51
|
GUO H, FANG Q, HUO Y, ZHANG Y, ZHANG J. Social dominance-related major urinary proteins and the regulatory mechanism in mice. Integr Zool 2015; 10:543-54. [DOI: 10.1111/1749-4877.12165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huifen GUO
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture; Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Qi FANG
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture; Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Ying HUO
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture; Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Yaohua ZHANG
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture; Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Jianxu ZHANG
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture; Institute of Zoology, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
52
|
Pelantová H, Bugáňová M, Anýž J, Železná B, Maletínská L, Novák D, Haluzík M, Kuzma M. Strategy for NMR metabolomic analysis of urine in mouse models of obesity--from sample collection to interpretation of acquired data. J Pharm Biomed Anal 2015; 115:225-35. [PMID: 26263053 DOI: 10.1016/j.jpba.2015.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
The mouse model of monosodium glutamate induced obesity was used to examine and consequently optimize the strategy for analysis of urine samples by NMR spectroscopy. A set of nineteen easily detectable metabolites typical in obesity-related studies was selected. The impact of urine collection protocol, choice of (1)H NMR pulse sequence, and finally the impact of the normalization method on the detected concentration of selected metabolites were investigated. We demonstrated the crucial effect of food intake and diurnal rhythms resulting in the choice of a 24-hour fasting collection protocol as the most convenient for tracking obesity-induced increased sensitivity to fasting. It was shown that the Carr-Purcell-Meiboom-Gill (CPMG) experiment is a better alternative to one-dimensional nuclear Overhauser enhancement spectroscopy (1D-NOESY) for NMR analysis of mouse urine due to its ability to filter undesirable signals of proteins naturally present in rodent urine. Normalization to total spectral area provided comparable outcomes as did normalization to creatinine or probabilistic quotient normalization in the CPMG-based model. The optimized approach was found to be beneficial mainly for low abundant metabolites rarely monitored due to their overlap by strong protein signals.
Collapse
Affiliation(s)
- Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Martina Bugáňová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jiří Anýž
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Daniel Novák
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
| | - Martin Haluzík
- 3rd Medical Department, 1st Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U nemocnice 1, 128 08 Prague 2, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
53
|
Schulz H, Dahlhoff M, Glogowska A, Zhang L, Arnold GJ, Fröhlich T, Schneider MR, Klonisch T. Betacellulin transgenic mice develop urothelial hyperplasia and show sex-dependent reduction in urinary major urinary protein content. Exp Mol Pathol 2015; 99:33-8. [PMID: 25943456 DOI: 10.1016/j.yexmp.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor (EGF)-like ligands and their cognate ERBB1-4 receptors represent important signaling pathways that regulate tissue and cell proliferation, differentiation and regeneration in a wide variety of tissues, including the urogenital tract. Betacellulin (BTC) can activate all four ERBB tyrosine kinase receptors and is a multifunctional EGF-like ligand with diverse roles in β cell differentiation, bone maturation, formation of functional epithelial linings and vascular permeability in different organs. Using transgenic BTC mice, we have studied the effect of constitutive systemic BTC over-expression on the urinary bladder. BTC was detected in microvascular structures of the stromal bladder compartment and in umbrella cells representing the protective apical lining of the uroepithelium. ERBB1 and ERBB4 receptors were co-localized in the urothelium. Mice transgenic for BTC and double transgenic for both BTC and the dominant kinase-dead mutant of EGFR (Waved 5) developed hyperplasia of the uroepithelium at 5months of age, suggesting that urothelial hyperplasia was not exclusively dependent on ERBB1/EGFR. Mass spectrometric analysis of urine revealed a significant down-regulation of major urinary proteins in female BTC transgenic mice, suggesting a novel role for systemic BTC in odor-based signaling in female transgenic BTC mice.
Collapse
Affiliation(s)
- Helene Schulz
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada; National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
| | - Lin Zhang
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada; Dept. of Medical Microbiology & Infectious Diseases, University of Manitoba, Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada; Dept. of Surgery, University of Manitoba, Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
54
|
Message in a bottle: major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
55
|
Merkestein M, McTaggart JS, Lee S, Kramer HB, McMurray F, Lafond M, Boutens L, Cox R, Ashcroft FM. Changes in gene expression associated with FTO overexpression in mice. PLoS One 2014; 9:e97162. [PMID: 24842286 PMCID: PMC4026227 DOI: 10.1371/journal.pone.0097162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/14/2014] [Indexed: 01/24/2023] Open
Abstract
Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.
