51
|
Limor-Waisberg K, Ben-Dor S, Fass D. Diversification of quiescin sulfhydryl oxidase in a preserved framework for redox relay. BMC Evol Biol 2013; 13:70. [PMID: 23510202 PMCID: PMC3616962 DOI: 10.1186/1471-2148-13-70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enzyme family Quiescin Sulfhydryl Oxidase (QSOX) is defined by the presence of an amino-terminal thioredoxin-fold (Trx) domain and a carboxy-terminal Erv family sulfhydryl oxidase domain. QSOX enzymes, which generate disulfide bonds and transfer them to substrate proteins, are present in a wide variety of eukaryotic species including metazoans and plants, but are absent from fungi. Plant and animal QSOXs differ in their active-site amino acid sequences and content of non-catalytic domains. The question arises, therefore, whether the Trx-Erv fusion has the same mechanistic significance in all QSOX enzymes, and whether shared features distinguish the functional domains of QSOX from other instances in which these domains occur independently. Through a study of QSOX phylogeny and an analysis of QSOX sequence diversity in light of recently determined three-dimensional structures, we sought insight into the origin and evolution of this multi-domain redox alliance. RESULTS An updated collection of QSOX enzymes was used to confirm and refine the differences in domain composition and active-site sequence motif patterns of QSOXs belonging to various eukaryotic phyla. Beyond the expected phylogenetic distinction of animal and plant QSOX enzymes, trees based on individual redox-active QSOX domains show a particular distinction of the Trx domain early in plant evolution. A comparison of QSOX domains with Trx and Erv domains from outside the QSOX family revealed several sequence and structural features that clearly differentiate QSOXs from other enzymes containing either of these domains. Notably, these features, present in QSOXs of various phyla, localize to the interface between the Trx and Erv domains observed in structures of QSOX that model interdomain redox communication. CONCLUSIONS The infrastructure for interdomain electron relay, previously identified for animal and parasite QSOXs, is found broadly across the QSOX family, including the plant enzymes. We conclude that the conserved three-dimensional framework of the QSOX catalytic domains accommodates lineage-specific differences and paralog diversification in the amino acid residues surrounding the redox-active cysteines. Our findings indicate that QSOX enzymes are characterized not just by the presence of the two defining domain folds but also by features that promote coordinated activity.
Collapse
Affiliation(s)
- Keren Limor-Waisberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
52
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
53
|
Denoncin K, Nicolaes V, Cho SH, Leverrier P, Collet JF. Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues. Methods Mol Biol 2013; 966:325-336. [PMID: 23299744 DOI: 10.1007/978-1-62703-245-2_20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many proteins secreted to the bacterial cell envelope contain cysteine residues that are involved in disulfide bonds. These disulfides either play a structural role, increasing protein stability, or reversibly form in the catalytic site of periplasmic oxidoreductases. Monitoring the in vivo redox state of cysteine residues, i.e., determining whether those cysteines are oxidized to a disulfide bond or not, is therefore required to fully characterize the function and structural properties of numerous periplasmic proteins. Here, we describe a reliable and rapid method based on trapping reduced cysteine residues with 4'-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), a maleimide compound. We use the Escherichia coli DsbA protein to illustrate the method, which can be applied to all envelope proteins.
Collapse
Affiliation(s)
- Katleen Denoncin
- Brussels Center for Redox Biology and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
54
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
55
|
Roszczenko P, Radomska KA, Wywial E, Collet JF, Jagusztyn-Krynicka EK. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS One 2012; 7:e46563. [PMID: 23056345 PMCID: PMC3463561 DOI: 10.1371/journal.pone.0046563] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/31/2012] [Indexed: 12/16/2022] Open
Abstract
Background The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide. Methods and Results The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells. Conclusion Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, the University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, the University of Warsaw, Warsaw, Poland
| | - Katarzyna A. Radomska
- Department of Bacterial Genetics, Institute of Microbiology, the University of Warsaw, Warsaw, Poland
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jean-Francois Collet
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Université Catholique de Louvain, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
| | | |
Collapse
|
56
|
Mavridou DAI, Stelzl LS, Ferguson SJ, Redfield C. 1H, 13C and 15N resonance assignments for the oxidized and reduced states of the N-terminal domain of DsbD from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:163-7. [PMID: 22127524 PMCID: PMC3438397 DOI: 10.1007/s12104-011-9347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
Viability and pathogenicity of Gram-negative bacteria is linked to the cytochrome c maturation and the oxidative protein folding systems in the periplasm. The transmembrane reductant conductor DsbD is a unique protein which provides the necessary reducing power to both systems through thiol-disulfide exchange reactions in a complex network of protein-protein interactions. The N-terminal domain of DsbD (nDsbD) is the delivery point of the reducing power originating from cytoplasmic thioredoxin to a variety of periplasmic partners. Here we report (1)H, (13)C and (15)N assignments for resonances of nDsbD in its oxidized and reduced states. These assignments provide the starting point for detailed investigations of the interactions of nDsbD with its protein partners.
Collapse
Affiliation(s)
| | - Lukas S. Stelzl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
57
|
Malojčić G, Geertsma ER, Brozzo MS, Glockshuber R. Mechanism of the Prokaryotic Transmembrane Disulfide Reduction Pathway and Its In Vitro Reconstitution from Purified Components. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
58
|
Malojčić G, Geertsma ER, Brozzo MS, Glockshuber R. Mechanism of the prokaryotic transmembrane disulfide reduction pathway and its in vitro reconstitution from purified components. Angew Chem Int Ed Engl 2012; 51:6900-3. [PMID: 22674494 DOI: 10.1002/anie.201201337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 01/23/2023]
Abstract
Making your (Dsb) connection: the redox pathway bringing reducing equivalents from bacterial cytoplasm, across the inner membrane, to the three reductive Dsb pathways in the otherwise oxidizing periplasm (see scheme; TR=thioredoxin reductase, Trx=thioredoxin) is reconstituted from purified components. Transfer of reducing equivalents across the membrane is demonstrated and underlying mechanistic details are revealed.
