51
|
Parent CA, Devreotes PN. Constitutively active adenylyl cyclase mutant requires neither G proteins nor cytosolic regulators. J Biol Chem 1996; 271:18333-6. [PMID: 8702473 DOI: 10.1074/jbc.271.31.18333] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptor-mediated G protein-linked adenylyl cyclase systems are universal signal transducers. We exploited the essential role of this cascade in Dictyostelium development to screen for random mutations in the catalytic component, ACA. This enzyme is activated by G protein betagamma-subunits acting in concert with a novel cytosolic regulator, CRAC. By suppression of the CRAC-null phenotype, we isolated constitutively active versions of the enzyme that require neither exogenous stimuli nor internal regulators. One mutant displayed a 15-fold increase in its Vmax. It harbors a single amino acid substitution (L394S) affecting a conserved residue located in the first cytoplasmic loop near the N-terminal hydrophobic domain of ACA. The screening procedure can be adapted for isolation of constitutive mutations in mammalian adenylyl cyclases.
Collapse
Affiliation(s)
- C A Parent
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
52
|
Insall RH, Borleis J, Devreotes PN. The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr Biol 1996; 6:719-29. [PMID: 8793298 DOI: 10.1016/s0960-9822(09)00453-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ras proteins are small GTP-binding proteins that play an essential role in a wide range of processes, particularly in mammalian growth control. They act as molecular switches, being inactive when GDP is bound, and active when associated with GTP. Activation is accomplished by guanine nucleotide exchange factors (RasGEFs); when RasGEFs interact with Ras proteins, GDP is allowed to escape, and is replaced by GTP. Dictyostelium responds to chemoattractants through typical seven transmembrane domain receptors and heterotrimeric G proteins. There are at least five different Dictyostelium Ras genes, whose functions are not yet known. RESULTS We have isolated the aimless gene, which encodes the Dictyostelium homologue of RasGEFs, during a screen for insertional mutants that fail to aggregate. We found that aimless null mutants grew at a normal rate, but were severely impaired in both chemotaxis and activation of adenylyl cyclase, both of which are critical for the early stages of development. Although coupling between receptors and their G proteins is unaffected, and several cyclic AMP (cAMP)-mediated responses appear normal, activation of adenylyl cyclase by receptors and GTP gamma S (a non-hydrolyzable GTP analogue) is reduced by up to 95%. The motility of mutant cells appears normal, suggesting a true defect in gradient sensing. CONCLUSIONS The discovery of the aimless gene adds an interesting new member to the family of RasGEFs. Our data suggest an unforeseen role for a RasGEF, and therefore presumably a complete Ras pathway, in the processing of chemotactic signals through G-protein-coupled receptors.
Collapse
Affiliation(s)
- R H Insall
- MRC Laboratory for Molecular Cell Biology, University College London, UK.
| | | | | |
Collapse
|
53
|
Parent CA, Devreotes PN. Isolation of inactive and G protein-resistant adenylyl cyclase mutants using random mutagenesis. J Biol Chem 1995; 270:22693-6. [PMID: 7559391 DOI: 10.1074/jbc.270.39.22693] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We used random mutagenesis and phenotypic rescue of adenylyl cyclase-null Dictyostelium cells to isolate loss-of-function mutations in the enzyme. Mutants were (i) catalytically inactive or (ii) resistant to chemoattractant receptor and guanosine 5'-3-O-(thio)triphosphate stimulation. Both classes of mutants harbored substitutions within the cytoplasmic C1a domain. Mutations that inactivated the enzyme were often at highly conserved positions. Those that blocked activation were grouped in two distinct regions: one close to the plane of the plasma membrane and another halfway within the C1 loop. Missense mutations or deletions within the transmembrane domains resulted in missorting of the protein. Our screen provides a simple and efficient method to separately define the sites of catalysis and regulation of this important class of enzymes.