Collapse
Affiliation(s)
- Myrte Merkestein
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - James S. McTaggart
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Sheena Lee
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Holger B. Kramer
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Fiona McMurray
- Medical Research Council Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, Oxford, United Kingdom
| | - Mathilde Lafond
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Lily Boutens
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
| | - Roger Cox
- Medical Research Council Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy; and Genetics, University of Oxford, Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Komers R, Xu B, Fu Y, McClelland A, Kantharidis P, Mittal A, Cohen HT, Cohen DM. Transcriptome-based analysis of kidney gene expression changes associated with diabetes in OVE26 mice, in the presence and absence of losartan treatment. PLoS One 2014; 9:e96987. [PMID: 24827579 PMCID: PMC4020814 DOI: 10.1371/journal.pone.0096987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/14/2014] [Indexed: 12/24/2022] Open
Abstract
Diabetes is among the most common causes of end-stage renal disease, although its pathophysiology is incompletely understood. We performed next-generation sequencing-based transcriptome analysis of renal gene expression changes in the OVE26 murine model of diabetes (age 15 weeks), relative to non-diabetic control, in the presence and absence of short-term (seven-day) treatment with the angiotensin receptor blocker, losartan (n = 3-6 biological replicates per condition). We detected 1438 statistically significant changes in gene expression across conditions. Of the 638 genes dysregulated in diabetes relative to the non-diabetic state, >70% were downregulation events. Unbiased functional annotation of genes up- and down-regulated by diabetes strongly associated (p<1 × 10(-8)) with terms for oxidative stress and for endoplasmic reticulum stress/protein folding. Most of the individual gene products up- or down-regulated with diabetes were unaffected by losartan treatment; however, of the gene products dysregulated in diabetes and influenced by losartan treatment, the vast majority of changes were in the direction of amelioration rather than exacerbation of the diabetic dysregulation. This group of losartan-protected genes associated strongly with annotation terms for endoplasmic reticulum stress, heat shock proteins, and chaperone function, but not oxidative stress; therefore, the losartan-unaffected genes suggest avenues for additional therapeutic opportunity in diabetes. Interestingly, the gene product most highly upregulated by diabetes (>52-fold), encoded by the cationic amino acid transporter Slc7a12, and the gene product most highly downregulated by diabetes (>99%)--encoded by the "pseudogene" Gm6300--are adjacent in the murine genome, are members of the SLC7 gene family, and are likely paralogous. Therefore, diabetes activates a near-total genetic switch between these two paralogs. Other individual-level changes in gene expression are potentially relevant to diabetic pathophysiology, and novel pathways are suggested. Genes unaffected by diabetes alone but exhibiting increased renal expression with losartan produced a signature consistent with malignant potential.
Collapse
Affiliation(s)
- Radko Komers
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
| | - Bei Xu
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
| | - Yi Fu
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
| | - Aaron McClelland
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Phillip Kantharidis
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Amit Mittal
- Nephrology Section, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Herbert T. Cohen
- Nephrology Section, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David M. Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
57
|
Kumar S, Zou Y, Bao Q, Wang M, Dai G. Proteomic analysis of immediate-early response plasma proteins after 70% and 90% partial hepatectomy. Hepatol Res 2013; 43:876-89. [PMID: 23279269 PMCID: PMC4354878 DOI: 10.1111/hepr.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
AIM Partial hepatectomy (PH) induces robust hepatic regenerative and metabolic responses that are considered to be triggered by humoral factors. The aim of the study was to identify plasma protein factors that potentially trigger or reflect the body's immediate-early responses to liver mass reduction. METHODS Male C57BL/6 mice were subjected to sham operation, 70% PH or 90% PH. Blood was collected from the inferior vena cava at 20, 60 and 180 min after surgery. RESULTS Using a label-free quantitative mass spectrometry-based proteomics approach, we identified 399 proteins exhibiting significant changes in plasma expression between any two groups. Of the 399 proteins, 167 proteins had multiple unique sequences and high peptide ID confidence (>90%) and were defined as priority 1 proteins. A group of plasma proteins largely associated with metabolism is enriched after 70% PH. Among the plasma proteins that respond to 90% PH are a dominant group of proteins that are also associated with metabolism and one known cytokine (platelet factor 4). Ninety percent PH and 70% PH induces similar changes in plasma protein profile. CONCLUSION Our findings enable us to gain insight into the immediate-early response of plasma proteins to liver mass loss. Our data support the notion that increased metabolic demands of the body after massive liver mass loss may function as a sensor that calibrates hepatic regenerative response.
