51
|
Franks W, Tosatti S, Heer F, Seif P, Textor M, Hierlemann A. Patterned cell adhesion by self-assembled structures for use with a CMOS cell-based biosensor. Biosens Bioelectron 2007; 22:1426-33. [PMID: 17055243 DOI: 10.1016/j.bios.2006.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/15/2006] [Indexed: 11/25/2022]
Abstract
A strategy for patterned cell adhesion based on chemical surface modification is presented. To confine cell adhesion to specific locations, an engineered surface for high-contrast protein adsorption and, hence, cell attachment has been developed. Surface functionalization is based on selective molecular-assembly patterning (SMAP). An amine-terminated self-assembled monolayer is used to define areas of cell adhesion. A protein-repellent grafted copolymer, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), is used to render the surrounding silicon dioxide resistant to protein adsorption. X-ray photoelectron spectroscopy, scanning ellipsometry and fluorescence microscopy techniques were used to monitor the individual steps of the patterning process. Successful guided growth using these layers is demonstrated with primary neonatal rat cardiomyocytes, up to 4 days in vitro, and with the HL-1 cardiomyocyte cell line, up to 7 days in vitro. The advantage of the presented method is that high-resolution engineered surfaces can be realized using a simple, cost-effective, dip-and-rinse process. The technique has been developed for application on a CMOS cell-based biosensor, which comprises an array of microelectrodes to extracellularly record electrical activity from cardiomyocytes.
Collapse
Affiliation(s)
- W Franks
- ETH Zürich, Physical Electronics Laboratory, ETH Hönggerberg, Wolfgang-Pauli-Strasse 16, HPT H 4.2, 8122 Binz bei Maur, Switzerland.
| | | | | | | | | | | |
Collapse
|
52
|
Ghezzi D, Pedrocchi A, Menegon A, Mantero S, Valtorta F, Ferrigno G. PhotoMEA: An opto-electronic biosensor for monitoring in vitro neuronal network activity. Biosystems 2007; 87:150-5. [PMID: 17027142 DOI: 10.1016/j.biosystems.2006.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/08/2006] [Accepted: 07/15/2006] [Indexed: 11/24/2022]
Abstract
PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.
Collapse
Affiliation(s)
- Diego Ghezzi
- Bioengineering Department, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
53
|
Abstracts of the 15th Annual Meeting of the Israel Society for Neuroscience (Eilat, Israel, December 3–5, 2006). Neural Plast 2007. [PMCID: PMC2377328 DOI: 10.1155/2007/73079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Israel Society for Neuroscience (ISFN) was founded in 1993 by a group of Israeli leading scientists conducting research in the area of neurobiology. The primary goal of the society was to promote and disseminate the knowledge and understanding acquired by its members, and to strengthen interactions between them. Since then, the society holds its annual meeting every year in Eilat during the month of December. At these annual meetings the senior Israeli neurobiologists, their teams, and their graduate students, as well as foreign scientists and students, present their recent research findings in platform and poster presentations. The meeting also offers the opportunity for the researchers to exchange information with each other, often leading to the initiation of collaborative studies. Both the number of members of the society and of those participating in the annual meeting is constantly increasing, and it is anticipated that this year about 600 scientists will convene at the Princess Hotel in Eilat, Israel. Further information concerning the Israel Society for Neuroscience can be found at http://www.isfn.org.il. Committee: Zvi Wollberg (President) Tel Aviv University Edi Barkai University of Haifa Etti Grauer Israel Institute for Biological Research, Ness Ziona Yoram Rami Grossman Ben Gurion University of the Negev Yoel Yaari Hebrew University of Jerusalem Gal Yadid Bar-Ilan University Shlomo Rotshenker (President Elect) Hebrew University of Jerusalem Ettie Grauer (Treasurer) Israel Institute for Biological Research, Ness Ziona Michal Gilady (Administrator) Rishon Le Zion
Collapse
|
54
|
Nam Y, Branch DW, Wheeler BC. Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures. Biosens Bioelectron 2006; 22:589-97. [PMID: 16531038 DOI: 10.1016/j.bios.2006.01.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/20/2006] [Accepted: 01/24/2006] [Indexed: 11/16/2022]