Collapse
Affiliation(s)
- C A Parent
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
54
|
Lilly PJ, Devreotes PN. Chemoattractant and GTP gamma S-mediated stimulation of adenylyl cyclase in Dictyostelium requires translocation of CRAC to membranes. J Cell Biol 1995; 129:1659-65. [PMID: 7790361 PMCID: PMC2291171 DOI: 10.1083/jcb.129.6.1659] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously reported that activation of adenylyl cyclase by chemoattractant receptors in Dictyostelium requires, in addition to a heterotrimeric G-protein, a cytosolic protein, designated CRAC (Lilly, P., and P. N. Devreotes. 1994. J. Biol. Chem. 269:14123-14129; Insall, R. H., A. Kuspa, P. J. Lilly, G. Schaulsky, L. R. Levin, W. F. Loomis, and P. N. Devreotes. 1994. J. Cell Biol. 126:1537-1545). In this report, we show that in intact cells, chemoattractants promote translocation of CRAC from the cytosolic to the membrane fraction. However, CRAC is not required at the time of receptor stimulation; it can be added to lysates of activated cells. Treatment of membranes with guanine nucleotides creates binding sites for CRAC. These binding sites can be generated in mutants lacking each of the components of the pathway except the beta-subunit, suggesting that free or "activated" beta gamma-subunits may be a part of the binding site. This hypothesis is consistent with previous observations that CRAC contains a pleckstrin homology domain and that the beta gamma-subunits likely mediate activation of adenylyl cyclase in this system. Thus, CRAC may serve as an adapter, linking the G-protein beta gamma-subunits to activation of the enzyme. GTP gamma S cannot generate CRAC-binding sites when the adenylyl cyclase pathway has been adapted by prior chemoattractant stimulation, suggesting that this is a point of downstream adaptation.
Collapse
Affiliation(s)
- P J Lilly
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
55
|
Wu L, Valkema R, Van Haastert PJ, Devreotes PN. The G protein beta subunit is essential for multiple responses to chemoattractants in Dictyostelium. J Cell Biol 1995; 129:1667-75. [PMID: 7790362 PMCID: PMC2291184 DOI: 10.1083/jcb.129.6.1667] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence suggests that the beta gamma-subunit dimers of heterotrimeric G proteins play a pivotal role in transducing extracellular signals. The recent construction of G beta null mutants (g beta-) in Dictyostelium provides a unique opportunity to study the role of beta gamma dimers in signaling processes mediated by chemoattractant receptors. We have shown previously that g beta- cells fail to aggregate; in this study, we report the detailed characterization of these cells. The g beta- cells display normal motility but do not move towards chemattractants. The typical GTP-regulated high affinity chemoattractant-binding sites are lost in g beta- cells and membranes. The g beta- cells do not display chemoattractant-stimulated adenylyl cyclase or guanylyl cyclase activity. These results show that in vivo G beta links chemoattractant receptors to effectors and is therefore essential in many chemoattractant-mediated processes. In addition, we find that G beta is required for GTP gamma S stimulation of adenylyl cyclase activity, suggesting that the beta gamma-dimer activates the enzyme directly. Interestingly, the g beta- cells grow at the same rate as wild-type cells in axenic medium but grow more slowly on bacterial lawns and, therefore, may be defective in phagocytosis.
Collapse
Affiliation(s)
- L Wu
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
56
|
Caterina MJ, Devreotes PN, Borleis J, Hereld D. Agonist-induced loss of ligand binding is correlated with phosphorylation of cAR1, a G protein-coupled chemoattractant receptor from Dictyostelium. J Biol Chem 1995; 270:8667-72. [PMID: 7721769 DOI: 10.1074/jbc.270.15.8667] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The parallel agonist-induced phosphorylation, alteration in electrophoretic mobility, and loss of ligand binding of a guanine nucleotide-binding regulatory protein (G protein)-coupled chemoattractant receptor from Dictyostelium (cAR1) depend upon a cluster of five C-terminal domain serine residues (Caterina, M. J., Hereld, D., and Devreotes, P.N. (1995) J. Biol. Chem. 270, 4418-4423). Analysis of mutants lacking combinations of these serines revealed that either Ser303 or Ser304 is required; mutants lacking both serines are defective in all of these responses. Interestingly, several mutants, including those substituted at only Ser299, Ser302, or Ser303 or at non-serine positions within the third cytoplasmic loop, displayed an unstable mobility shift; the alteration was rapidly reversed upon cAMP removal. These mutants also exhibited subnormal extents of loss of ligand binding, which is assessed after removal of the ligand. For the wild-type receptor, we found that the stability of phosphorylation depends upon the concentration and duration of agonist pretreatment. This suggests that, following phosphorylation of Ser303 or Ser304, cAR1 undergoes a further transition (EC50 approximately 140 nM, t 1/2 approximately 4 min) to a relatively phosphatase-resistant state. We used this insight to show that, under all conditions tested, the extent of loss of binding is correlated with the fraction of cAR1 in the altered mobility form. We discuss possible relationships between cAR1 phosphorylation and loss of ligand binding.
