51
|
Hawkes CA, Gentleman SM, Nicoll JA, Carare RO. Prenatal high-fat diet alters the cerebrovasculature and clearance of β-amyloid in adult offspring. J Pathol 2015; 235:619-31. [PMID: 25345857 DOI: 10.1002/path.4468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) peptides in the extracellular spaces of the brain as plaques and in the walls of blood vessels as cerebral amyloid angiopathy (CAA). Failure of perivascular drainage of Aβ along cerebrovascular basement membranes contributes to the development of CAA. Mid-life hypercholesterolaemia is a risk factor for the development of AD. Maternal obesity is associated with the development of obesity, hypertension and hypercholesterolaemia in adulthood, suggesting that the risk for AD and CAA may also be influenced by the early-life environment. In the present study, we tested the hypothesis that early-life exposure to a high-fat diet results in changes to the cerebrovasculature and failure of Aβ clearance from the brain. We also assessed whether vascular Aβ deposition is greater in the brains of aged humans with a history of hyperlipidaemia, compared to age-matched controls with normal lipidaemia. Using a mouse model of maternal obesity, we found that exposure to a high-fat diet during gestation and lactation induced changes in multiple components of the neurovascular unit, including a down-regulation in collagen IV, fibronectin and apolipoprotein E, an up-regulation in markers of astrocytes and perivascular macrophages and altered blood vessel morphology in the brains of adult mice. Sustained high-fat diet over the entire lifespan resulted in additional decreases in levels of pericytes and impaired perivascular clearance of Aβ from the brain. In humans, vascular Aβ load was significantly increased in the brains of aged individuals with a history of hypercholesterolaemia. These results support a critical role for early dietary influence on the brain vasculature across the lifespan, with consequences for the development of age-related cerebrovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | | | | | | |
Collapse
|
52
|
Bridges LR, Andoh J, Lawrence AJ, Khoong CHL, Poon W, Esiri MM, Markus HS, Hainsworth AH. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people. J Neuropathol Exp Neurol 2014; 73:1026-1033. [PMID: 25289893 PMCID: PMC4209852 DOI: 10.1097/nen.0000000000000124] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.
Collapse
Affiliation(s)
- Leslie R Bridges
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
- Cellular Pathology, St. George's Healthcare NHS Trust, London, UK
| | - Joycelyn Andoh
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
| | - Andrew J Lawrence
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
- Department of Neurology, University of Cambridge, UK
| | - Cheryl H L Khoong
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
| | - Margaret M Esiri
- Neuropathology, Oxford-Radcliffe NHS Trust, Oxford, UK
- Clinical Neurology, Oxford University, John Radcliffe Hospital, Oxford, UK
| | - Hugh S Markus
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
- Department of Neurology, University of Cambridge, UK
| | - Atticus H Hainsworth
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
| |
Collapse
|
53
|
Morris AWJ, Carare RO, Schreiber S, Hawkes CA. The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy. Front Aging Neurosci 2014; 6:251. [PMID: 25285078 PMCID: PMC4168721 DOI: 10.3389/fnagi.2014.00251] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), the accumulation of β-amyloid (Aβ) peptides in the walls of cerebral blood vessels, is observed in the majority of Alzheimer’s disease (AD) brains and is thought to be due to a failure of the aging brain to clear Aβ. Perivascular drainage of Aβ along cerebrovascular basement membranes (CVBMs) is one of the mechanisms by which Aβ is removed from the brain. CVBMs are specialized sheets of extracellular matrix that provide structural and functional support for cerebral blood vessels. Changes in CVBM composition and structure are observed in the aged and AD brain and may contribute to the development and progression of CAA. This review summarizes the properties of the CVBM, its role in mediating clearance of interstitial fluids and solutes from the brain, and evidence supporting a role for CVBM in the etiology of CAA.
