51
|
Niewieczerzal S, Sulkowska JI. Knotting and unknotting proteins in the chaperonin cage: Effects of the excluded volume. PLoS One 2017; 12:e0176744. [PMID: 28489858 PMCID: PMC5425179 DOI: 10.1371/journal.pone.0176744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/14/2017] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations are used to explore the effects of chaperonin-like cages on knotted proteins with very low sequence similarity, different depths of a knot but with a similar fold, and the same type of topology. The investigated proteins are VirC2, DndE and MJ0366 with two depths of a knot. A comprehensive picture how encapsulation influences folding rates is provided based on the analysis of different cage sizes and temperature conditions. Neither of these two effects with regard to knotted proteins has been studied by means of molecular dynamics simulations with coarse-grained structure-based models before. We show that encapsulation in a chaperonin is sufficient to self-tie and untie small knotted proteins (VirC2, DndE), for which the equilibrium process is not accessible in the bulk solvent. Furthermore, we find that encapsulation reduces backtracking that arises from the destabilisation of nucleation sites, smoothing the free energy landscape. However, this effect can also be coupled with temperature rise. Encapsulation facilitates knotting at the early stage of folding and can enhance an alternative folding route. Comparison to unknotted proteins with the same fold shows directly how encapsulation influences the free energy landscape. In addition, we find that as the size of the cage decreases, folding times increase almost exponentially in a certain range of cage sizes, in accordance with confinement theory and experimental data for unknotted proteins.
Collapse
Affiliation(s)
- Szymon Niewieczerzal
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
52
|
|
53
|
Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M. Biogenesis and Metabolic Maintenance of Rubisco. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:29-60. [PMID: 28125284 DOI: 10.1146/annurev-arplant-043015-111633] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO2 in photosynthesis by catalyzing the carboxylation of the 5-carbon sugar ribulose-1,5-bisphosphate (RuBP). Rubisco is a remarkably inefficient enzyme, fixing only 2-10 CO2 molecules per second. Efforts to increase crop yields by bioengineering Rubisco remain unsuccessful, owing in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. The large subunit of Rubisco requires the chaperonin system for folding, and recent studies have shown that assembly of hexadecameric Rubisco is mediated by specific assembly chaperones. Moreover, Rubisco function can be inhibited by a range of sugar-phosphate ligands, including RuBP. Metabolic repair depends on remodeling of Rubisco by the ATP-dependent Rubisco activase and hydrolysis of inhibitory sugar phosphates by specific phosphatases. Here, we review our present understanding of the structure and function of these auxiliary factors and their utilization in efforts to engineer more catalytically efficient Rubisco enzymes.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia;
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| |
Collapse
|
54
|
|
55
|
Blaschke L, Wagner W, Werkmeister C, Wild M, Gihring A, Rupp S, Zibek S. Development of a simplified purification method for a novel formaldehyde dismutase variant from Pseudomonas putida J3. J Biotechnol 2017; 241:69-75. [DOI: 10.1016/j.jbiotec.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
|
56
|
Trogadas P, Nigra MM, Coppens MO. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. NEW J CHEM 2016. [DOI: 10.1039/c5nj03406j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature-inspired structuring at the meso-scale: broad macropores separate the mesoporous catalyst grains.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- Department of Chemical Engineering
- University College London
- Torrington Place
- London
- UK
| | - Michael M. Nigra
- Department of Chemical Engineering
- University College London
- Torrington Place
- London
- UK
| | - Marc-Olivier Coppens
- Department of Chemical Engineering
- University College London
- Torrington Place
- London
- UK
| |
Collapse
|
57
|
Naylor DJ, Hunt B, Guidolin A, Hey AW, Bastiras S, de Bakker CJ, Chin DY, Marquis CP, Lambert D, Howard CB, Dobbin CA, Mahler SM. Production and characterisation of recombinant human chaperonin 10 for treatment of inflammatory disease. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem Sci 2015; 41:62-76. [PMID: 26422689 DOI: 10.1016/j.tibs.2015.07.009] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 01/12/2023]
Abstract
The bacterial chaperonin GroEL and its cofactor GroES constitute the paradigmatic molecular machine of protein folding. GroEL is a large double-ring cylinder with ATPase activity that binds non-native substrate protein (SP) via hydrophobic residues exposed towards the ring center. Binding of the lid-shaped GroES to GroEL displaces the bound protein into an enlarged chamber, allowing folding to occur unimpaired by aggregation. GroES and SP undergo cycles of binding and release, regulated allosterically by the GroEL ATPase. Recent structural and functional studies are providing insights into how the physical environment of the chaperonin cage actively promotes protein folding, in addition to preventing aggregation. Here, we review different models of chaperonin action and discuss issues of current debate.