Collapse
Affiliation(s)
- Goran Malojčić
- Institute for Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| | | | | | | |
Collapse
|
59
|
Mavridou DAI, Ferguson SJ, Stevens JM. The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli. FEBS Lett 2012; 586:1702-7. [PMID: 22569094 PMCID: PMC3420020 DOI: 10.1016/j.febslet.2012.04.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
Abstract
Heme attachment to c-type cytochromes in bacteria requires cysteine thiols in the CXXCH motif of the protein. The involvement of the periplasmic disulfide generation system in this process remains unclear. We undertake a systematic evaluation of the role of DsbA and DsbD in cytochrome c biogenesis in Escherichia coli and show unequivocally that DsbA is not essential for holocytochrome production under aerobic or anaerobic conditions. We also prove that DsbD is important but not essential for maturation of c-type cytochromes. We discuss the findings in the context of a model in which heme attachment to, and oxidation of, the apocytochrome are competing processes.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
60
|
A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio 2012; 3:mBio.00291-11. [PMID: 22493033 PMCID: PMC3322552 DOI: 10.1128/mbio.00291-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. IMPORTANCE Peroxides are reactive oxygen species (ROS) that damage cellular components such as lipids, proteins, and nucleic acids. The presence of protection mechanisms against ROS is essential for cell survival. Bacteria express cytoplasmic catalases and thiol-dependent peroxidases to directly scavenge harmful peroxides. We report the identification of a peroxide reduction pathway active in the periplasm of Caulobacter crescentus, which reveals that, in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. The electrons required for peroxide reduction are delivered to this pathway by ScsB, a new type of membrane electron transporter. We also identified two additional likely ScsB substrates, including a novel protein disulfide isomerase. Our results reveal that the array of proteins involved in reductive pathways in the oxidative environment of the cell envelope is significantly broader than was previously thought.
Collapse
|
61
|
TrbB from conjugative plasmid F is a structurally distinct disulfide isomerase that requires DsbD for redox state maintenance. J Bacteriol 2011; 193:4588-97. [PMID: 21742866 DOI: 10.1128/jb.00351-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrbB, a periplasmic protein encoded by the conjugative plasmid F, has a predicted thioredoxin-like fold and possesses a C-X-X-C redox active site motif. TrbB may function in the conjugative process by serving as a disulfide bond isomerase, facilitating proper folding of a subset of F-plasmid-encoded proteins in the periplasm. Previous studies have demonstrated that a ΔtrbB F plasmid in Escherichia coli lacking DsbC(E.coli), its native disulfide bond isomerase, experiences a 10-fold decrease in mating efficiency but have not provided direct evidence for disulfide bond isomerase activity. Here we demonstrate that trbB can partially restore transfer of a variant of the distantly related R27 plasmid when both chromosomal and plasmid genes encoding disulfide bond isomerases have been disrupted. In addition, we show that TrbB displays both disulfide bond isomerase and reductase activities on substrates not involved in the conjugative process. Unlike canonical members of the disulfide bond isomerase family, secondary structure predictions suggest that TrbB lacks both an N-terminal dimerization domain and an α-helical domain found in other disulfide bond isomerases. Phylogenetic analyses support the conclusion that TrbB belongs to a unique family of plasmid-based disulfide isomerases. Interestingly, although TrbB diverges structurally from other disulfide bond isomerases, we show that like those isomerases, TrbB relies on DsbD from E. coli for maintenance of its C-X-X-C redox active site motif.
Collapse
|
62
|
Abstract
The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.
Collapse
Affiliation(s)
- Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
63
|
Zhang Z, Long J, Yang L, Chen W, Dai W, Fu X, Wang X. Organic semiconductor for artificial photosynthesis: water splitting into hydrogen by a bioinspired C3N3S3polymer under visible light irradiation. Chem Sci 2011. [DOI: 10.1039/c1sc00257k] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
64
|
Abstract
Correct formation of disulfide bonds is critical for protein folding. We find that cells lacking protein disulfide isomerases (PDIs) can use alternative mechanisms for correct disulfide bond formation. By linking correct disulfide bond formation to antibiotic resistance, we selected mutants that catalyze correct disulfide formation in the absence of DsbC, Escherichia coli's PDI. Most of our mutants massively overproduce the disulfide oxidase DsbA and change its redox status. They enhance DsbA's ability to directly form the correct disulfides by increasing the level of mixed disulfides between DsbA and substrate proteins. One mutant operates via a different mechanism; it contains mutations in DsbB and CpxR that alter the redox environment of the periplasm and increases the level of the chaperone/protease DegP, allowing DsbA to gain disulfide isomerase ability in vivo. Thus, given the proper expression level, redox status, and chaperone assistance, the oxidase DsbA can readily function in vivo to catalyze the folding of proteins with complex disulfide bond connectivities. Our selection reveals versatile strategies for correct disulfide formation in vivo. Remarkably, our evolution of new pathways for correct disulfide bond formation in E. coli mimics eukaryotic PDI, a highly abundant partially reduced protein with chaperone activity.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
65
|
Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A, Cho SH, Collet JF. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 2011; 286:16734-42. [PMID: 21454485 PMCID: PMC3089515 DOI: 10.1074/jbc.m111.224865] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/07/2011] [Indexed: 11/06/2022] Open
Abstract
The bacterial Rcs phosphorelay is a stress-induced defense mechanism that controls the expression of numerous genes, including those for capsular polysaccharides, motility, and virulence factors. It is a complex multicomponent system that includes the histidine kinase (RcsC) and the response regulator (RcsB) and also auxiliary proteins such as RcsF. RcsF is an outer membrane lipoprotein that transmits signals from the cell surface to RcsC. The physiological signals that activate RcsF and how RcsF interacts with RcsC remain unknown. Here, we report the three-dimensional structure of RcsF. The fold of the protein is characterized by the presence of a central 4-stranded β sheet, which is conserved in several other proteins, including the copper-binding domain of the amyloid precursor protein. RcsF, which contains four conserved cysteine residues, presents two nonconsecutive disulfides between Cys(74) and Cys(118) and between Cys(109) and Cys(124), respectively. These two disulfides are not functionally equivalent; the Cys(109)-Cys(124) disulfide is particularly important for the assembly of an active RcsF. Moreover, we show that formation of the nonconsecutive disulfides of RcsF depends on the periplasmic disulfide isomerase DsbC. We trapped RcsF in a mixed disulfide complex with DsbC, and we show that deletion of dsbC prevents the activation of the Rcs phosphorelay by signals that function through RcsF. The three-dimensional structure of RcsF provides the structural basis to understand how this protein triggers the Rcs signaling cascade.