Collapse
Affiliation(s)
- Sudhanshu Kumar
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Yuhong Zou
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Qi Bao
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| |
Collapse
|
58
|
Li CCY, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, Preiss T, Henstridge DC, Cooney GJ, Febbraio MA, Martin DIK, Cropley JE, Suter CM. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics 2013; 8:602-11. [PMID: 23764993 PMCID: PMC3857340 DOI: 10.4161/epi.24656] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intrauterine nutrition can program metabolism, creating stable changes in physiology that may have significant health consequences. The mechanism underlying these changes is widely assumed to involve epigenetic changes to the expression of metabolic genes, but evidence supporting this idea is limited. Here we have performed the first study of the epigenomic consequences of exposure to maternal obesity and diabetes. We used a mouse model of natural-onset obesity that allows comparison of genetically identical mice whose mothers were either obese and diabetic or lean with a normal metabolism. We find that the offspring of obese mothers have a latent metabolic phenotype that is unmasked by exposure to a Western-style diet, resulting in glucose intolerance, insulin resistance and hepatic steatosis. The offspring show changes in hepatic gene expression and widespread but subtle alterations in cytosine methylation. Contrary to expectation, these molecular changes do not point to metabolic pathways but instead reside in broadly developmental ontologies. We propose that, rather than being adaptive, these changes may simply produce an inappropriate response to suboptimal environments; maladaptive phenotypes may be avoidable if postnatal nutrition is carefully controlled.
Collapse
Affiliation(s)
- Cheryl C Y Li
- Molecular Genetics Division; Victor Chang Cardiac Research Institute; Darlinghurst, NSW Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Collins JN, Kirby BJ, Woodrow JP, Gagel RF, Rosen CJ, Sims NA, Kovacs CS. Lactating Ctcgrp nulls lose twice the normal bone mineral content due to fewer osteoblasts and more osteoclasts, whereas bone mass is fully restored after weaning in association with up-regulation of Wnt signaling and other novel genes. Endocrinology 2013; 154:1400-13. [PMID: 23462960 PMCID: PMC3678150 DOI: 10.1210/en.2012-1931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maternal skeleton resorbs during lactation to provide calcium to milk and the lost mineral content is restored after weaning. The changes are particularly marked in Ctcgrp null mice, which lose 50% of spine mineral content during lactation but restore it fully. The known calciotropic hormones are not required for skeletal recovery to occur; therefore, unknown factors that stimulate bone formation may be responsible. We hypothesized that the genes responsible for regulating postweaning bone formation are differentially regulated in bone or marrow, and this regulation may be more marked in Ctcgrp null mice. We confirmed that Ctcgrp null mice had twice as many osteoclasts and 30-40% fewer osteoblasts as compared with wild-type mice during lactation but no deficit in osteoblast numbers after weaning. Genome-wide microarray analyses on tibial RNA showed differential expression of 729 genes in wild-type mice at day 7 after weaning vs prepregnancy, whereas the same comparison in Ctcgrp null mice revealed only 283 genes. Down-regulation of Wnt family inhibitors, Sost and Dkk1, and inhibition of Mef2c, a sclerostin stimulator, were observed. Ctsk, a gene expressed during osteoclast differentiation, and Igfbp2, which stimulates bone resorption, were inhibited. Differential regulation of genes involved in energy use was compatible with a net increase in bone formation. The most marked changes occurred in genes not previously associated with bone metabolism. In conclusion, the postlactation skeleton shows dynamic activity with more than 700 genes differentially expressed. Some of these genes are likely to promote bone formation during postweaning by stimulating the proliferation and activity of osteoblasts, inhibiting osteoclasts, and increasing energy use.