Collapse
|
59
|
Bracher A, Hauser T, Liu C, Hartl FU, Hayer-Hartl M. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii. PLoS One 2015; 10:e0135448. [PMID: 26305355 PMCID: PMC4549274 DOI: 10.1371/journal.pone.0135448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/22/2015] [Indexed: 01/12/2023] Open
Abstract
The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| | - Thomas Hauser
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Cuimin Liu
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| |
Collapse
|
60
|
Bujalowski PJ, Nicholls P, Oberhauser AF. UNC-45B chaperone: the role of its domains in the interaction with the myosin motor domain. Biophys J 2015; 107:654-661. [PMID: 25099804 DOI: 10.1016/j.bpj.2014.05.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 11/15/2022] Open
Abstract
The proper folding of many proteins can only be achieved by interaction with molecular chaperones. The molecular chaperone UNC-45B is required for the folding of striated muscle myosin II. However, the precise mechanism by which it contributes to proper folding of the myosin head remains unclear. UNC-45B contains three domains: an N-terminal TPR domain known to bind Hsp90, a Central domain of unknown function, and a C-terminal UCS domain known to interact with the myosin head. Here we used fluorescence titrations methods, dynamic light scattering, and single-molecule atomic force microscopy (AFM) unfolding/refolding techniques to study the interactions of the UCS and Central domains with the myosin motor domain. We found that both the UCS and the Central domains bind to the myosin motor domain. Our data show that the domains bind to distinct subsites on the myosin head, suggesting distinct roles in forming the myosin-UNC-45B complex. To determine the chaperone activity of the UCS and Central domains, we used two different methods: 1), prevention of misfolding using single-molecule AFM, and 2), prevention of aggregation using dynamic light scattering. Using the first method, we found that the UCS domain is sufficient to prevent misfolding of a titin mechanical reporter. Application of the second method showed that the UCS domain but not the Central domain prevents the thermal aggregation of the myosin motor domain. We conclude that while both the UCS and the Central domains bind the myosin head with high affinity, only the UCS domain displays chaperone activity.
Collapse
Affiliation(s)
- Paul J Bujalowski
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Paul Nicholls
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
61
|
Hauser T, Bhat JY, Miličić G, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. Structure and mechanism of the Rubisco-assembly chaperone Raf1. Nat Struct Mol Biol 2015; 22:720-8. [PMID: 26237510 DOI: 10.1038/nsmb.3062] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/01/2015] [Indexed: 01/31/2023]
Abstract
Biogenesis of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits, requires assembly chaperones. Here we analyzed the role of Rubisco accumulation factor1 (Raf1), a dimer of ∼40-kDa subunits. We find that Raf1 from Synechococcus elongatus acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes with four Raf1 dimers bound. Raf1 displacement by RbcS results in holoenzyme formation. Crystal structures show that Raf1 from Arabidopsis thaliana consists of a β-sheet dimerization domain and a flexibly linked α-helical domain. Chemical cross-linking and EM reconstruction indicate that the β-domains bind along the equator of each RbcL2 unit, and the α-helical domains embrace the top and bottom edges of RbcL2. Raf1 fulfills a role similar to that of the assembly chaperone RbcX, thus suggesting that functionally redundant factors ensure efficient Rubisco biogenesis.
Collapse
Affiliation(s)
- Thomas Hauser
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Javaid Y Bhat
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Goran Miličić
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Wendler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
62
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
63
|
Hauser T, Popilka L, Hartl FU, Hayer-Hartl M. Role of auxiliary proteins in Rubisco biogenesis and function. NATURE PLANTS 2015; 1:15065. [PMID: 27250005 DOI: 10.1038/nplants.2015.65] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/20/2015] [Indexed: 05/05/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric CO2 into organic compounds during photosynthesis. Despite its pivotal role in plant metabolism, Rubisco is an inefficient enzyme and has therefore been a key target in bioengineering efforts to improve crop yields. Much has been learnt about the complex cellular machinery involved in Rubisco assembly and metabolic repair over recent years. The simple form of Rubisco found in certain bacteria and dinoflagellates comprises two large subunits, and generally requires the chaperonin system for folding. However, the evolution of hexadecameric Rubisco, which comprises eight large and eight small subunits, from its dimeric precursor has rendered Rubisco in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional factors. These auxiliary factors include several chaperones for assembly as well as ATPases of the AAA+ family for functional maintenance. An integrated view of the pathways underlying Rubisco biogenesis and repair will pave the way for efforts to improve the enzyme with the goal of increasing crop yields.
Collapse
Affiliation(s)
- Thomas Hauser
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Leonhard Popilka
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
64
|
Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015; 13:343-59. [DOI: 10.1038/nrmicro3456] [Citation(s) in RCA: 655] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. J Mol Biol 2015; 427:2244-55. [PMID: 25912285 DOI: 10.1016/j.jmb.2015.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/21/2022]
Abstract
The chaperonin GroEL, a cylindrical complex consisting of two stacked heptameric rings, and its lid-like cofactor GroES form a nano-cage in which a single polypeptide chain is transiently enclosed and allowed to fold unimpaired by aggregation. GroEL and GroES undergo an ATP-regulated interaction cycle that serves to close and open the folding cage. Recent reports suggest that the presence of non-native substrate protein alters the GroEL/ES reaction by shifting it from asymmetric to symmetric complexes. In the asymmetric reaction mode, only one ring of GroEL is GroES bound and the two rings function sequentially, coupled by negative allostery. In the symmetric mode, both GroEL rings are GroES bound and are folding active simultaneously. Here, we find that the results of assays based on fluorescence resonance energy transfer recently used to quantify symmetric complexes depend strongly on the fluorophore pair used. We therefore developed a novel assay based on fluorescence cross-correlation spectroscopy to accurately measure GroEL:GroES stoichiometry. This assay avoids fluorophore labeling of GroEL and the use of GroEL cysteine mutants. Our results show that symmetric GroEL:GroES2 complexes are substantially populated only in the presence of non-foldable model proteins, such as α-lactalbumin and α-casein, which "over-stimulate" the GroEL ATPase and uncouple the negative GroEL inter-ring allostery. In contrast, asymmetric complexes are dominant both in the absence of substrate and in the presence of foldable substrate proteins. Moreover, uncoupling of the GroEL rings and formation of symmetric GroEL:GroES2 complexes is suppressed at physiological ATP:ADP concentration. We conclude that the asymmetric GroEL:GroES complex represents the main folding active form of the chaperonin.