Collapse
Affiliation(s)
- Pauline Leverrier
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| | - Jean-Paul Declercq
- the Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, and
| | - Katleen Denoncin
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Annie Hiniker
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Seung-Hyun Cho
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| | - Jean-François Collet
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| |
Collapse
|
66
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Goddard AD, Stevens JM, Ferguson SJ, Redfield C. Oxidation state-dependent protein-protein interactions in disulfide cascades. J Biol Chem 2011; 286:24943-56. [PMID: 21543317 PMCID: PMC3137068 DOI: 10.1074/jbc.m111.236141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial growth and pathogenicity depend on the correct formation of disulfide bonds, a process controlled by the Dsb system in the periplasm of Gram-negative bacteria. Proteins with a thioredoxin fold play a central role in this process. A general feature of thiol-disulfide exchange reactions is the need to avoid a long lived product complex between protein partners. We use a multidisciplinary approach, involving NMR, x-ray crystallography, surface plasmon resonance, mutagenesis, and in vivo experiments, to investigate the interaction between the two soluble domains of the transmembrane reductant conductor DsbD. Our results show oxidation state-dependent affinities between these two domains. These observations have implications for the interactions of the ubiquitous thioredoxin-like proteins with their substrates, provide insight into the key role played by a unique redox partner with an immunoglobulin fold, and are of general importance for oxidative protein-folding pathways in all organisms.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
67
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
68
|
Motohashi K, Hisabori T. CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid Redox Signal 2010; 13:1169-76. [PMID: 20214498 DOI: 10.1089/ars.2010.3138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In order to transfer reducing equivalents into the thylakoid lumen, a specific thylakoid membrane transfer system is suggested that mediates the disulfide bond reduction of proteins in the thylakoid lumen of higher plant chloroplasts. In this system, although stromal thioredoxin can supply the reducing equivalents to a thioredoxin-like protein HCF164 in the thylakoid lumen, a mediator protein for electron transfer in the thylakoid membranes is proposed to be required to link the two suborganellar compartments. CcdA is a candidate protein as a component for this transfer system since CcdA- and HCF164-deficient mutants in Arabidopsis thaliana show the same phenotype. We now show that CcdA is localized in the thylakoid membrane and that its redox state, as well as that of HCF164, is modulated in thylakoids by stromal m-type thioredoxin. Our results strongly suggest that CcdA may act as a mediator in thylakoid membranes by transferring reducing equivalents from the stromal to the lumenal side of the thylakoid membrane in chloroplasts.
Collapse
Affiliation(s)
- Ken Motohashi
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kyoto, Japan.
| | | |
Collapse
|
69
|
Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 2010; 13:1231-46. [PMID: 20367276 PMCID: PMC2959184 DOI: 10.1089/ars.2010.3187] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond-forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.
| | | |
Collapse
|
70
|
Abstract
Thioredoxins are ubiquitous antioxidant enzymes that play important roles in many health-related cellular processes. As such, the fundamental knowledge of how these enzymes work is of prime importance for understanding cellular redox mechanisms and for laying the ground for the development of future therapeutic approaches. Over the past 40 years, a really impressive amount of data has been published on thioredoxins. Here, we review the most significant results that have contributed to our knowledge regarding the structure, the function, and the mechanism of these crucial enzymes.
Collapse
|
71
|
Denoncin K, Vertommen D, Paek E, Collet JF. The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD. J Biol Chem 2010; 285:29425-33. [PMID: 20615876 PMCID: PMC2937975 DOI: 10.1074/jbc.m110.119321] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/23/2010] [Indexed: 11/06/2022] Open
Abstract
The assembly of the β-barrel proteins present in the outer membrane (OM) of Gram-negative bacteria is poorly characterized. After translocation across the inner membrane, unfolded β-barrel proteins are escorted across the periplasm by chaperones that reside within this compartment. Two partially redundant chaperones, SurA and Skp, are considered to transport the bulk mass of β-barrel proteins. We found that the periplasmic disulfide isomerase DsbC cooperates with SurA and the thiol oxidase DsbA in the folding of the essential β-barrel protein LptD. LptD inserts lipopolysaccharides in the OM. It is also the only β-barrel protein with more than two cysteine residues. We found that surAdsbC mutants, but not skpdsbC mutants, exhibit a synthetic phenotype. They have a decreased OM integrity, which is due to the lack of the isomerase activity of DsbC. We also isolated DsbC in a mixed disulfide complex with LptD. As such, LptD is identified as the first substrate of DsbC that is localized in the OM. Thus, electrons flowing from the cytoplasmic thioredoxin system maintain the integrity of the OM by assisting the folding of one of the most important β-barrel proteins.