Collapse
Affiliation(s)
- Jillian N Collins
- Faculty of Medicine—Endocrinology, Memorial University of Newfoundland, St John’s, Newfoundland, Canada A1B 3V6
| | | | | | | | | | | | | |
Collapse
|
60
|
Giller K, Huebbe P, Doering F, Pallauf K, Rimbach G. Major urinary protein 5, a scent communication protein, is regulated by dietary restriction and subsequent re-feeding in mice. Proc Biol Sci 2013; 280:20130101. [PMID: 23446533 DOI: 10.1098/rspb.2013.0101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Major urinary proteins (Mups) are important for rodent scent communication and sexual behaviour. Recent evidence suggests that Mup1 may be regulated by fasting and re-feeding (RF). However, other Mup isoforms are poorly investigated, and data on the impact of long-term dietary restriction (DR) and ad libitum RF on Mup expression are missing. We investigated the effects of long-term 25 per cent DR and subsequent RF on Mup expression in male C57BL6 mice. DR significantly decreased Mup gene expression, hepatic and urinary protein levels compared with ad libitum (AL) fed control mice, with the greatest downregulation found for Mup5 expression. The decline in Mup expression was inverted by six months of RF. Because of inhibitory glucocorticoid response elements in the genomic sequence of the Mup5 gene, the observed inverse correlation of nuclear glucocorticoid receptor levels with Mup expression in response to DR and subsequent RF is a possible regulatory mechanism. Additionally, gene-expression-inhibiting histone deacetylation (H3K9) occurred in the region of the Mup5 gene in response to DR. We assume that Mup may act as a molecular switch linking nutritional status to sexual behaviour of mice, and thereby regulating male fertility and reproduction in response to food supply.
Collapse
Affiliation(s)
- K Giller
- Department of Food Science, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | |
Collapse
|
61
|
Zhou Y, Rui L. Lipocalin 13 regulation of glucose and lipid metabolism in obesity. VITAMINS AND HORMONES 2013; 91:369-83. [PMID: 23374724 DOI: 10.1016/b978-0-12-407766-9.00015-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipocalin (LCN) family members are small secreted proteins that bind to small hydrophobic molecules via their characteristic central β-barrels. A couple of LCN family members, including major urinary protein 1, retinol-binding protein 4, LCN2, and LCN13, have been reported to regulate insulin sensitivity and nutrient metabolism. LCN13 is expressed by multiple tissues, including the liver, pancreas, epididymis, and skeletal muscle, and is secreted into the bloodstream in mice. Obesity is associated with a downregulation of LCN13 expression and lower levels of circulating LCN13. LCN13 therapies overcome LCN13 deficiency in mice with either genetic or dietary obesity, leading to an improvement in hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, and hepatic steatosis. In hepatocytes, LCN13 directly suppresses hepatic gluconeogenesis and lipogenesis but increases fatty acid β oxidation. LCN13 also enhances insulin sensitivity in adipocytes. The potential mechanisms of the antidiabetes and antisteatosis actions of LCN13 are discussed.
Collapse
Affiliation(s)
- Yingjiang Zhou
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
62
|
Koenig CM, Lango J, Pessah IN, Berman RF. Maternal transfer of BDE-47 to offspring and neurobehavioral development in C57BL/6J mice. Neurotoxicol Teratol 2012; 34:571-80. [PMID: 23022914 DOI: 10.1016/j.ntt.2012.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/07/2012] [Accepted: 09/21/2012] [Indexed: 02/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants used worldwide in a variety of commercial goods, and are now widely found in both environmental and biological samples. BDE-47 is one of the most pervasive of these PBDE congeners and therefore is of particular concern. In this study C57BL/6J mice were exposed perinatally to 0.03, 0.1 or 1mg/kg/day of BDE-47, a dose range chosen to encompass human exposure levels. Tissue levels of BDE-47 were measured in the blood, brain, fat and milk of dams and in whole fetal homogenate and blood and brain of pups on gestational day (GD) 15, and postnatal days (PNDs) 1, 10 and 21. From GD 15 to PND 1 levels of BDE-47 increased within dam tissues and then decreased from PNDs 1 to 21. Over the period of lactation levels in dam milk were comparatively high when compared to both brain and blood for all dose groups. Measurable levels of BDE-47 were found in the fetus on GD 15 confirming gestational exposure. From PNDs 1 to 21, levels of BDE-47 in pup tissue increased over the period of lactation due to the transfer of BDE-47 through milk. Behavioral tests of fine motor function and learning and memory were carried out between postnatal weeks 5-17 in order to evaluate the neurobehavioral toxicity of BDE-47. Behavioral deficits were only seen in the Barnes spatial maze where mice in the three exposure groups had longer latencies and traveled longer distances to find the escape hole when compared to vehicle control mice. These results support the conclusions that perinatal exposure to BDE-47 can have neurodevelopmental consequences, and that lactational exposure represents a significant exposure risk during development.