Collapse
|
66
|
Abstract
Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
67
|
Dalton KM, Frydman J, Pande VS. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation. PLoS One 2015; 10:e0117724. [PMID: 25822285 PMCID: PMC4379175 DOI: 10.1371/journal.pone.0117724] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022] Open
Abstract
Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins.
Collapse
Affiliation(s)
- Kevin M. Dalton
- Biophysics Program, Stanford University, Stanford, California, United States of America
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
68
|
Szklarczyk R, Nooteboom M, Osiewacz HD. Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130439. [PMID: 24864310 DOI: 10.1098/rstb.2013.0439] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Various molecular and cellular pathways are active in eukaryotes to control the quality and integrity of mitochondria. These pathways are involved in keeping a 'healthy' population of this essential organelle during the lifetime of the organism. Quality control (QC) systems counteract processes that lead to organellar dysfunction manifesting as degenerative diseases and ageing. We discuss disease- and ageing-related pathways involved in mitochondrial QC: mtDNA repair and reorganization, regeneration of oxidized amino acids, refolding and degradation of severely damaged proteins, degradation of whole mitochondria by mitophagy and finally programmed cell death. The control of the integrity of mtDNA and regulation of its expression is essential to remodel single proteins as well as mitochondrial complexes that determine mitochondrial functions. The redundancy of components, such as proteases, and the hierarchies of the QC raise questions about crosstalk between systems and their precise regulation. The understanding of the underlying mechanisms on the genomic, proteomic, organellar and cellular levels holds the key for the development of interventions for mitochondrial dysfunctions, degenerative processes, ageing and age-related diseases resulting from impairments of mitochondria.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Marco Nooteboom
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Heinz D Osiewacz
- Faculty for Biosciences and Cluster of Excellence 'Macromolecular Complexes', Goethe University, Molecular Developmental Biology, 60438 Frankfurt am Main, Germany
| |
Collapse
|
69
|
Durão P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol 2015; 11:148-55. [PMID: 25558973 DOI: 10.1038/nchembio.1715] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the fixation of CO2 in photosynthesis. Despite its pivotal role, Rubisco is an inefficient enzyme and thus is a key target for directed evolution. Rubisco biogenesis depends on auxiliary factors, including the GroEL/ES-type chaperonin for folding and the chaperone RbcX for assembly. Here we performed directed evolution of cyanobacterial form I Rubisco using a Rubisco-dependent Escherichia coli strain. Overexpression of GroEL/ES enhanced Rubisco solubility and tended to expand the range of permissible mutations. In contrast, the specific assembly chaperone RbcX had a negative effect on evolvability by preventing a subset of mutants from forming holoenzyme. Mutation F140I in the large Rubisco subunit, isolated in the absence of RbcX, increased carboxylation efficiency approximately threefold without reducing CO2 specificity. The F140I mutant resulted in a ∼55% improved photosynthesis rate in Synechocystis PCC6803. The requirement of specific biogenesis factors downstream of chaperonin may have retarded the natural evolution of Rubisco.