Collapse
Affiliation(s)
- Katleen Denoncin
- From the de Duve Institute, Université catholique de Louvain and
- the Brussels Center for Redox Biology, B-1200 Brussels, Belgium and
| | - Didier Vertommen
- From the de Duve Institute, Université catholique de Louvain and
| | - Eunok Paek
- the Department of Mechanical and Information Engineering, University of Seoul, Seoul 130–743, Korea
| | - Jean-François Collet
- From the de Duve Institute, Université catholique de Louvain and
- the Brussels Center for Redox Biology, B-1200 Brussels, Belgium and
| |
Collapse
|
72
|
Inaba K. MBSJ MCC Young Scientist Award 2009
REVIEW: Structural basis of protein disulfide bond generation in the cell. Genes Cells 2010; 15:935-43. [DOI: 10.1111/j.1365-2443.2010.01434.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Wouters MA, Fan SW, Haworth NL. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 2010; 12:53-91. [PMID: 19634988 DOI: 10.1089/ars.2009.2510] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30-40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redox-sensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.
Collapse
Affiliation(s)
- Merridee A Wouters
- Structural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | | | | |
Collapse
|
74
|
Quinternet M, Tsan P, Selme-Roussel L, Jacob C, Boschi-Muller S, Branlant G, Cung MT. Formation of the complex between DsbD and PilB N-terminal domains from Neisseria meningitidis necessitates an adaptability of nDsbD. Structure 2009; 17:1024-33. [PMID: 19604482 DOI: 10.1016/j.str.2009.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
DsbD transmembrane protein dispatches electrons to periplasmic Trx/DsbE-like partners via specific interactions with its N-terminal domain, nDsbD. In the present study, PilB N-terminal domain (NterPilB) is shown to efficiently accept electrons coming from nDsbD from Neisseria meningitidis. Using an NMR-driven docking approach, we have modeled the structure of a mixed disulfide complex between NterPilB and nDsbD. We show the needed opening of nDsbD cap-loop whereas NterPilB FLHE loop does not seem essential in the formation and stabilization of the complex. Relaxation analysis performed on backbone amide groups highlights a kind of dynamics transfer from nDsbD cap-loop on NterPilB alpha1 helix, suggesting that a mobility contribution is required not only for the formation of the mixed disulfide complex, but also for its disruption. Taking into account previous X-ray data on covalent complexes involving nDsbD, a cartoon of interactions between Trx-like partners and nDsbD is proposed that illustrates the adaptability of nDsbD.
Collapse
Affiliation(s)
- Marc Quinternet
- Laboratoire de Chimie Physique Macromoléculaire UMR 7568 CNRS-INPL, Nancy Université, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics 2009; 10:771-84. [DOI: 10.1002/pmic.200900461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
76
|
A periplasmic thioredoxin-like protein plays a role in defense against oxidative stress in Neisseria gonorrhoeae. Infect Immun 2009; 77:4934-9. [PMID: 19687198 DOI: 10.1128/iai.00714-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thioredoxin-like proteins of the TlpA/ResE/CcmG subfamily are known to face the periplasm in gram-negative bacteria. Using the tlpA gene of Bradyrhizobium japonicum as a query, we identified a locus (NGO1923) in Neisseria gonorrhoeae that encodes a thioredoxin-like protein (NG_TlpA). Bioinformatics analysis indicated that the predicted NG_TlpA protein contained a cleavable signal peptide at the N terminus, and secondary structure analysis identified a thioredoxin fold with a helical insertion (approximately 25 residues), similar to that found in B. japonicum TlpA but absent in cytoplasmic thioredoxins. Biochemical characterization of a recombinant form of NG_TlpA revealed a standard redox potential (E0') of -206 mV. This property and the observation that the oxidized form of the protein exhibited greater thermal stability than the reduced species indicated that NG_TlpA is a reducing thioredoxin and not an oxidizing thiol-disulfide oxidoreductase like DsbA. The thioredoxin activity of NG_TlpA was confirmed in an insulin disulfide reduction assay. A tlpA mutant of N. gonorrhoeae strain 1291 was found to be highly sensitive to oxidative killing by paraquat and hydrogen peroxide, indicating an antioxidant role for the NG_TlpA in this bacterium. The tlpA mutant also exhibited reduced intracellular survival in human primary cervical epithelial cells.
Collapse
|
77
|
|
78
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
79
|
Affiliation(s)
- Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Quinternet M, Tsan P, Selme L, Beaufils C, Jacob C, Boschi-Muller S, Averlant-Petit MC, Branlant G, Cung MT. Solution structure and backbone dynamics of the cysteine 103 to serine mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Biochemistry 2009; 47:12710-20. [PMID: 18983169 DOI: 10.1021/bi801343c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.