Collapse
Affiliation(s)
- Alan W J Morris
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton , Southampton , UK
| | - Roxana O Carare
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton , Southampton , UK
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University , Magdeburg , Germany ; German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association , Magdeburg , Germany
| | - Cheryl A Hawkes
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton , Southampton , UK
| |
Collapse
|
54
|
Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 2014; 8:231. [PMID: 25177270 PMCID: PMC4132372 DOI: 10.3389/fncel.2014.00231] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.
Collapse
Affiliation(s)
- Rafael Andres Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá D.C., Colombia
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| |
Collapse
|
55
|
Steiner E, Enzmann GU, Lyck R, Lin S, Rüegg MA, Kröger S, Engelhardt B. The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res 2014; 358:465-79. [PMID: 25107608 PMCID: PMC4210653 DOI: 10.1007/s00441-014-1969-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023]
Abstract
Barrier characteristics of brain endothelial cells forming the blood–brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.
Collapse
Affiliation(s)
- Esther Steiner
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Neural extracellular matrix (ECM) is different from the normal ECM in other organs in that it has low fibrous protein content and high carbohydrate content. One of the key carbohydrate components in the brain ECM is chondroitin sulfate proteoglycans (CSPGs). Over the last two decades, the view of CSPGs has changed drastically, from the initial regeneration inhibitor to plasticity regulators present in the perineuronal nets to the most recent view that certain CSPG isoforms may even be growth promoters. In this chapter, we aim to address a few current progresses of CSPGs in regulating plasticity and rehabilitation in various pathological conditions in the central nervous system.
Collapse
|
57
|
Mizee MR, de Vries HE. Blood-brain barrier regulation: Environmental cues controlling the onset of barrier properties. Tissue Barriers 2013; 1:e26882. [PMID: 24868496 PMCID: PMC3943847 DOI: 10.4161/tisb.26882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 01/09/2023] Open
Abstract
The existence of a barrier between the central nervous system (CNS) and the systemic circulation has been described over one hundred years ago. Since the discovery that this barrier was instigated by the barrier properties of the brain endothelial cells, research has focused on the identification of pathways how the brain endothelial cells are instructed to form the highly specialized blood-brain barrier (BBB). Even though our current understanding of BBB development is far from complete, recent literature shows a rise in knowledge of CNS-specific cues that can drive BBB development.
In this commentary, we will provide a brief overview of brain selective factors that are critical in the development of barrier properties in the brain endothelium; in particular the role of retinoic acid will be discussed.
Collapse
Affiliation(s)
- Mark Ronald Mizee
- Department of Molecular Cell Biology and Immunology (MCBI); Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam, The Netherlands
| | - Helga Eveline de Vries
- Department of Molecular Cell Biology and Immunology (MCBI); Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam, The Netherlands
| |
Collapse
|
58
|
Won SY, Kim SR, Maeng S, Jin BK. Interleukin-13/Interleukin-4-induced oxidative stress contributes to death of prothrombinkringle-2 (pKr-2)-activated microglia. J Neuroimmunol 2013; 265:36-42. [PMID: 24090651 DOI: 10.1016/j.jneuroim.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/28/2023]
Abstract