Collapse
Affiliation(s)
- M J Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
57
|
Epstein IR. The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature 1995; 374:321-7. [PMID: 7885470 DOI: 10.1038/374321a0] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When chemical reactions whose rate increases with the concentration of a product species are carried out in imperfectly mixed systems, a variety of complex behaviours can occur. These phenomena, which have relevance for biological processes as well, include chaotic and stochastic behaviour and selection of one final state over an equally probable alternative.
Collapse
Affiliation(s)
- I R Epstein
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110
| |
Collapse
|
58
|
Milne JL, Wu L, Caterina MJ, Devreotes PN. Seven helix cAMP receptors stimulate Ca2+ entry in the absence of functional G proteins in Dictyostelium. J Biol Chem 1995; 270:5926-31. [PMID: 7534302 DOI: 10.1074/jbc.270.11.5926] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Surface cAMP receptors (cARs) in Dictyostelium transmit a variety of signals across the plasma membrane. The best characterized cAR, cAR1, couples to the heterotrimeric guanine nucleotide-binding protein (G protein) alpha-subunit G alpha 2 to mediate activation of adenylyl and guanylyl cyclases and cell aggregation. cAR1 also elicits other cAMP-dependent responses including receptor phosphorylation, loss of ligand binding (LLB), and Ca2+ influx through a G alpha 2-independent pathway that may not involve G proteins. Here, we have expressed cAR1 and a related receptor, cAR3, in a g beta- strain (Lilly, P., Wu. L., Welker, D. L., and Devreotes, P. N. (1993) Genes & Dev. 7,986-995), which lacks G protein activity. Both cell lines failed to aggregate, a process requiring the G alpha 2 and G beta- subunits. In contrast, cAR1 phosphorylation in cAR1/g beta- cells showed a time course and cAMP dose dependence indistinguishable from those of cAR1/G beta+ controls. cAMP-induced LLB was also normal in the cAR1/g beta- cells. Finally, cAR1/g beta- cells and cAR3/g beta- cells showed a Ca2+ response with kinetics, agonist dependence, ion specificity, and sensitivity to depolarization agents that were like those of G beta+ controls, although they accumulated fewer Ca2+ ions per cAMP receptor than the control strains. Together, these results suggest that the G beta-subunit is not required for the activation or attenuation of cAR1 phosphorylation, LLB, or Ca2+ influx. It may, however, serve to amplify the Ca2+ response, possibly by modulating other intracellular Ca2+ signal transduction pathways.
Collapse
Affiliation(s)
- J L Milne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | | | | |
Collapse
|
59
|
Caterina MJ, Hereld D, Devreotes PN. Occupancy of the Dictyostelium cAMP receptor, cAR1, induces a reduction in affinity which depends upon COOH-terminal serine residues. J Biol Chem 1995; 270:4418-23. [PMID: 7876207 DOI: 10.1074/jbc.270.9.4418] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many G-protein-coupled receptors display a rapid decrease in ligand binding following pretreatment with agonist. cAR1, a cAMP receptor expressed early in the developmental program of Dictyostelium, mediates chemotaxis, activation of adenylyl cyclase, and gene expression changes that bring about the aggregation of 10(5) amoebae to form a multicellular structure. Occupancy of cAR1 by cAMP initiates multiple desensitization processes, one of which is an apparent reduction in binding sites. In transformed cells expressing cAR1 constitutively, Scatchard analyses revealed that this apparent loss of ligand binding is largely due to a significant reduction in the affinity of cAR1 for cAMP. A parallel increase in the dose dependence of cAR1-mediated cAMP uptake was observed. Consistent with these findings, proteolysis of intact cells and immunofluorescence suggested that cAR1 remains on the cell-surface following cAMP treatment. Finally, agonist-induced loss of ligand binding is impaired in cAR1 mutants lacking a cluster of cytoplasmic serine residues, which are targets of cAMP-induced phosphorylation.