Abstract
Surface chemistry is one of the main factors that contributes to the longevity and compliance of cell patterning. Two to three weeks are required for dissociated, embryonic rat neuronal cultures to mature to the point that they regularly produce spontaneous and evoked responses. Though proper surface chemistry can be achieved through the use of covalent protein attachment, often it is not maintainable for the time periods necessary to study neuronal growth. Here we report a new and effective covalent linking approach using (3-glycidoxypropyl) trimethoxysilane (3-GPS) for creating long term neuronal patterns. Micrometer scale patterns of cell adhesive proteins were formed using microstamping; hippocampal neurons, cultured up to 1 month, followed those patterns. Cells did not grow on unmodified 3-GPS surfaces, producing non-permissive regions for the long-term cell patterning. Patterned neuronal networks were formed on two different types of MEA (polyimide or silicon nitride insulation) and maintained for 3 weeks. Even though the 3-GPS layer increased the impedance of metal electrodes by a factor of 2-3, final impedance levels were low enough that low noise extracellular recordings were achievable. Spontaneous neural activity was recorded as early as 10 days in vitro. Neural recording and stimulation were readily achieved from these networks. Our results showed that 3-GPS could be used on surfaces to immobilize biomolecules for a variety of neural engineering applications.
Collapse
Affiliation(s)
- Yoonkey Nam
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
55
|
Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science 2006; 313:1100-4. [PMID: 16931757 DOI: 10.1126/science.1128640] [Citation(s) in RCA: 477] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report electrical properties of hybrid structures consisting of arrays of nanowire field-effect transistors integrated with the individual axons and dendrites of live mammalian neurons, where each nanoscale junction can be used for spatially resolved, highly sensitive detection, stimulation, and/or inhibition of neuronal signal propagation. Arrays of nanowire-neuron junctions enable simultaneous measurement of the rate, amplitude, and shape of signals propagating along individual axons and dendrites. The configuration of nanowire-axon junctions in arrays, as both inputs and outputs, makes possible controlled studies of partial to complete inhibition of signal propagation by both local electrical and chemical stimuli. In addition, nanowire-axon junction arrays were integrated and tested at a level of at least 50 "artificial synapses" per neuron.
Collapse
Affiliation(s)
- Fernando Patolsky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Salomé R, Kremer Y, Dieudonné S, Léger JF, Krichevsky O, Wyart C, Chatenay D, Bourdieu L. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Methods 2006; 154:161-74. [PMID: 16458361 DOI: 10.1016/j.jneumeth.2005.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 12/10/2005] [Accepted: 12/10/2005] [Indexed: 11/20/2022]
Abstract
Two-photon scanning microscopy (TPSM) is a powerful tool for imaging deep inside living tissues with sub-cellular resolution. The temporal resolution of TPSM is however strongly limited by the galvanometric mirrors used to steer the laser beam. Fast physiological events can therefore only be followed by scanning repeatedly a single line within the field of view. Because acousto-optic deflectors (AODs) are non-mechanical devices, they allow access at any point within the field of view on a microsecond time scale and are therefore excellent candidates to improve the temporal resolution of TPSM. However, the use of AOD-based scanners with femtosecond pulses raises several technical difficulties. In this paper, we describe an all-digital TPSM setup based on two crossed AODs. It includes in particular an acousto-optic modulator (AOM) placed at 45 degrees with respect to the AODs to pre-compensate for the large spatial distortions of femtosecond pulses occurring in the AODs, in order to optimize the spatial resolution and the fluorescence excitation. Our setup allows recording from freely selectable point-of-interest at high speed (1kHz). By maximizing the time spent on points of interest, random-access TPSM (RA-TPSM) constitutes a promising method for multiunit recordings with millisecond resolution in biological tissues.