Collapse
Affiliation(s)
- Marc Quinternet
- Laboratoire de Chimie Physique Macromoleculaire, UMR 7568 CNRS-INPL, Nancy Universite, 1 rue Grandville, B.P. 20451, 54001 Nancy cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Cho SH, Beckwith J. Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD. J Biol Chem 2009; 284:11416-24. [PMID: 19258316 DOI: 10.1074/jbc.m900651200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the periplasmic protein disulfide isomerase, DsbC, is maintained reduced by transfer of electrons from cytoplasmic thioredoxin-1 (Trx1) via the cytoplasmic membrane protein, DsbD. The transmembrane domain of DsbD (DsbDbeta), which comprises eight transmembrane segments (TMs), contains two redox-active cysteines (Cys-163 and Cys-285), each of which is water-exposed to both sides of the membrane. Cys-163 in TM1 and Cys-285 in TM4 can interact with cytoplasmic Trx1 and a periplasmic Trx-like domain of DsbD, respectively. When Cys-163 and Cys-285 are disulfide-bonded, the C-terminal halves of TM1 and TM4 are water-exposed, whereas the N-terminal halves of these TMs are not. To assess possible conformational changes of DsbDbeta when its two cysteines are reduced, we have determined the accessibility of portions of TM1 and TM4. We substituted cysteines for amino acids in these TM segments and determined alkylation accessibility. We find that the alkylation accessibility of single Cys replacements in TM1 and TM4 is the same in oxidized and reduced DsbDbeta, indicating a relatively static conformation of DsbDbeta between the two redox states. We also find that the accessibility of amino acids of TM2 and TM3 when Cys-163 and Cys-285 are oxidized or reduced shows no change. Together, these results support a relatively static structure of DsbDbeta in the switch between the oxidized and the reduced state but raise the possibility of conformational changes when interacting with Trx proteins. In addition, we also find water-exposed residues in the cytoplasmic proximal portion of TM3, allowing a more detailed characterization of the cavity in DsbDbeta.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
82
|
Mavridou DAI, Stevens JM, Goddard AD, Willis AC, Ferguson SJ, Redfield C. Control of periplasmic interdomain thiol:disulfide exchange in the transmembrane oxidoreductase DsbD. J Biol Chem 2009; 284:3219-3226. [PMID: 19004826 PMCID: PMC2631958 DOI: 10.1074/jbc.m805963200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/10/2008] [Indexed: 01/23/2023] Open
Abstract
The bacterial protein DsbD transfers reductant from the cytoplasm to the otherwise oxidizing environment of the periplasm. This reducing power is required for several essential pathways, including disulfide bond formation and cytochrome c maturation. DsbD includes a transmembrane domain (tmDsbD) flanked by two globular periplasmic domains (nDsbD/cDsbD); each contains a cysteine pair involved in electron transfer via a disulfide exchange cascade. The final step in the cascade involves reduction of the Cys(103)-Cys(109) disulfide of nDsbD by Cys(461) of cDsbD. Here we show that a complex between the globular periplasmic domains is trapped in vivo only when both are linked by tmDsbD. We have found previously ( Mavridou, D. A., Stevens, J. M., Ferguson, S. J., & Redfield, C. (2007) J. Mol. Biol. 370, 643-658 ) that the attacking cysteine (Cys(461)) in isolated cDsbD has a high pK(a) value (10.5) that makes this thiol relatively unreactive toward the target disulfide in nDsbD. Here we show using NMR that active-site pK(a) values change significantly when cDsbD forms a complex with nDsbD. This modulation of pK(a) values is critical for the specificity and function of cDsbD. Uncomplexed cDsbD is a poor nucleophile, allowing it to avoid nonspecific reoxidation; however, in complex with nDsbD, the nucleophilicity of cDsbD increases permitting reductant transfer. The observation of significant changes in active-site pK(a) values upon complex formation has wider implications for understanding reactivity in thiol:disulfide oxidoreductases.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Alan D Goddard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Antony C Willis
- Medical Research Council Immunochemistry Unit, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
83
|
Rancy PC, Thorpe C. Oxidative protein folding in vitro: a study of the cooperation between quiescin-sulfhydryl oxidase and protein disulfide isomerase. Biochemistry 2008; 47:12047-56. [PMID: 18937500 PMCID: PMC2892342 DOI: 10.1021/bi801604x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Pumtiwitt C. Rancy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
84
|
Turkarslan S, Sanders C, Ekici S, Daldal F. Compensatory thio-redox interactions between DsbA, CcdA and CcmG unveil the apocytochrome c holdase role of CcmG during cytochrome c maturation. Mol Microbiol 2008; 70:652-66. [PMID: 18786143 PMCID: PMC2581645 DOI: 10.1111/j.1365-2958.2008.06441.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During cytochrome c maturation (Ccm), the DsbA-dependent thio-oxidative protein-folding pathway is thought to introduce a disulphide bond into the haem-binding motif of apocytochromes c. This disulphide bond is believed to be reduced through a thio-reductive pathway involving the Ccm components CcdA (DsbD), CcmG and CcmH. Here, we show in Rhodobacter capsulatus that in the absence of DsbA cytochrome c levels were decreased and CcdA or CcmG or the putative glutathione transporter CydDC was not needed for Ccm. This decrease was not due to overproduction of the periplasmic protease DegP as a secondary effect of DsbA absence. In contrast, CcmH was absolutely necessary regardless of DsbA, indicating that compensatory thio-redox interactions excluded it. Remarkably, the double (DsbA-CcmG) and triple (DsbA-CcmG-CcdA) mutants produced cytochromes c at lower levels than the DsbA-null mutants, unless they contained a CcmG derivative (CcmG*) lacking its thio-reductive activity. Purified CcmG* can bind apocytochrome c in vitro, revealing for the first time a thiol-independent, direct interaction between apocytochrome c and CcmG. Furthermore, elimination of the thio-redox components does not abolish cytochrome c production, restricting the number of Ccm components essential for haem-apocyt c ligation per se during Ccm.