Collapse
Affiliation(s)
- M J Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
60
|
Insall R, Kuspa A, Lilly PJ, Shaulsky G, Levin LR, Loomis WF, Devreotes P. CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium. J Biophys Biochem Cytol 1994; 126:1537-45. [PMID: 8089184 PMCID: PMC2290948 DOI: 10.1083/jcb.126.6.1537] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adenylyl cyclase in Dictyostelium, as in higher eukaryotes, is activated through G protein-coupled receptors. Insertional mutagenesis into a gene designated dagA resulted in cells that cannot activate adenylyl cyclase, but have otherwise normal responses to exogenous cAMP. Neither cAMP treatment of intact cells nor GTP gamma S treatment of lysates stimulates adenylyl cyclase activity in dagA mutants. A cytosolic protein that activates adenylyl cyclase, CRAC, has been previously identified. We trace the signaling defect in dagA- cells to the absence of CRAC, and we demonstrate that dagA is the structural gene for CRAC. The 3.2-kb dagA mRNA encodes a predicted 78.5-kD product containing a pleckstrin homology domain, in agreement with the postulated interaction of CRAC with activated G proteins. Although dagA expression is tightly developmentally regulated, the cDNA restores normal development when constitutively expressed in transformed mutant cells. In addition, the megabase region surrounding the dagA locus was mapped. We hypothesize that CRAC acts to connect free G protein beta gamma subunits to adenylyl cyclase activation. If so, it may be the first member of an important class of coupling proteins.
Collapse
Affiliation(s)
- R Insall
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
61
|
Serine 113 is the site of receptor-mediated phosphorylation of the Dictyostelium G protein alpha-subunit G alpha 2. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31910-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
62
|
Lilly P, Devreotes P. Identification of CRAC, a cytosolic regulator required for guanine nucleotide stimulation of adenylyl cyclase in Dictyostelium. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36763-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
63
|
Hereld D, Vaughan R, Kim J, Borleis J, Devreotes P. Localization of ligand-induced phosphorylation sites to serine clusters in the C-terminal domain of the Dictyostelium cAMP receptor, cAR1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37479-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
64
|
Mutation of the third intracellular loop of the cAMP receptor, cAR1, of Dictyostelium yields mutants impaired in multiple signaling pathways. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42288-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
65
|
Lilly P, Wu L, Welker DL, Devreotes PN. A G-protein beta-subunit is essential for Dictyostelium development. Genes Dev 1993; 7:986-95. [PMID: 8099335 DOI: 10.1101/gad.7.6.986] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent studies have demonstrated that G-protein-linked signal transduction pathways play a significant role in the developmental program of the simple eukaryotic organism Dictyostelium. We have reported previously the isolation of a G-protein beta-subunit and present here a more complete analysis of this gene. Low-stringency Southern blots and RFLP mapping studies suggest that the beta-subunit is a unique gene found on linkage group II. Its deduced amino acid sequence of 347 residues is approximately 60% identical to those of the human, Drosophila, and Caenorhabditis elegans beta-subunits. The carboxy-terminal 300 residues are about 70% identical; the amino-terminal 50 residues are quite divergent, containing only 10 identities. At all stages of growth and development, a single 1.9-kb beta-subunit mRNA is present at a high level, and a specific antibody detects a single 37-kD protein. We propose that G-protein heterotrimers are formed when this beta-subunit couples with each of the eight distinct G-protein alpha-subunits that are transiently expressed during development. Targeted disruption of the beta-subunit gene had no effect on the viability of haploid cells, but resulted in the inability of cells to aggregate.