The present study examined whether Interleukin-13 (IL-13) or IL-4, an anti-inflammatory cytokine, could induce cell death of activated microglia by prothrombin kringle-2 (pKr-2) which is a domain of prothrombin distinct from thrombin. Microglia cell death was detected at eight days after co-treatment of pKr-2 with IL-13/IL-4 in vitro. This cell death was assessed by live assay, dead assay, TUNEL and MTT assay. In parallel, reactive oxygen species (ROS) production was evident as assessed by superoxide assay, WST-1 and analyzing DCF in combination of pKr-2 and IL-13 or IL-4 treated microglia. The IL-13/IL-4-enhanced ROS production and cell death in pKr-2 activated microglia was partially inhibited by an NADPH oxidase inhibitor, apocynin and/or by several antioxidants. Moreover, Western blot analysis showed a significant increase in cyclooxygenase-2 (COX-2) expression in combination of pKr-2 and IL-13 or IL-4 treated microglia, which was partially inhibited by apocynin and an antioxidant, trolox. Additional studies demonstrated that microglia cell death was reversed by treatment with COX-2 inhibitor, NS398. Our data strongly suggest that oxidative stress and COX-2 activation through NADPH oxidase may contribute to IL-13/IL-4 induced cell death of pKr-2 activated microglia.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Medical Research Center, Chungbuk National University College of Medicine, Cheongju 361-763, South Korea
| | | | | | | |
Collapse
|
59
|
Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39:593-611. [DOI: 10.1111/nan.12042] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Affiliation(s)
- R. O. Carare
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - C. A. Hawkes
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - M. Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA); Bush Loan Penicuik; Edinburgh; UK
| | - R. N. Kalaria
- Centre for Brain Ageing & Vitality; Institute for Ageing and Health; Newcastle University; Newcastle Upon Tyne; UK
| | - R. O. Weller
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| |
Collapse
|
60
|
Cheng L, Quek CYJ, Sun X, Bellingham SA, Hill AF. The detection of microRNA associated with Alzheimer's disease in biological fluids using next-generation sequencing technologies. Front Genet 2013; 4:150. [PMID: 23964286 PMCID: PMC3737441 DOI: 10.3389/fgene.2013.00150] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/21/2013] [Indexed: 02/06/2023] Open
Abstract
Diagnostic tools for neurodegenerative diseases such as Alzheimer's disease (AD) currently involve subjective neuropsychological testing and specialized brain imaging techniques. While definitive diagnosis requires a pathological brain evaluation at autopsy, neurodegenerative changes are believed to begin years before the clinical presentation of cognitive decline. Therefore, there is an essential need for reliable biomarkers to aid in the early detection of disease in order to implement preventative strategies. microRNAs (miRNA) are small non-coding RNA species that are involved in post-transcriptional gene regulation. Expression levels of miRNAs have potential as diagnostic biomarkers as they are known to circulate and tissue specific profiles can be identified in a number of bodily fluids such as plasma, CSF and urine. Recent developments in deep sequencing technology present a viable approach to develop biomarker discovery pipelines in order to profile miRNA signatures in bodily fluids specific to neurodegenerative diseases. Here we review the potential use of miRNA deep sequencing in biomarker identification from biological fluids and its translation into clinical practice.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Molecular Biology, The University of Melbourne Melbourne, VIC, Australia ; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
61
|
Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain. Aging Cell 2013; 12:224-36. [PMID: 23413811 DOI: 10.1111/acel.12045] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2012] [Indexed: 12/25/2022] Open
Abstract
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD.
Collapse
Affiliation(s)
- Cheryl A. Hawkes
- Faculty of Medicine; South Lab and Pathology Block; Southampton General Hospital; University of Southampton; Southampton; SO16 6YD; UK
| | - Maureen Gatherer
- Faculty of Medicine; South Lab and Pathology Block; Southampton General Hospital; University of Southampton; Southampton; SO16 6YD; UK
| | - Matthew M. Sharp
- Faculty of Medicine; South Lab and Pathology Block; Southampton General Hospital; University of Southampton; Southampton; SO16 6YD; UK
| | - Adrienne Dorr
- Sunnybrook Research Institute; 2075 Bayview Avenue; Toronto; Ontario; M4N 3M5; Canada
| | - Ho Ming Yuen
- Faculty of Medicine; South Lab and Pathology Block; Southampton General Hospital; University of Southampton; Southampton; SO16 6YD; UK
| | - Rajesh Kalaria
- Centre for Vitality and Ageing; Newcastle University; Newcastle upon Tyne; NE4 5PL; UK
| | - Roy O. Weller
- Faculty of Medicine; South Lab and Pathology Block; Southampton General Hospital; University of Southampton; Southampton; SO16 6YD; UK