Collapse
Affiliation(s)
- R Salomé
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, UMR CNRS 8544, Ecole Normale Supérieure, Département de Biologie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Morin F, Nishimura N, Griscom L, Lepioufle B, Fujita H, Takamura Y, Tamiya E. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: A step towards neuron-based functional chips. Biosens Bioelectron 2006; 21:1093-100. [PMID: 15961304 DOI: 10.1016/j.bios.2005.04.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 04/05/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
In vitro culture of small neuronal networks with pre-defined topological features is particularly desirable when the electrical activity of such assemblies can be monitored for long periods of time. Indeed, it is hoped that such networks, with pre-determined connectivity, will provide unique insights into the structure/function relationship of biological neural networks and their properties of self-organization. However, the experimental techniques that have been developed so far for that purpose have either failed to provide very long-term pattern definition and retention, or they have not shown potential for integration into more complex microfluidic devices. To address this problem, three-dimensional microfluidic systems in poly(dimethylsiloxane) (PDMS) were fabricated and used in conjunction with both custom-made and commercially available planar microelectrode arrays (pMEAs). Various types of primary neuronal cell cultures were established inside these systems. Extracellular electrical signals were successfully recorded from all types of cells placed inside the patterns, and this bioelectrical activity was present for several weeks. The advantage of this approach is that it can be further integrated with microfluidic devices and pMEAs to yield, for example, complex neuron-based biosensors or chips for pharmacological screening.
Collapse
Affiliation(s)
- Fabrice Morin
- Japan Advanced Institute of Science and Technology, School of Chemical Materials Science, Japan.
| | | | | | | | | | | | | |
Collapse
|
58
|
Yvon C, Rubli R, Streit J. Patterns of spontaneous activity in unstructured and minimally structured spinal networks in culture. Exp Brain Res 2005; 165:139-51. [PMID: 15940497 DOI: 10.1007/s00221-005-2286-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 01/20/2005] [Indexed: 11/30/2022]
Abstract
The rhythmic activity observed in locomotion is generated by local neuronal networks in the spinal cord. The alternating patterns are produced by reciprocal connections between these networks. Synchronous rhythmic activity, but not alternation, can be reproduced in disinhibited networks of dissociated spinal neurons of rats. This suggests that a specific network architecture is required for pattern generation but not for rhythm generation. Here we were interested in the recruitment of neurons to produce population bursts in unstructured and minimally structured cultures of rat spinal cord grown on multielectrode arrays. We tested whether two networks, connected by a small number of axons, could be functionally separated into two units and generate more complex patterns such as alternation. In the unstructured cultures, we found that the recruitment of the neurons into bursting populations is divided into two steps: the fast recruitment of a "trigger network", consisting of intrinsically firing cells connected in networks with short delays, and slow recruitment of the rest of the network. One or several trigger networks were observed in a single culture and could account for variable patterns of propagation. In the minimally structured cultures, a functional separation between loosely connected networks was achieved. Such separation led either to an independent bursting between the networks or to synchronized bursting with long and variable delays. However, no qualitatively novel pattern such as alternation could be generated. In addition, we found that the strength of reciprocal inhibitory connections was modulated by spontaneous activity.