Collapse
Affiliation(s)
- P Lilly
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | | | | |
Collapse
|
66
|
Milne JL, Devreotes PN. The surface cyclic AMP receptors, cAR1, cAR2, and cAR3, promote Ca2+ influx in Dictyostelium discoideum by a G alpha 2-independent mechanism. Mol Biol Cell 1993; 4:283-92. [PMID: 8485319 PMCID: PMC300926 DOI: 10.1091/mbc.4.3.283] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of surface folate receptors or cyclic AMP (cAMP) receptor (cAR) 1 in Dictyostelium triggers within 5-10 s an influx of extracellular Ca2+ that continues for 20 s. To further characterize the receptor-mediated Ca2+ entry, we analyzed 45Ca2+ uptake in amoebas overexpressing cAR2 or cAR3, cARs present during multicellular development. Both receptors induced a cAMP-dependent Ca2+ uptake that had comparable kinetics, ion selectivity, and inhibitor profiles as folate- and cAR1-mediated Ca2+ uptake. Analysis of mutants indicated that receptor-induced Ca2+ entry does not require G protein alpha subunits G alpha 1, G alpha 2, G alpha 3, G alpha 4, G alpha 7, or G alpha 8. Overexpression of cAR1 or cAR3 in g alpha 2- cells did not restore certain G alpha 2-dependent events, such as aggregation, or cAMP-mediated activation of adenylate and guanylate cyclases, but these strains displayed a cAMP-mediated Ca2+ influx with kinetics comparable to wild-type aggregation-competent cells. These results suggest that a plasma membrane-associated Ca(2+)-influx system may be activated by at least four distinct chemoreceptors during Dictyostelium development and that the response may be independent of G proteins.
Collapse
Affiliation(s)
- J L Milne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
67
|
Johnson RL, Saxe CL, Gollop R, Kimmel AR, Devreotes PN. Identification and targeted gene disruption of cAR3, a cAMP receptor subtype expressed during multicellular stages of Dictyostelium development. Genes Dev 1993; 7:273-82. [PMID: 8382181 DOI: 10.1101/gad.7.2.273] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellular cAMP acts through cell-surface receptors to coordinate the developmental program of Dictyostelium. A cAMP receptor (cAR1), which is expressed during early aggregation, has been cloned and sequenced previously. We have identified a new receptor subtype, cAR3, that has approximately 56% and 69% amino acid identity with cAR1 and cAR2, respectively. cAR1, cAR2, or cAR3 expressed from plasmid in growing Dictyostelium cells can be photoaffinity labeled with 8-N3[32P]cAMP and phosphorylated when stimulated with cAMP. cAR3 RNA was not present during growth but appeared during late aggregation. Its expression peaked at 9 hr and then fell to a reduced level that was maintained until culmination. The expression of cAR3 protein followed a similar pattern, but with a 3-hr lag, and reached a maximum at the mound stage. In contrast, cAR1 protein was expressed predominantly during early aggregation and at low levels during later stages. At their respective peaks of expression, there were approximately 5 x 10(3) cAR3 sites per cell compared with approximately 7 x 10(4) cAR2 sites per cell. The cAR3 gene was disrupted by homologous recombination in several different parental cell lines. Surprisingly, the car3- cell lines display no obvious phenotype.
Collapse
Affiliation(s)
- R L Johnson
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
68
|
Okaichi K, Cubitt AB, Pitt GS, Firtel RA. Amino acid substitutions in the Dictyostelium G alpha subunit G alpha 2 produce dominant negative phenotypes and inhibit the activation of adenylyl cyclase, guanylyl cyclase, and phospholipase C. Mol Biol Cell 1992; 3:735-47. [PMID: 1355376 PMCID: PMC275631 DOI: 10.1091/mbc.3.7.735] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies have demonstrated that the Dictyostelium G alpha subunit G alpha 2 is essential for the cAMP-activation of adenylyl cyclase and guanylyl cyclase and that g alpha 2 null mutants do not aggregate. In this manuscript, we extend the analysis of the function of G alpha 2 in regulating downstream effectors by examining the in vivo developmental and physiological phenotypes of both wild-type and g alpha 2 null cells carrying a series of mutant G alpha 2 subunits expressed from the cloned G alpha 2 promoter. Our results show that wild-type cells expressing G alpha 2 subunits carrying mutations G40V and Q208L in the highly conserved GAGESG (residues 38-43) and GGQRS (residues 206-210) domains, which are expected to reduce the intrinsic GTPase activity, are blocked in multicellular development. Analysis of down-stream effector pathways essential for mediating aggregation indicates that cAMP-mediated activation of guanylyl cyclase and phosphatidylinositol-phospholipase C (PI-PLC) is almost completely inhibited and that there is a substantial reduction of cAMP-mediated activation of adenylyl cyclase. Moreover, neither mutant G alpha 2 subunit can complement g alpha 2 null mutants. Expression of G alpha 2(G43V) and G alpha 2(G207V) have little or no effect on the effector pathways and can partially complement g alpha 2 null cells. Our results suggest a model in which the dominant negative phenotypes resulting from the expression of G alpha 2(G40V) and G alpha 2(Q208L) are due to a constitutive adaptation of the effectors through a G alpha 2-mediated pathway. Analysis of PI-PLC in g alpha 2 null mutants and in cell lines expressing mutant G alpha 2 proteins also strongly suggests that G alpha 2 is the G alpha subunit that directly activates PI-PLC during aggregation. Moreover, overexpression of wild-type G alpha 2 results in the ability to precociously activate guanylyl cyclase by cAMP in vegetative cells, suggesting that G alpha 2 may be rate limiting in the developmental regulation of guanylyl cyclase activation. In agreement with previous results, the activation of adenylyl cyclase, while requiring G alpha 2 function in vivo, does not appear to be directly carried out by the G alpha 2 subunit. Our data are consistent with adenylyl cyclase being directly activated by either another G alpha subunit or by beta gamma subunits released on activation of the G protein containing G alpha 2.