Collapse
Affiliation(s)
| | | | - Seda Ekici
- Department of Biology, Plant Science Institute, University of Pennsylvania, PA, 19104, USA
| | - Fevzi Daldal
- Department of Biology, Plant Science Institute, University of Pennsylvania, PA, 19104, USA
| |
Collapse
|
85
|
Thermodynamic Aspects of DsbD-Mediated Electron Transport. J Mol Biol 2008; 380:783-8. [DOI: 10.1016/j.jmb.2008.05.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 05/18/2008] [Accepted: 05/21/2008] [Indexed: 01/23/2023]
|
86
|
Ito K, Inaba K. The disulfide bond formation (Dsb) system. Curr Opin Struct Biol 2008; 18:450-8. [PMID: 18406599 DOI: 10.1016/j.sbi.2008.02.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/29/2008] [Indexed: 11/16/2022]
Abstract
In oxidative folding of proteins in the bacterial periplasmic space, disulfide bonds are introduced by the oxidation system and isomerized by the reduction system. These systems utilize the oxidizing and the reducing equivalents of quinone and NADPH, respectively, that are transmitted across the cytoplasmic membrane through integral membrane components DsbB and DsbD. In both pathways, alternating interactions between a Cys-XX-Cys-containing thioredoxin domain and other regulatory domain lead to the maintenance of oxidized and reduced states of the specific terminal enzymes, DsbA that oxidizes target cysteines and DsbC that reduces an incorrect disulfide to allow its isomerization into the physiological one. Molecular details of these remarkable biochemical cascades are being rapidly unraveled by genetic, biochemical, and structural analyses in recent years.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
87
|
Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta Gen Subj 2008; 1780:1170-200. [PMID: 18423382 DOI: 10.1016/j.bbagen.2008.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Center of Basic Research I-Biochemistry Division, Biomedical Research Foundation (BRFAA), Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
| |
Collapse
|
88
|
Ding X, Lv ZM, Zhao Y, Min H, Yang WJ. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response. Cell Stress Chaperones 2008; 13:239-46. [PMID: 18759006 PMCID: PMC2673884 DOI: 10.1007/s12192-008-0026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 01/20/2023] Open
Abstract
MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.
Collapse
Affiliation(s)
- Xia Ding
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330000 China
| | - Zhen-Mei Lv
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Yang Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Hang Min
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
- Room 223, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang China 310030
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
- Room 317, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang China 310030
| |
Collapse
|
89
|
Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, Collet JF. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol 2008; 67:336-49. [PMID: 18036138 PMCID: PMC2614554 DOI: 10.1111/j.1365-2958.2007.06030.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In Escherichia coli, DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA(-)dsbC(-) mutants have a number of phenotypes not exhibited by either dsbA(-), dsbC(-) or dsbA(-)dsbD(-) mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage Phi80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb(-) strains. dsbA(-)dsbC(-) mutants exhibit unique changes at the protein level that are not exhibited by dsbA(-)dsbD(-) mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.
Collapse
Affiliation(s)
- Didier Vertommen
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Jonathan Pan
- Program in Cellular and Molecular Biology, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Pauline Leverrier
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Laurent Knoops
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
- Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Jean-Pierre Szikora
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Joris Messens
- Department of Molecular and Cellular Interactions, VIB
- Ultrastructure Laboratory, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Brussels Center for Redox Biology, Belgium
| | - James C.A. Bardwell
- Program in Cellular and Molecular Biology, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, Belgium
| |
Collapse
|
90
|
Inaba K, Ito K. Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:520-9. [PMID: 18082634 DOI: 10.1016/j.bbamcr.2007.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
Abstract
All organisms possess specific cellular machinery that introduces disulfide bonds into proteins newly synthesized and transported out of the cytosol. In E. coli, the membrane-integrated DsbB protein cooperates with ubiquinone to generate a disulfide bond, which is transferred to DsbA, a periplasmic dithiol oxido-reductase that serves as the direct disulfide bond donor to proteins folding oxidatively in this compartment. Despite the extensive accumulation of knowledge on this oxidation system, molecular details of the DsbB reaction mechanisms had been controversial due partly to the lack of structural information until our recent determination of the crystal structure of a DsbA-DsbB-ubiquinone complex. In this review we discuss the structural and chemical nature of reaction intermediates in the DsbB catalysis and the illuminated molecular mechanisms that account for the de novo formation of a disulfide bond and its donation to DsbA. It is suggested that DsbB gains the ability to oxidize its specific substrate, DsbA, having very high redox potential, by undergoing a DsbA-induced rearrangement of cysteine residues. One of the DsbB cysteines that are now reduced then interacts with ubiquinone to form a charge transfer complex, leading to the regeneration of a disulfide at the DsbB active site, and the cycle can begin anew.
Collapse
Affiliation(s)
- Kenji Inaba
- Division of Protein Chemistry, Post-Genome Science Center, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
91
|
Barabote RD, Rendulic S, Schuster SC, Saier MH. Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus. Genomics 2007; 90:424-46. [PMID: 17706914 PMCID: PMC3415317 DOI: 10.1016/j.ygeno.2007.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 10/22/2022]
Abstract
Bdellovibrio bacteriovorus is a bacterial parasite with an unusual lifestyle. It grows and reproduces in the periplasm of a host prey bacterium. The complete genome sequence of B. bacteriovorus has recently been reported. We have reanalyzed the transport proteins encoded within the B. bacteriovorus genome according to the current content of the Transporter Classification Database. A comprehensive analysis is given on the types and numbers of transport systems that B. bacteriovorus has. In this regard, the potential protein secretory capabilities of at least four types of inner-membrane secretion systems and five types of outer-membrane secretion systems are described. Surprisingly, B. bacteriovorus has a disproportionate percentage of cytoplasmic membrane channels and outer-membrane porins. It has far more TonB/ExbBD-type systems and MotAB-type systems for energizing outer-membrane transport and motility than does Escherichia coli. Analysis of probable substrate specificities of its transporters provides clues to its metabolic preferences. Interesting examples of gene fusions and of potentially overlapping genes are also noted. Our analyses provide a comprehensive, detailed appreciation of the transport capabilities of B. bacteriovorus. They should serve as a guide for functional experimental analyses.