Collapse
Affiliation(s)
- Cédric Yvon
- Department of Physiology, Physiologisches Institut, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| | | | | |
Collapse
|
59
|
Wyart C, Cocco S, Bourdieu L, Léger JF, Herr C, Chatenay D. Dynamics of excitatory synaptic components in sustained firing at low rates. J Neurophysiol 2005; 93:3370-80. [PMID: 15673554 DOI: 10.1152/jn.00530.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sustained firing is necessary for the persistent activity associated with working memory. The relative contributions of the reverberation of excitation and of the temporal dynamics of the excitatory postsynaptic potential (EPSP) to the maintenance of activity are difficult to evaluate in classical preparations. We used simplified models of synchronous excitatory networks, hippocampal autapses and pairs, to study the synaptic mechanisms underlying firing at low rates. Calcium imaging and cell attached recordings showed that these neurons spontaneously fired bursts of action potentials that lasted for seconds over a wide range of frequencies. In 2-wk-old cells, the median firing frequency was low (11 +/- 8.8 Hz), whereas in 3- to 4-wk-old cells, it decreased to a very low value (2 +/- 1.3 Hz). In both cases, we have shown that the slowest synaptic component supported firing. In 2-wk-old autapses, antagonists of N-methyl-d-aspartate receptors (NMDARs) induced rare isolated spikes showing that the NMDA component of the EPSP was essential for bursts at low frequency. In 3- to 4-wk-old neurons, the very low frequency firing was maintained without the NMDAR activation. However EGTA-AM or alpha-methyl-4-carboxyphenylglycine (MCPG) removed the very slow depolarizing component of the EPSP and prevented the sustained firing at very low rate. A metabotropic glutamate receptor (mGluR)-activated calcium sensitive conductance is therefore responsible for a very slow synaptic component associated with firing at very low rate. In addition, our observations suggested that the asynchronous release of glutamate might participate also in the recurring bursting.
Collapse
Affiliation(s)
- Claire Wyart
- Laboratoire de Dynamique des Fluides Complexes, Unité 7506 Centre National de la Recherche Scientifique, Université Louis Pasteur, Institut de Physique, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
60
|
Micropatterning organosilane self-assembled monolayers with plasma etching and backfilling techniques. ACTA ACUST UNITED AC 2005. [DOI: 10.1116/1.1861041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
61
|
Sanjana NE, Fuller SB. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 2004; 136:151-63. [PMID: 15183267 DOI: 10.1016/j.jneumeth.2004.01.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/09/2004] [Accepted: 01/09/2004] [Indexed: 11/21/2022]
Abstract
We present a new technique that uses a custom-built ink-jet printer to fabricate precise micropatterns of cell adhesion materials for neural cell culture. Other work in neural cell patterning has employed photolithography or "soft lithographic" techniques such as micro-stamping, but such approaches are limited by their use of an un-alterable master pattern such as a mask or stamp master and can be resource-intensive. In contrast, ink-jet printing, used in low-cost desktop printers, patterns material by depositing microscopic droplets under robotic control in a programmable and inexpensive manner. We report the use of ink-jet printing to fabricate neuron-adhesive patterns such as islands and other shapes using poly(ethylene) glycol as the cell-repulsive material and a collagen/poly-D-lysine (PDL) mixture as the cell-adhesive material. We show that dissociated rat hippocampal neurons and glia grown at low densities on such patterns retain strong pattern adherence for over 25 days. The patterned neurons are comparable to control, un-patterned cells in electrophysiological properties and in immunocytochemical measurements of synaptic density and inhibitory cell distributions. We suggest that an inexpensive desktop printer may be an accessible tool for making micro-island cultures and other basic patterns. We also suggest that ink-jet printing may be extended to a range of developmental neuroscience studies, given its ability to more easily layer materials, build substrate-bound gradients, construct out-of-plane structure, and deposit sources of diffusible factors.