Collapse
Affiliation(s)
- K Okaichi
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | | | |
Collapse
|
69
|
|
70
|
Johnson RL, Vaughan RA, Caterina MJ, Van Haastert PJ, Devreotes PN. Overexpression of the cAMP receptor 1 in growing Dictyostelium cells. Biochemistry 1991; 30:6982-6. [PMID: 1648967 DOI: 10.1021/bi00242a025] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
cAR1, the cAMP receptor expressed normally during the early aggregation stage of the Dictyostelium developmental program, has been expressed during the growth stage, when only low amounts of endogenous receptors are present. Transformants expressing cAR1 have 7-40 times over growth stage and 3-5-fold over aggregation stage levels of endogenous receptors. The high amounts of cAR1 protein expressed constitutively throughout early development did not drastically disrupt the developmental program; the onset of aggregation was delayed by 1-3 h, and then subsequent stages proceeded normally. The affinity of the expressed cAR1 was similar to that of the endogenous receptors in aggregation stage cells when measured either in phosphate buffer (two affinity states with Kd's of approximately 30 and 300 nM) or in 3 M ammonium sulfate (one affinity state with a Kd of 2-3 nM). When expressed during growth, cAR1 did not appear to couple to its normal effectors since these cells failed to carry out chemotaxis or to elevate cGMP or cAMP levels when stimulated with cAMP. However, cAMP stimulated phosphorylation, and loss of ligand binding of cAR1 did occur. Like aggregation stage control cells, the cAR1 protein shifted in apparent molecular mass from 40 to 43 kDa and became highly phosphorylated when exposed to cAMP. In addition, the number of surface cAMP binding sites in cAR1 cells was reduced by over 80% during prolonged cAMP stimulation. These results define a useful system to express altered cAR1 proteins and examine their regulatory functions.
Collapse
Affiliation(s)
- R L Johnson
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
71
|
Fosnaugh KL, Loomis WF. Coordinate regulation of the spore coat genes in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1991; 12:123-32. [PMID: 1646690 DOI: 10.1002/dvg.1020120120] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genomic clones of the genes coding for the three major spore coat proteins, SP60, SP70, and SP96, were used to measure the accumulation of their respective mRNAs in mutant and wild-type cells allowed to develop under a variety of conditions. These prespore-specific mRNAs were found to be both temporally and quantitatively coordinate under all conditions indicating that they may be subject to identical regulatory processes. Accumulation of the spore coat mRNAs is dependent upon the function of both cAMP receptors and G alpha 2 proteins during the aggregation stage as well as upon concomitant protein synthesis. When cells are dissociated from aggregates at 10 hr of development and rapidly shaken in 0.1 mM EDTA they form clumps but do not accumulate any of the prespore-specific RNAs assayed. However, if either 0.1 mM Ca++ or 20 microM cAMP is added to these cells, the spore coat mRNAs accumulate. Lower concentrations of either Ca++ or cAMP had no effect. These results suggest that expression of the spore coat genes normally involves a Ca+(+)-dependent process, but the Ca++ requirement can be overcome by adding high concentrations of exogenous cAMP. Addition of 50 nM DIF to dissociated cell blocks the accumulation of the spore coat mRNAs even when cAMP or Ca++ is present. The upstream regions of the spore coat genes were compared to those of another gene, D19, that codes for the prespore-specific protein SP29. Short sequences related to CACCCAC were found at about the same position relative to the transcriptional start sites of these coordinately regulated genes.