Collapse
Affiliation(s)
- Paulo Durão
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Harald Aigner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Péter Nagy
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver Mueller-Cajar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
70
|
Van den Broeck I, Goyal P, Remaut H. Insights in peptide diffusion channels from the bacterial amyloid secretor CsgG. Channels (Austin) 2015; 9:65-7. [PMID: 25714989 PMCID: PMC4594475 DOI: 10.1080/19336950.2015.1017172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Imke Van den Broeck
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Brussels, Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Brussels, Belgium
| | - Parveen Goyal
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Brussels, Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Brussels, Belgium
- Department of Chemistry and Molecular Biology; University of Gothenburg; Gothenburg, Sweden
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Brussels, Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Brussels, Belgium
| |
Collapse
|
71
|
Zou T, Williams N, Ozkan SB, Ghosh K. Proteome folding kinetics is limited by protein halflife. PLoS One 2014; 9:e112701. [PMID: 25393560 PMCID: PMC4231061 DOI: 10.1371/journal.pone.0112701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022] Open
Abstract
How heterogeneous are proteome folding timescales and what physical principles, if any, dictate its limits? We answer this by predicting copy number weighted folding speed distribution – using the native topology – for E.coli and Yeast proteome. E.coli and Yeast proteomes yield very similar distributions with average folding times of 100 milliseconds and 170 milliseconds, respectively. The topology-based folding time distribution is well described by a diffusion-drift mutation model on a flat-fitness landscape in free energy barrier between two boundaries: i) the lowest barrier height determined by the upper limit of folding speed and ii) the highest barrier height governed by the lower speed limit of folding. While the fastest time scale of the distribution is near the experimentally measured speed limit of 1 microsecond (typical of barrier-less folders), we find the slowest folding time to be around seconds (8 seconds for Yeast distribution), approximately an order of magnitude less than the fastest halflife (approximately 2 minutes) in the Yeast proteome. This separation of timescale implies even the fastest degrading protein will have moderately high (96%) probability of folding before degradation. The overall agreement with the flat-fitness landscape model further hints that proteome folding times did not undergo additional major selection pressures – to make proteins fold faster – other than the primary requirement to “sufficiently beat the clock” against its lifetime. Direct comparison between the predicted folding time and experimentally measured halflife further shows 99% of the proteome have a folding time less than their corresponding lifetime. These two findings together suggest that proteome folding kinetics may be bounded by protein halflife.
Collapse
Affiliation(s)
- Taisong Zou
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Nickolas Williams
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, United States of America
| | - S. Banu Ozkan
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
72
|
Joshi J, Mueller-Cajar O, Tsai YCC, Hartl FU, Hayer-Hartl M. Role of small subunit in mediating assembly of red-type form I Rubisco. J Biol Chem 2014; 290:1066-74. [PMID: 25371207 DOI: 10.1074/jbc.m114.613091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco.
Collapse
Affiliation(s)
- Jidnyasa Joshi
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Oliver Mueller-Cajar
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yi-Chin C Tsai
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
73
|
Lim NCH, Jackson SE. Mechanistic insights into the folding of knotted proteins in vitro and in vivo. J Mol Biol 2014; 427:248-58. [PMID: 25234087 DOI: 10.1016/j.jmb.2014.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
The importance of knots and entanglements in biological systems is increasingly being realized and the number of proteins with topologically complex knotted structures has risen. However, the mechanism as to how these proteins knot and fold efficiently remains unclear. Using a cell-free expression system and pulse-proteolysis experiments, we have investigated the mechanism of knotting and folding for two bacterial trefoil-knotted methyltransferases. This study provides the first experimental evidence for a knotting mechanism. Results on fusions of stable protein domains to N-terminus, C-terminus or both termini of the knotted proteins clearly demonstrate that threading of the nascent chain through a knotting loop occurs via the C-terminus. Our results strongly suggest that this mechanism occurs even when the C-terminus is severely hindered by the addition of a large stable structure, in contrast to some simulations indicating that even the folding pathways of knotted proteins have some plasticity. The same strategy was employed to probe the effects of GroEL-GroES. In this case, results suggest active mechanisms for the molecular chaperonin. We demonstrate that a simple model in which GroEL-GroES sterically confines the unknotted polypeptide chain thereby promoting knotting is unlikely, and we propose two alternatives: (a) the chaperonin facilitates unfolding of kinetically and topologically trapped intermediates or (b) the chaperonin stabilizes interactions that promote knotting. These findings provide mechanistic insights into the folding of knotted proteins both in vitro and in vivo, thus elucidating how they have withstood evolutionary pressures regardless of their complex topologies and intrinsically slow folding rates.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
74
|
Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 2014; 516:250-3. [PMID: 25219853 DOI: 10.1038/nature13768] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/13/2014] [Indexed: 11/09/2022]
Abstract
Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded β-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.
Collapse
|
75
|
Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proc Natl Acad Sci U S A 2014; 111:13355-60. [PMID: 25165400 DOI: 10.1073/pnas.1407086111] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones are an essential part of the machinery that avoids protein aggregation and misfolding in vivo. However, understanding the molecular basis of how chaperones prevent such undesirable interactions requires the conformational changes within substrate proteins to be probed during chaperone action. Here we use single-molecule fluorescence spectroscopy to investigate how the DnaJ-DnaK chaperone system alters the conformational distribution of the denatured substrate protein rhodanese. We find that in a first step the ATP-independent binding of DnaJ to denatured rhodanese results in a compact denatured ensemble of the substrate protein. The following ATP-dependent binding of multiple DnaK molecules, however, leads to a surprisingly large expansion of denatured rhodanese. Molecular simulations indicate that hard-core repulsion between the multiple DnaK molecules provides the underlying mechanism for disrupting even strong interactions within the substrate protein and preparing it for processing by downstream chaperone systems.
Collapse
|
76
|
GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 2014; 157:922-934. [PMID: 24813614 DOI: 10.1016/j.cell.2014.03.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
Abstract
The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire structure simultaneously in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant timescale, avoiding aggregation or degradation.
