Y. Song
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - T. J. Meade
- Department of Chemistry; Department of Biochemistry, Cell Biology, and Molecular Biology; Neurobiology & Physiology; Department of Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - D. Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - A.V. Astashkin
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | - A. Raitsimring
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
- Corresponding author: Dr. A. Raitsimring, University of Arizona, Department of Chemistry, 1306 E. University Blvd, Tucson, AZ 85721. ; tel (520)621-9968; fax (520)621-8407
| |
Collapse
|
98
|
Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D. The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J Biol Chem 2010; 285:28261-74. [PMID: 20592036 DOI: 10.1074/jbc.m110.157214] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alpha-synuclein (alphaS) is linked to Parkinson disease through its deposition in an amyloid fibril form within Lewy Body deposits, and by the existence of three alphaS point mutations that lead to early onset autosomal dominant Parkinsonism. The normal function of alphaS is thought to be linked to the ability of the protein to bind to the surface of synaptic vesicles. Upon binding to vesicles, alphaS undergoes a structural reorganization from a dynamic and disordered ensemble to a conformation consisting of a long extended helix. In the presence of small spheroidal detergent micelles, however, this extended helix conformation can convert into a broken helix state, in which a region near the middle of the helix unwinds to form a linker between the two resulting separated helices. Membrane-bound conformations of alphaS likely mediate the function of the protein, but may also play a role in the aggregation and toxicity of the protein. Here we have undertaken a study of the effects of the three known PD-linked mutations on the detergent- and membrane-bound conformations of alphaS, as well as factors that govern the transition of the protein between the extended helix and broken helix states. Using pulsed dipolar ESR measurements of distances up to 8.7 nm, we show that all three PD-linked alphaS mutants retain the ability to transition from the broken helix to the extended helix conformation. In addition, we find that the ratio of protein to detergent, rather than just the absolute detergent concentration, determines whether the protein adopts the broken or extended helix conformation.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
99
|
Zou P, McHaourab HS. Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys J 2010; 98:L18-20. [PMID: 20303847 DOI: 10.1016/j.bpj.2009.12.4193] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 10/19/2022] Open
Abstract
We report a significant methodological advance in the application of double electron-electron resonance (DEER) spectroscopy to measure long-range distances in spin-labeled membrane proteins. In the pseudo two-dimensional environment of proteoliposomes, a steep intermolecular background shapes DEER signals leading to long accumulation times, complicating data analysis and reducing the maximal measurable distances from 70 A down to approximately 40-50 A. To eliminate these limitations, we took advantage of the homogeneity and monodispersity of a class of discoidal nanoscale phospholipid bilayers in conjunction with the micromolar DEER sensitivity at Q-band (34 GHz) microwave frequency. Spin-labeled mutants of the ABC transporter MsbA were functionally reconstituted at a ratio of one functional dimer per nanoscale apolipoprotein-bound bilayer (NABB). DEER echo intensities from NABB-reconstituted MsbA have linear baselines reflecting a three-dimensional spatial distribution. This results in an order-of-magnitude higher sensitivity at Q-band relative to proteoliposomes and restores the maximal observable distance effectively increasing experimental throughput. The advances described here set the stage for the use of DEER spectroscopy to analyze conformational dynamics of sample-limited eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Ping Zou
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
100
|
Potapov A, Yagi H, Huber T, Jergic S, Dixon NE, Otting G, Goldfarb D. Nanometer-Scale Distance Measurements in Proteins Using Gd3+ Spin Labeling. J Am Chem Soc 2010; 132:9040-8. [DOI: 10.1021/ja1015662] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey Potapov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Hiromasa Yagi
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Thomas Huber
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Slobodan Jergic
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Nicholas E. Dixon
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Gottfried Otting
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel, Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Chemistry, University of Wollongong, NSW 2522, Australia
| |
Collapse
|