Collapse
|
72
|
Abstract
Extracellular adenosine 3',5'-monophosphate (cAMP) serves multiple roles in Dictyostelium development, acting as a chemoattractant, a cell-cell signaling molecule, and an inducer of differentiation. The Dictyostelium G-protein alpha subunit G alpha 2 appears to be the major transducer linking the surface cAMP receptor to these intracellular responses. On stimulation of cells with cAMP, G alpha 2 is phosphorylated on one or more serine residues, resulting in an alteration of its electrophoretic mobility. Phosphorylation of G alpha 2 is triggered by increased occupancy of the surface cAMP receptor and is rapid and transient, coinciding with the time course of activation of physiological responses.
Collapse
Affiliation(s)
- R E Gundersen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
73
|
Abstract
The cellular slime mold Dictyostelium discoideum undergoes a transition from single-celled amoebae to a multicellular organism as a natural part of its life cycle. A method of cell-cell signaling that controls chemotaxis, morphogenesis, and gene expression has developed in this organism, and a detailed understanding of this signaling system provides clues to mechanisms of intercellular communication in the development of metazoans.
Collapse
Affiliation(s)
- P Devreotes
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
74
|
Pupillo M, Kumagai A, Pitt GS, Firtel RA, Devreotes PN. Multiple alpha subunits of guanine nucleotide-binding proteins in Dictyostelium. Proc Natl Acad Sci U S A 1989; 86:4892-6. [PMID: 2500658 PMCID: PMC297521 DOI: 10.1073/pnas.86.13.4892] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous results have shown that chemotaxis and the expression of several classes of genes in Dictyostelium discoideum are regulated through a cell surface cAMP receptor interacting with guanine nucleotide-binding proteins (G proteins). We now describe cloning and sequencing of cDNAs encoding two G alpha protein subunits from Dictyostelium. The derived amino acid sequences show that they are 45% identical to each other and to G alpha protein subunits from mammals and yeast. Both cDNAs are complementary to multiple mRNAs that are differentially expressed during development. This evidence and analysis of mutants presented elsewhere suggest that they have distinct physiological functions.
Collapse
Affiliation(s)
- M Pupillo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | | | | | | |
Collapse
|
75
|
Nachmias VT, Fukui Y, Spudich JA. Chemoattractant-elicited translocation of myosin in motile Dictyostelium. CELL MOTILITY AND THE CYTOSKELETON 1989; 13:158-69. [PMID: 2550149 DOI: 10.1002/cm.970130304] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of myosin was studied in amebae of the Ax-3 and NC-4 strains of Dictyostelium migrating at room temperature, using indirect immunofluorescence of aggregation-competent amebae and the agar-overlay technique. Amebae were fixed in methanol-formaldehyde or absolute acetone at -15 degrees C before or after stimulation with micromolar cyclic AMP at room temperature (20-25 degrees C). Myosin was detected by monoclonal antibodies to Dictyostelium myosin heavy chain followed by a fluorescent secondary antibody that had been preabsorbed to remove nonspecific staining. In both strains there was a striking increase in intensity of anti-myosin immunofluorescence in the cortex where it appeared as a continuous ring 30 seconds after addition of cyclic AMP. This correlated with a rounding up of the cell body. Sixty seconds after stimulation there was a clear reduction of cytoplasmic myosin rods in conjunction with the increased cortical localization. At this time extensions of largely hyaline cytoplasm were observed that extended beyond the cortical shell of myosin. Two minutes after the stimulus the immunofluorescence remained as a distinct line at the cortex, but the cells began to resume in elongated shape. By 3 minutes (NC-4 strain) or 5 minutes (Ax-3 strain) the amebae had largely returned to the control shape, and myosin had returned to its control distribution. Counts of the treated cells at different time points substantiated the observations of individual cells. The time course of translocation of myosin in the Ax-3 strain parallels the time course of myosin phosphorylation reported in previous studies. The results are interpreted in terms of a working hypothesis for the mechanism of translocation.
Collapse
Affiliation(s)
- V T Nachmias
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6058
| | | | | |
Collapse
|
76
|
|