Collapse
|
77
|
Gupta AJ, Haldar S, Miličić G, Hartl FU, Hayer-Hartl M. Active Cage Mechanism of Chaperonin-Assisted Protein Folding Demonstrated at Single-Molecule Level. J Mol Biol 2014; 426:2739-54. [DOI: 10.1016/j.jmb.2014.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/19/2023]
|
78
|
Chaperonins Resculpt Folding Free Energy Landscapes to Avoid Kinetic Traps and Accelerate Protein Folding. J Mol Biol 2014; 426:2736-8. [DOI: 10.1016/j.jmb.2014.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Weaver J, Rye HS. The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein. J Biol Chem 2014; 289:23219-23232. [PMID: 24970895 DOI: 10.1074/jbc.m114.577205] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
Collapse
Affiliation(s)
- Jeremy Weaver
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Hays S Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
80
|
Sirur A, Knott M, Best RB. Effect of interactions with the chaperonin cavity on protein folding and misfolding. Phys Chem Chem Phys 2014; 16:6358-66. [PMID: 24077053 PMCID: PMC4577569 DOI: 10.1039/c3cp52872c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent experimental and computational results have suggested that attractive interactions between a chaperonin and an enclosed substrate can have an important effect on the protein folding rate: it appears that folding may even be slower inside the cavity than under unconfined conditions, in contrast to what we would expect from excluded volume effects on the unfolded state. Here we examine systematically the dependence of the protein stability and folding rate on the strength of such attractive interactions between the chaperonin and substrate, by using molecular simulations of model protein systems in an idealised attractive cavity. Interestingly, we find a maximum in stability, and a rate which indeed slows down at high attraction strengths. We have developed a simple phenomenological model which can explain the variations in folding rate and stability due to differing effects on the free energies of the unfolded state, folded state, and transition state; changes in the diffusion coefficient along the folding coordinate are relatively small, at least for our simplified model. In order to investigate a possible role for these attractive interactions in folding, we have studied a recently developed model for misfolding in multidomain proteins. We find that, while encapsulation in repulsive cavities greatly increases the fraction of misfolded protein, sufficiently strong attractive protein-cavity interactions can strongly reduce the fraction of proteins reaching misfolded traps.
Collapse
Affiliation(s)
- Anshul Sirur
- Cambridge University, Department of Chemistry, Lensfield Road Cambridge CB2 1EW, United Kingdom
| | - Michael Knott
- Cambridge University, Department of Chemistry, Lensfield Road Cambridge CB2 1EW, United Kingdom
| | - Robert B. Best
- Cambridge University, Department of Chemistry, Lensfield Road Cambridge CB2 1EW, United Kingdom
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| |
Collapse
|
81
|
Co NT, Hu CK, Li MS. Dual effect of crowders on fibrillation kinetics of polypeptide chains revealed by lattice models. J Chem Phys 2013; 138:185101. [PMID: 23676073 DOI: 10.1063/1.4804299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have developed the lattice model for describing polypeptide chains in the presence of crowders. The influence of crowding confinement on the fibrillation kinetics of polypeptide chains is studied using this model. We observed the non-trivial behavior of the fibril formation time τfib that it decreases with the concentration of crowders if crowder sizes are large enough, but the growth is observed for crowders of small sizes. This allows us to explain the recent experimental observation on the dual effect of crowding particles on fibril growth of proteins that for a fixed crowder concentration the fibrillation kinetics is fastest at intermediate values of total surface of crowders. It becomes slow at either small or large coverages of cosolutes. It is shown that due to competition between the energetics and entropic effects, the dependence of τfib on the size of confined space is described by a parabolic function.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
82
|
Fu X, Chang Z, Shi X, Bu D, Wang C. Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins. Protein Sci 2013; 23:229-37. [PMID: 24318917 DOI: 10.1002/pro.2404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous molecular chaperones that prevent the aggregation of various non-native proteins and play crucial roles for protein quality control in cells. It is poorly understood what natural substrate proteins, with respect to structural characteristics, are preferentially bound by sHSPs in cells. Here we compared the structural characteristics for the natural substrate proteins of Escherichia coli IbpB and Deinococcus radiodurans Hsp20.2 with the respective bacterial proteome at multiple levels, mainly by using bioinformatics analysis. Data indicate that both IbpB and Hsp20.2 preferentially bind to substrates of high molecular weight or moderate acidity. Surprisingly, their substrates contain abundant charged residues but not abundant hydrophobic residues, thus strongly indicating that ionic interactions other than hydrophobic interactions also play crucial roles for the substrate recognition and binding of sHSPs. Further, secondary structure prediction analysis indicates that the substrates of low percentage of β-sheets or coils but high percentage of α-helices are un-favored by both IbpB and Hsp20.2. In addition, IbpB preferentially interacts with multi-domain proteins but unfavorably with α + β proteins as revealed by SCOP analysis. Together, our data suggest that bacterial sHSPs, though having broad substrate spectrums, selectively bind to substrates of certain structural features. These structural characteristic elements may substantially participate in the sHSP-substrate interaction and/or increase the aggregation tendency of the substrates, thus making the substrates more preferentially bound by sHSPs.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
83
|
Mandal SS, Cristiglio V, Lindner P, Bhattacharyya AJ. Small-angle neutron scattering studies of hemoglobin confined inside silica tubes of varying sizes. Chemphyschem 2013; 15:302-9. [PMID: 24339406 DOI: 10.1002/cphc.201300863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Indexed: 11/08/2022]
Abstract
In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (≈20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (Rg) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the Rg of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (Rg of native Hb=23.8 Å). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.