Collapse
Affiliation(s)
- Claire M Koenig
- Center for Children's Environmental Health, University of California Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
63
|
Stranahan AM, Martin B, Chadwick W, Park SS, Wang L, Becker KG, WoodIII WH, Zhang Y, Maudsley S. Metabolic context regulates distinct hypothalamic transcriptional responses to antiaging interventions. Int J Endocrinol 2012; 2012:732975. [PMID: 22934110 PMCID: PMC3427989 DOI: 10.1155/2012/732975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/09/2012] [Indexed: 01/19/2023] Open
Abstract
The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds.
Collapse
Affiliation(s)
- Alexis M. Stranahan
- Physiology Department, Georgia Health Sciences University, Augusta, GA 30912, USA
- *Alexis M. Stranahan:
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - William H. WoodIII
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| |
Collapse
|
64
|
Abstract
Adipose tissue controls energy homeostasis and systemic insulin sensitivity through the elaboration of a series of cytokines and hormones, collectively termed "adipokines." We and others have identified Lcn2 as a novel adipokine, but its exact role in obesity-induced insulin resistance remains controversial. The aim of this study was to examine the metabolic phenotype of Lcn2(-/-) mice to clarify the role of Lcn2 in metabolism. Male and female Lcn2(-/-) and wild-type (WT) littermates were placed on either chow or high-fat diet (HFD) to characterize their metabolic phenotype. Studies included body weight and body composition, glucose and insulin tolerance tests, and adipokine expression studies in serum and in white adipose tissue (WAT). Neither chow nor HFD cohorts showed any differences in body weight or body composition. Chow-fed Lcn2(-/-) mice did not exhibit any difference in glucose homeostasis compared with WT mice. Fasting serum glucose levels were lower in the chow-fed Lcn2(-/-) mice, but this finding was not seen in the HFD cohort. Serum adiponectin, leptin, resistin, and RBP4 levels were not different between WT and Lcn2(-/-) on chow diet. HFD-fed male Lcn2(-/-) mice did display a small improvement in glucose tolerance, but no difference in insulin sensitivity was seen in either male or female Lcn2(-/-) mice on HFD. We conclude that the global ablation of Lcn2 has a minimal effect on obesity-associated glucose intolerance but does not appear to affect either age- or obesity-mediated insulin resistance in vivo.
Collapse
Affiliation(s)
- Lucy S Jun
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
65
|
Sheng L, Cho KW, Zhou Y, Shen H, Rui L. Lipocalin 13 protein protects against hepatic steatosis by both inhibiting lipogenesis and stimulating fatty acid β-oxidation. J Biol Chem 2011; 286:38128-38135. [PMID: 21908604 DOI: 10.1074/jbc.m111.256677] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid β-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and β-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid β-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote β-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating β-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.
Collapse
Affiliation(s)
- Liang Sheng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kae Won Cho
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Yingjiang Zhou
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Hong Shen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
66
|
Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. Mol Cell Biol 2010; 31:450-7. [PMID: 21135134 DOI: 10.1128/mcb.00459-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin sensitivity is impaired in obesity, and insulin resistance is the primary risk factor for type 2 diabetes. Here we show that lipocalin-13 (LCN13), a lipocalin superfamily member, is a novel insulin sensitizer. LCN13 was secreted by multiple cell types. Circulating LCN13 was markedly reduced in mice with obesity and type 2 diabetes. Three distinct approaches were used to increase LCN13 levels: LCN13 transgenic mice, LCN13 adenoviral infection, and recombinant LCN13 administration. Restoration of LCN13 significantly ameliorated hyperglycemia, insulin resistance, and glucose intolerance in mice with obesity. LCN13 enhanced insulin signaling not only in animals but also in cultured adipocytes. Recombinant LCN13 increased the ability of insulin to stimulate glucose uptake in adipocytes and to suppress hepatic glucose production (HGP) in primary hepatocyte cultures. Additionally, LCN13 alone was able to suppress HGP, whereas neutralization of LCN13 increased HGP in primary hepatocyte cultures. These data suggest that LCN13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. LCN13 and LCN13-related molecules may be used to treat insulin resistance and type 2 diabetes.
Collapse
|