Collapse
Affiliation(s)
- Ravi D. Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Snjezana Rendulic
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Stephan C. Schuster
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
92
|
Di Matteo A, Gianni S, Schininà ME, Giorgi A, Altieri F, Calosci N, Brunori M, Travaglini-Allocatelli C. A Strategic Protein in Cytochrome c Maturation. J Biol Chem 2007; 282:27012-27019. [PMID: 17623665 DOI: 10.1074/jbc.m702702200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CcmH (cytochromes c maturation protein H) is an essential component of the assembly line necessary for the maturation of c-type cytochromes in the periplasm of Gram-negative bacteria. The protein is a membrane-anchored thiol-oxidoreductase that has been hypothesized to be involved in the recognition and reduction of apocytochrome c, a prerequisite for covalent heme attachment. Here, we present the 1.7A crystal structure of the soluble periplasmic domain of CcmH from the opportunistic pathogen Pseudomonas aeruginosa (Pa-CcmH*). The protein contains a three-helix bundle, i.e. a fold that is different from that of all other thiol-oxidoreductases reported so far. The catalytic Cys residues of the conserved LRCXXC motif (Cys(25) and Cys(28)), located in a long loop connecting the first two helices, form a disulfide bond in the oxidized enzyme. We have determined the pK(a) values of these 2 Cys residues of Pa-CcmH* (both >8) and propose a possible mechanistic role for a conserved Ser(36) and a water molecule in the active site. The interaction between Pa-CcmH* and Pa-apocyt c(551) (where cyt c(551) represents cytochrome c(551)) was characterized in vitro following the binding kinetics by stopped-flow using a Trp-containing fluorescent variant of Pa-CcmH* and a dansylated peptide, mimicking the apocytochrome c(551) heme binding motif. The kinetic results show that the protein has a moderate affinity to its apocyt substrate, consistent with the role of Pa-CcmH as an intermediate component of the assembly line for c-type cytochrome biogenesis.
Collapse
Affiliation(s)
- Adele Di Matteo
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - M Eugenia Schininà
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Fabio Altieri
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Nicoletta Calosci
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy.
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| |
Collapse
|
93
|
Cho SH, Porat A, Ye J, Beckwith J. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J 2007; 26:3509-20. [PMID: 17641688 PMCID: PMC1948999 DOI: 10.1038/sj.emboj.7601799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/25/2007] [Indexed: 01/23/2023] Open
Abstract
The membrane-embedded domain of the unusual electron transporter DsbD (DsbDbeta) uses two redox-active cysteines to catalyze electron transfer between thioredoxin-fold polypeptides on opposite sides of the bacterial cytoplasmic membrane. How the electrons are transferred across the membrane is unknown. Here, we show that DsbDbeta displays an inherent functional and structural symmetry: first, the two cysteines of DsbDbeta can be alkylated from both the cytoplasm and the periplasm. Second, when the two cysteines are disulfide-bonded, cysteine scanning shows that the C-terminal halves of the cysteine-containing transmembrane segments 1 and 4 are exposed to the aqueous environment while the N-terminal halves are not. Third, proline residues located pseudo-symmetrically around the two cysteines are required for redox activity and accessibility of the cysteines. Fourth, mixed disulfide complexes, apparent intermediates in the electron transfer process, are detected between DsbDbeta and thioredoxin molecules on each side of the membrane. We propose a model where the two redox-active cysteines are located at the center of the membrane, accessible on both sides of the membrane to the thioredoxin proteins.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Amir Porat
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jiqing Ye
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, 200 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 1920; Fax: +1 617 738 7664; E-mail:
| |
Collapse
|
94
|
Bringer MA, Rolhion N, Glasser AL, Darfeuille-Michaud A. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J Bacteriol 2007; 189:4860-71. [PMID: 17449627 PMCID: PMC1913465 DOI: 10.1128/jb.00233-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-DeltadsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-DeltadsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.
Collapse
Affiliation(s)
- Marie-Agnès Bringer
- Pathogénie Bactérienne Intestinale, Université Clermont I, USC INRA 2018, F-63000 Clermont-Fd, France
| | | | | | | |
Collapse
|
95
|
Bardwell JC. Disulfide Bond Formation Enzymes. MOLECULAR MACHINES INVOLVED IN PROTEIN TRANSPORT ACROSS CELLULAR MEMBRANES 2007. [DOI: 10.1016/s1874-6047(07)25005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Rozhkova A, Glockshuber R. Kinetics of the intramolecular disulfide exchange between the periplasmic domains of DsbD. J Mol Biol 2006; 367:1162-70. [PMID: 17303162 DOI: 10.1016/j.jmb.2006.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of a periplasmic, N-terminal domain (nDsbD), a central transmembrane domain and a periplasmic, C-terminal domain (cDsbD). Each of these domains contains two essential cysteine residues that are required for intermolecular disulfide exchange between DsbD and substrates, and intramolecular disulfide exchange between the three DsbD domains. In order to determine the rate of intramolecular electron transfer from cDsbD to nDsbD, we constructed a redox-sensitive tryptophan variant of cDsbD (cDsbD(W)) that shows an approximately threefold increase in fluorescence upon reduction and has the same redox potential and reactivity as wild-type cDsbD. cDsbD(W) was then used for the construction of fusion proteins with nDsbD and cDsbD(W), connected via flexible linkers of different length. Using the DsbD substrate DsbC, which can only be reduced by nDsbD and does not react with cDsbD, we could directly measure the intramolecular electron transfer from cDsnD(W) to nDsbB in the fusion proteins. We show that the intramolecular disulfide exchange is significantly faster than the reaction between isolated nDsbD and cDsbD. Nevertheless, the effective concentration of 0.2 mM of the domains in the fusions is comaparably low. The rate of 23 s(-1) for the intramolecular disulfide exchange in the fusions was independent of the linker length and may represent the upper limit for the substrate turnover of full-length DsbD.