Collapse
Affiliation(s)
- Soumit S Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India), Fax: (+91) 80-23601310
| | | | | | | |
Collapse
|
84
|
Quantifying chaperone-mediated transitions in the proteostasis network of E. coli. PLoS Comput Biol 2013; 9:e1003324. [PMID: 24244134 PMCID: PMC3828153 DOI: 10.1371/journal.pcbi.1003324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/23/2013] [Indexed: 12/03/2022] Open
Abstract
For cells to function, the concentrations of all proteins in the cell must be maintained at the proper levels (proteostasis). This task – complicated by cellular stresses, protein misfolding, aggregation, and degradation – is performed by a collection of chaperones that alter the configurational landscape of a given client protein through the formation of protein-chaperone complexes. The set of all such complexes and the transitions between them form the proteostasis network. Recently, a computational model was introduced (FoldEco) that synthesizes experimental data into a system-wide description of the proteostasis network of E. coli. This model describes the concentrations over time of all the species in the system, which include different conformations of the client protein, as well as protein-chaperone complexes. We apply to this model a recently developed analysis tool to calculate mediation probabilities in complex networks. This allows us to determine the probability that a given chaperone system is used to mediate transitions between client protein conformations, such as folding, or the correction of misfolded conformations. We determine how these probabilities change both across different proteins, as well as with system parameters, such as the synthesis rate, and in each case reveal in detail which factors control the usage of one chaperone system over another. We find that the different chaperone systems do not operate orthogonally and can compensate for each other when one system is disabled or overworked, and that this can complicate the analysis of “knockout” experiments, where the concentration of native protein is compared both with and without the presence of a given chaperone system. This study also gives a general recipe for conducting a transition-path–based analysis on a network of coupled chemical reactions, which can be useful in other types of networks as well. To maintain proper amounts of folded, functional proteins, cells use systems of chaperones to correct misfolded proteins, disassemble aggregates, and provide sheltered environments in which proteins fold to their native structure. Typically, an individual system is studied in isolation, and its effects on a given protein are studied using “knockouts”, where the amount of native protein is compared with and without the active chaperone system. However, when multiple chaperone systems are operating simultaneously, knockouts can fail to reveal chaperone activity, as different chaperone systems can compensate for one another. We use a previously introduced computational model of chaperone systems in Escherichia coli, in combination with our transition-path analysis methods for networks, to analyze paths of individual proteins through the set of possible chaperone-bound and -unbound states. Our analysis allows us to answer questions that are inaccessible to knockout experiments, such as: How often will a given chaperone system be used to rescue a protein from a misfolded state? This approach provides a clear view of how the different systems of chaperones cooperate and compete under varying conditions.
Collapse
|
85
|
Lin Z, Puchalla J, Shoup D, Rye HS. Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding. J Biol Chem 2013; 288:30944-55. [PMID: 24022487 DOI: 10.1074/jbc.m113.480178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins.
Collapse
Affiliation(s)
- Zong Lin
- From the Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | | | | | | |
Collapse
|
86
|
Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ. Chaperone Action at the Single-Molecule Level. Chem Rev 2013; 114:660-76. [DOI: 10.1021/cr400326k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alireza Mashaghi
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Günter Kramer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Don C. Lamb
- Physical
Chemistry, Department of Chemistry, Munich Center for Integrated Protein
Science (CiPSM) and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Gerhard-Ertl-Building, 81377 Munich, Germany
| | - Matthias P. Mayer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sander J. Tans
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
87
|
Magnoni R, Palmfeldt J, Christensen JH, Sand M, Maltecca F, Corydon TJ, West M, Casari G, Bross P. Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 2013; 54:12-23. [PMID: 23466696 DOI: 10.1016/j.nbd.2013.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/29/2013] [Accepted: 02/22/2013] [Indexed: 01/07/2023] Open
Abstract
Cells rely on efficient protein quality control systems (PQCs) to maintain proper activity of mitochondrial proteins. As part of this system, the mitochondrial chaperone Hsp60 assists folding of matrix proteins and it is an essential protein in all organisms. Mutations in Hspd1, the gene encoding Hsp60, are associated with two human inherited diseases of the nervous system, a dominantly inherited form of spastic paraplegia (SPG13) and an autosomal recessively inherited white matter disorder termed MitCHAP60 disease. Although the connection between mitochondrial failure and neurodegeneration is well known in many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, and hereditary spastic paraplegia, the molecular basis of the neurodegeneration associated with these diseases is still ill-defined. Here, we investigate mice heterozygous for a knockout allele of the Hspd1 gene encoding Hsp60. Our results demonstrate that Hspd1 haploinsufficiency is sufficient to cause a late onset and slowly progressive deficit in motor functions in mice. We furthermore emphasize the crucial role of the Hsp60 chaperone in mitochondrial function by showing that the motor phenotype is associated with morphological changes of mitochondria, deficient ATP synthesis, and in particular, a defect in the assembly of the respiratory chain complex III in neuronal tissues. In the current study, we propose that our heterozygous Hsp60 mouse model is a valuable model system for the investigation of the link between mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Raffaella Magnoni
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Health Aarhus University Hospital and Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bhattacharya A, Best RB, Mittal J. Smoothing of the GB1 hairpin folding landscape by interfacial confinement. Biophys J 2013; 103:596-600. [PMID: 22947876 DOI: 10.1016/j.bpj.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022] Open
Abstract
We study the effects of confinement between planar walls on the folding thermodynamics of a β-hairpin, using large-scale replica-exchange molecular-dynamics simulations with an all-atom model and explicit solvent. We find that the folding free-energy landscape of this peptide observed in bulk is significantly modified when the peptide is confined between the walls. Most notably, the propensity of the peptide to form a misfolded state observed in the bulk solution becomes negligible under confinement. The absence of the misfolded state under confinement can be explained by an increased tendency of hydrophobic aromatic side chains to stay near the walls, because the misfolded state is characterized by a nonnative arrangement of aromatic side chains. These results from a simple confinement model may provide clues about the role of chaperonin confinement in smoothing folding landscapes by avoiding trapped intermediates.