Collapse
Affiliation(s)
- Neville E Sanjana
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | |
Collapse
|
62
|
Romanova EV, Fosser KA, Rubakhin SS, Nuzzo RG, Sweedler JV. Engineering the morphology and electrophysiological parameters of cultured neurons by microfluidic surface patterning. FASEB J 2004; 18:1267-9. [PMID: 15208266 DOI: 10.1096/fj.03-1368fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to control the orientation, morphology, and electrophysiological characteristics of neurons in culture allows the construction of neural circuits with defined physiological properties. Using microfluidic protein deposition onto chemically modified glass, we achieve the controlled growth of Aplysia neurons on geometrical patterns of poly-L-lysine and collagen IV, surrounded by nonadhesive regions of bovine albumin. We investigate the parameters essential for forming functional neuronal networks, the morphology, biochemistry, and electrophysiology under engineered cell culture conditions. We demonstrate that not only the orientation of neurite extension but also the number of primary neurites originating from the cell soma, their length, and branching pattern depend on the spatial constraints presented by the size and shape of the adhesion region on the patterned substrate. In addition, the physicochemical properties of the support layer influence the electrical activity of the cultured neurons. Substrate-dependent changes in the amplitude and in the dynamic parameters of the action potential cause decreased spike broadening in patterned neurons, which reflects changes in the number or functioning of active membrane ion channels. In contrast to morphology and electrophysiology, the neuropeptide content, as determined by mass spectrometry of individual patterned neurons, is not affected by the growth on patterned surfaces. Our results suggest that the morphological and electrophysiological parameters of neurons can be predictably altered/engineered by modulation of the chemical, physical, and topographical features of culture substrates. We also demonstrate that a full suite of techniques is required for functional characterization of neurons on engineered substrates.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, Beckman Institute and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
63
|
Prasad S, Zhang X, Yang M, Ni Y, Parpura V, Ozkan CS, Ozkan M. Separation of individual neurons using dielectrophoretic alternative current fields. J Neurosci Methods 2004; 135:79-88. [PMID: 15020092 DOI: 10.1016/j.jneumeth.2003.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 12/09/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022]
Abstract
Experimental investigations into the dynamics of neuronal networks are a fundamental step towards understanding how the nervous system works. Memory formation and development are associated with changes in the electrical activity of the neurons. To understand the changes in the electrical activity, it is essential to conduct in vitro studies on individual neurons. Hence, there is an enormous need to develop novel ways for isolating and localizing individual neurons. To this end, we designed and fabricated a 4x4 multiple microelectrode array system to spatially arrange neurons by generating dielectrophoretic traps using gradient alternating current (AC) fields. We characterized the electric field distribution inside our test platform by using three-dimensional finite element modeling (FEM) and estimated the location of neurons over the electrode array. As the first stage in forming a neuronal network, dielectrophoretic AC fields were employed to separate the neurons from the glial cells and to position individual neurons over single electrodes. The extracellular electrical activity from a single neuron was recorded. The frequency spectrum of the electrical activity was generated using fast Fourier transformation analysis (FFT) to determine the characteristic burst rates of individual neurons.
Collapse
Affiliation(s)
- Shalini Prasad
- Department of Electrical Engineering, University of California Riverside, A 220 Bourns Hall, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Turcu F, Tratsk-Nitz K, Thanos S, Schuhmann W, Heiduschka P. Ink-jet printing for micropattern generation of laminin for neuronal adhesion. J Neurosci Methods 2004; 131:141-8. [PMID: 14659834 DOI: 10.1016/j.jneumeth.2003.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In order to achieve defined adhesion and neurite outgrowth, the growth substrate must be patterned in an appropriate way. We utilised ink-jet printing by means of a piezo-based microdispenser to create defined line patterns of a polymer with typical dimensions of 100 microm width on glass, silicon, gold and carbon substrates. Vinnapas, a co-polymer of vinyl acetate and ethylene, was mixed with the extracellular matrix protein laminin to achieve neuronal adhesion on the surface of the patterns. It could be demonstrated that the laminin entrapped in the polymer lines can be recognised by a specific antibody. Adhesion of embryonic chicken forebrain neurones is following the prepared lines, and identity of adhering cells could be shown by neurofilament staining. These findings open the route for the generation of complex small neuronal arrays and for the electrochemical investigation of the obtained neuronal matrix.
Collapse
Affiliation(s)
- Florin Turcu
- Anal Chem-Elektroanalytik & Sensorik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|