Collapse
Affiliation(s)
- Anna Rozhkova
- Institute of Molecular Biology and Biophysics, ETH Zurich 8093, Switzerland
| | | |
Collapse
|
97
|
Hiniker A, Vertommen D, Bardwell JCA, Collet JF. Evidence for conformational changes within DsbD: possible role for membrane-embedded proline residues. J Bacteriol 2006; 188:7317-20. [PMID: 17015672 PMCID: PMC1636233 DOI: 10.1128/jb.00383-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which DsbD transports electrons across the cytoplasmic membrane is unknown. Here we provide evidence that DsbD's conformation depends on its oxidation state. Our data also suggest that four highly conserved prolines surrounding DsbD's membrane-embedded catalytic cysteines may have an important functional role, possibly conferring conformational flexibility to DsbD.
Collapse
Affiliation(s)
- Annie Hiniker
- Program in Cellular and Molecular Biology, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
98
|
Motohashi K, Hisabori T. HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 2006; 281:35039-47. [PMID: 16997915 DOI: 10.1074/jbc.m605938200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
HCF164 is a membrane-anchored thioredoxin-like protein known to be indispensable for assembly of cytochrome b6 f in the thylakoid membranes. In this study, we report the finding that chloroplast stroma m-type thioredoxin is the source of reducing equivalents for reduction of HCF164 in the thylakoid lumen, providing strong evidence that higher plant chloroplasts possess a trans-membrane reducing equivalent transfer system similar to that found in bacteria. To probe the function of HCF164 in the lumen, a screen to identify the reducing equivalent acceptor proteins of HCF164 was carried out by using a resin-immobilized HCF164 single cysteine mutant, leading to the isolation of putative target thylakoid proteins. Among the newly identified target proteins, the reduction of the PSI-N subunit of photosystem I by HCF164 was confirmed both in vitro and in isolated thylakoids. Two components of the cytochrome b6 f complex, the cytochrome f and Rieske FeS proteins, were also identified as novel potential target proteins. The data presented here suggest that HCF164 serves as an important transducer of reducing equivalents to proteins in the thylakoid lumen.
Collapse
Affiliation(s)
- Ken Motohashi
- The ATP System Project, ERATO, JST, Nagatsuta 5800-3, Midori-ku, Yokohama, Japan
| | | |
Collapse
|
99
|
Cho SH, Beckwith J. Mutations of the membrane-bound disulfide reductase DsbD that block electron transfer steps from cytoplasm to periplasm in Escherichia coli. J Bacteriol 2006; 188:5066-76. [PMID: 16816179 PMCID: PMC1539965 DOI: 10.1128/jb.00368-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic membrane protein DsbD keeps the periplasmic disulfide isomerase DsbC reduced, using the cytoplasmic reducing power of thioredoxin. DsbD contains three domains, each containing two reactive cysteines. One membrane-embedded domain, DsbDbeta, transfers electrons from thioredoxin to the carboxy-terminal thioredoxin-like periplasmic domain DsbDgamma. To evaluate the role of conserved amino acid residues in DsbDbeta in the electron transfer process, we substituted alanines for each of 19 conserved amino acid residues and assessed the in vivo redox states of DsbC and DsbD. The mutant DsbDs of 11 mutants which caused defects in DsbC reduction showed relatively oxidized redox states. To analyze the redox state of each DsbD domain, we constructed a thrombin-cleavable DsbD (DsbDTH) from which we could generate all three domains as separate polypeptide chains by thrombin treatment in vitro. We divided the mutants with strong defects into two classes. The first mutant class consists of mutant DsbDbeta proteins that cannot receive electrons from cytoplasmic thioredoxin, resulting in a DsbD that has all six of its cysteines disulfide bonded. The second mutant class represents proteins in which the transfer of electrons from DsbDbeta to DsbDgamma appears to be blocked. This class includes the mutant with the most clear-cut defect, P284A. We relate the properties of the mutants to the positions of the amino acids in the structure of DsbD and discuss mechanisms that would interfere with the electron transfer process.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
100
|
Bardischewsky F, Fischer J, Höller B, Friedrich CG. SoxV transfers electrons to the periplasm of Paracoccus pantotrophus - an essential reaction for chemotrophic sulfur oxidation. MICROBIOLOGY-SGM 2006; 152:465-472. [PMID: 16436434 DOI: 10.1099/mic.0.28523-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The soxVW genes are located upstream of the sox gene cluster encoding the sulfur-oxidizing ability of Paracoccus pantotrophus. SoxV is highly homologous to CcdA, which is involved in cytochrome c maturation of P. pantotrophus. SoxV was shown to function in reduction of the periplasmic SoxW, which shows a CysXaaXaaCys motif characteristic for thioredoxins. From strain GBOmegaV, which carries an Omega-kanamycin-resistance-encoding interposon in soxV, and complementation analysis it was evident that SoxV but not the periplasmic SoxW was essential for lithoautotrophic growth of P. pantotrophus with thiosulfate. However, the thiosulfate-oxidizing activities of cell extracts from the wild-type and from strain GBOmegaV were similar, demonstrating that the low thiosulfate-oxidizing activity of strain GBOmegaV in vivo was not due to a defect in biosynthesis or maturation of proteins of the Sox system and suggesting that SoxV is part of a regulatory or catalytic system of the Sox system. Analysis of DNA sequences available from different organisms harbouring a Sox system revealed that soxVW genes are exclusively present in sox operons harbouring the soxCD genes, encoding sulfur dehydrogenase, suggesting that SoxCD might be a redox partner of SoxV. No complementation of the ccdA mutant P. pantotrophus TP43 defective in cytochrome c maturation was achieved by expression of soxV in trans, demonstrating that the high identity of SoxV and CcdA does not correspond to functional homology.
Collapse
Affiliation(s)
- Frank Bardischewsky
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund, D-44221 Dortmund, Germany
| | - Jörg Fischer
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund, D-44221 Dortmund, Germany
| | - Bettina Höller
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund, D-44221 Dortmund, Germany
| | - Cornelius G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Bio- und Chemieingenieurwesen, Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|