Collapse
Affiliation(s)
| | - Robert B Best
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jeetain Mittal
- Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
89
|
Saha R, Rakshit S, Verma PK, Mitra RK, Pal SK. Protein-cofactor binding and ultrafast electron transfer in riboflavin binding protein under the spatial confinement of nanoscopic reverse micelles. J Mol Recognit 2013; 26:59-66. [DOI: 10.1002/jmr.2246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/09/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ranajay Saha
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences; Block JD, Sector III Salt Lake; Kolkata 700098; India
| | - Surajit Rakshit
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences; Block JD, Sector III Salt Lake; Kolkata 700098; India
| | - Pramod Kumar Verma
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences; Block JD, Sector III Salt Lake; Kolkata 700098; India
| | - Rajib Kumar Mitra
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences; Block JD, Sector III Salt Lake; Kolkata 700098; India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences; Block JD, Sector III Salt Lake; Kolkata 700098; India
| |
Collapse
|
90
|
Mondal S, Shet D, Prasanna C, Atreya HS. High yield expression of proteins in <i>E. coli</i> for NMR studies. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.46099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
91
|
Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding. Proc Natl Acad Sci U S A 2012; 109:15740-5. [PMID: 22961256 DOI: 10.1073/pnas.1204547109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperonin GroEL mediates the folding of protein encapsulated in a GroES-sealed cavity (cage). Recently, a critical role of negative charge clusters on the cage wall in folding acceleration was proposed based on experiments using GroEL single-ring (SR) mutants SR1 and SRKKK2 [Tang YC, et al. (2006) Cell 125:903-914; Chakraborty K, et al. (2010) Cell 142:112-122]. Here, we revisited these experiments and discovered several inconsistencies. (i) SR1 was assumed to bind to GroES stably and to mediate single-round folding in the cage. However, we show that SR1 repeats multiple turnovers of GroES release/binding coupled with ATP hydrolysis. (ii) Although the slow folding observed for a double-mutant of maltose binding protein (DMMBP) by SRKKK2 was attributed to mutations that neutralize negative charges on the cage wall, we found that the majority of DMMBP escape from SRKKK2 and undergo spontaneous folding in the bulk medium. (iii) An osmolyte, trimethylamine N-oxide, was reported to accelerate SRKKK2-mediated folding of DMMBP by mimicking the effect of cage-wall negative charges of WT GroEL and ordering the water structure to promote protein compaction. However, we demonstrate that in-cage folding by SRKKK2 is unaffected by trimethylamine N-oxide. (iv) Although it was reported that SRKKK2 lost the ability to assist the folding of ribulose-1,5-bisphosphate carboxylase/oxygenase, we found that SRKKK2 retains this ability. Our results argue against the role of the negative charges on the cage wall of GroEL in protein folding. Thus, in chaperonin studies, folding kinetics need to be determined from the fraction of the real in-cage folding.
Collapse
|
92
|
Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol Cell 2012; 48:63-74. [PMID: 22921937 DOI: 10.1016/j.molcel.2012.07.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/17/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023]
Abstract
How nascent polypeptides emerging from ribosomes fold into functional structures is poorly understood. Here, we monitor disulfide bond formation, protease resistance, and enzymatic activity in nascent polypeptides to show that in close proximity to the ribosome, conformational space and kinetics of folding are restricted. Folding constraints decrease incrementally with distance from the ribosome surface. Upon ribosome binding, the chaperone Trigger Factor counters folding also of longer nascent chains, to extents varying between different chain segments. Trigger Factor even binds and unfolds pre-existing folded structures, the unfolding activity being limited by the thermodynamic stability of nascent chains. Folding retardation and unfolding activities are not shared by the DnaK chaperone assisting later folding steps. These ribosome- and Trigger Factor-specific activities together constitute an efficient mechanism to prevent or even revert premature folding, effectively limiting misfolded intermediates during protein synthesis.
Collapse
Affiliation(s)
- Anja Hoffmann
- Center for Molecular Biology of the University of Heidelberg, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Tsai YCC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 2012; 287:20471-81. [PMID: 22518837 DOI: 10.1074/jbc.m112.365411] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)β(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.
Collapse
Affiliation(s)
- Yi-Chin C Tsai
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
94
|
Javidpour L, Sahimi M. Confinement in nanopores can destabilize α-helix folding proteins and stabilize the β structures. J Chem Phys 2012; 135:125101. [PMID: 21974560 DOI: 10.1063/1.3641482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein folding in confined media has attracted wide attention over the past decade due to its importance in both in vivo and in vitro applications. Currently, it is generally believed that protein stability increases by decreasing the size of the confining medium, if its interaction with the confining walls is repulsive, and that the maximum folding temperature in confinement occurs for a pore size only slightly larger than the smallest dimension of the folded state of a protein. Protein stability in pore sizes, very close to the size of the folded state, has not however received the attention that it deserves. Using detailed, 0.3-ms-long molecular dynamics simulations, we show that proteins with an α-helix native state can have an optimal folding temperature in pore sizes that do not affect the folded-state structure. In contradiction to the current theoretical explanations, we find that the maximum folding temperature occurs in larger pores for smaller α-helices. In highly confined pores the free energy surface becomes rough, and a new barrier for protein folding may appear close to the unfolded state. In addition, in small nanopores the protein states that contain the β structures are entropically stabilized, in contrast to the bulk. As a consequence, folding rates decrease notably and the free energy surface becomes rougher. The results shed light on many recent experimental observations that cannot be explained by the current theories, and demonstrate the importance of entropic effects on proteins' misfolded states in highly confined environments. They also support the concept of passive effect of chaperonin GroEL on protein folding by preventing it from aggregation in crowded environment of biological cells, and provide deeper clues to the α → β conformational transition, believed to contribute to Alzheimer's and Parkinson's diseases. The strategy of protein and enzyme stabilization in confined media may also have to be revisited in the case of tight confinement. For in silico studies of protein folding in confined media, use of non-Go potentials may be more appropriate.
Collapse
Affiliation(s)
- Leili Javidpour
- School of Physics, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5531, Iran
| | | |
Collapse
|
95
|
Hildenbrand ZL, Bernal RA. Chaperonin-Mediated Folding of Viral Proteins. VIRAL MOLECULAR MACHINES 2012; 726:307-24. [DOI: 10.1007/978-1-4614-0980-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
96
|
Amano KI, Oshima H, Kinoshita M. Potential of mean force between a large solute and a biomolecular complex: A model analysis on protein flux through chaperonin system. J Chem Phys 2011; 135:185101. [DOI: 10.1063/1.3657856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
97
|
Chaperone-assisted protein folding: the path to discovery from a personal perspective. Nat Med 2011; 17:1206-10. [PMID: 21989011 DOI: 10.1038/nm.2467] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
98
|
Kulkarni OP, Ryu M, Kantner C, Sárdy M, Naylor D, Lambert D, Brown R, Anders HJ. Recombinant chaperonin 10 suppresses cutaneous lupus and lupus nephritis in MRL-(Fas)lpr mice. Nephrol Dial Transplant 2011; 27:1358-67. [PMID: 21987536 DOI: 10.1093/ndt/gfr544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is still treated with global immunosuppressants with serious toxicities. We hypothesized that endogenous immunosuppressive molecules might be able to control SLE manifestations more specifically. Heat shock protein 10, or chaperonin 10 (Cpn10), is a secretory molecule that can suppress innate and adaptive immunity. METHODS Recombinant human Cpn10 (100 μg per mouse) was given intraperitoneally to healthy-appearing female MRL-(Fas)lpr mice from 12 to 22 weeks of age. At the age of 22 weeks, mice were analysed for treatment outcome by harvesting organs, plasma and urine. RESULTS Cpn10 entirely prevented cutaneous lupus lesions as compared to vehicle-treated mice. Cpn10 also suppressed lupus nephritis as evident from serum creatinine levels, albuminuria and the scores of disease activity and chronicity. Autoimmune lung disease was unaffected by Cpn10 treatment while overall survival of mice was prolonged. Cpn10 did not have any major effects on either dendritic cell or B-cell counts except T cells in spleen, plasma interferon-gamma, tumour necrosis factor-alpha, interleukin-10, anti-nuclear autoantibody levels or markers of lymphoproliferation. CONCLUSIONS In summary, recombinant Cpn10 selectively prevents cutaneous lupus and suppresses nephritis in MRL-(Fas)lpr mice without affecting the underlying systemic autoimmune process. Hence, Cpn10 might be useful for the treatment of skin and kidney manifestations of SLE.
Collapse
Affiliation(s)
- Onkar P Kulkarni
- Medizinische Poliklinik-Innenstadt, Department of Dermatology and Allergology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Tian J, Garcia AE. Simulation Studies of Protein Folding/Unfolding Equilibrium under Polar and Nonpolar Confinement. J Am Chem Soc 2011; 133:15157-64. [DOI: 10.1021/ja2054572] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianhui Tian
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E. Garcia
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
100
|
Abstract
Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.
Collapse
|