| | - Roxana O. Carare
- Faculty of Medicine; South Lab and Pathology Block; Southampton General Hospital; University of Southampton; Southampton; SO16 6YD; UK
| |
Collapse
|
62
|
Askarova S, Tsoy A, Shalakhmetova T, Lee JCM. Effects of Amyloid Beta Peptide on Neurovascular Cells. Cent Asian J Glob Health 2013; 1:4. [PMID: 29755858 PMCID: PMC5927754 DOI: 10.5195/cajgh.2012.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder, which is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in specific regions of the brain, accompanied by impairment of the neurons, and progressive deterioration of cognition and memory of affected individuals. Although the cause and progression of AD are still not well understood, the amyloid hypothesis is dominant and widely accepted. According to this hypothesis, an increased deposition of amyloid-β peptide (Aβ) in the brain is the main cause of the AD’s onset and progression. There is increasing body of evidence that blood-brain barrier (BBB) dysfunction plays an important role in the development of AD, and may even precede neuron degeneration in AD brain. In the early stage of AD, microvasculature deficiencies, inflammatory reactions, surrounding the cerebral vasculature and endothelial dysfunctions are commonly observed. Continuous neurovascular degeneration and accumulation of Aβ on blood vessels resulting in cerebral amyloid angiopathy is associated with further progression of the disease and cognitive decline. However, little is known about molecular mechanisms that underlie Aβ induced damage of neurovascular cells. In this regards, this review is aimed to address how Aβ impacts the cerebral endothelium. Understanding the cellular pathways triggered by Aβ leading to alterations in cerebral endothelial cells structure and functions would provide insights into the mechanism of BBB dysfunction and inflammatory processes in Alzheimer’s, and may offer new approaches for prevention and treatment strategies for AD.
Collapse
Affiliation(s)
- Sholpan Askarova
- Nazarbayev University, Center for Life Sciences, Astana, Kazakhstan
| | - Andrey Tsoy
- Nazarbayev University, Center for Life Sciences, Astana, Kazakhstan.,Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - James C-M Lee
- Department of Biological Engineering, University of Missouri
| |
Collapse
|
63
|
The disturbed blood–brain barrier in human glioblastoma. Mol Aspects Med 2012; 33:579-89. [DOI: 10.1016/j.mam.2012.02.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 12/15/2022]
|
64
|
Liu M, Kuhel DG, Shen L, Hui DY, Woods SC. Apolipoprotein E does not cross the blood-cerebrospinal fluid barrier, as revealed by an improved technique for sampling CSF from mice. Am J Physiol Regul Integr Comp Physiol 2012; 303:R903-8. [PMID: 22933021 DOI: 10.1152/ajpregu.00219.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is important in lipoprotein metabolism both peripherally and centrally. Because it is primarily produced in the liver, apoE observed in the brain or cerebrospinal fluid (CSF) could have originated in the periphery; i.e., circulating apoE may cross the blood-brain barrier (BBB) and/or enter CSF and be taken up by brain cells. To determine whether this occurs, a second-generation adenovirus encoding human apoE3 was administered intravenously (iv) to C57BL/6J mice, and the detection of human apoE3 in the CSF was used as a surrogate measure of central availability of this protein utilizing an improved method for sampling CSF from mice. This improved technique collects mouse CSF samples with a 92% success rate and consistently yields relatively large volumes of CSF with a very low rate of blood contamination, as determined by molecular assessment of apolipoprotein B, a plasma-derived protein that is absent in the central nervous system. Through this improved method, we demonstrated that in mice receiving the administered apoE3 adenovirus, human apoE3 was expressed at high levels in the liver, leading to high levels of human apoE3 in mouse plasma. In contrast, human apoE3 levels in the CSF, as assessed by a sensitive ELISA, were essentially undetectable in human apoE3 adenovirus-treated mice, and comparable to levels in LacZ adenovirus-treated control mice. These data indicate that apoE in the CSF cannot be derived from the plasma pool and, therefore, must be synthesized locally in the brain.
Collapse
Affiliation(s)
- Min Liu
- Dept. of Pathology and Laboratory Medicine, Univ. of Cincinnati College of Medicine, Cincinnati, Ohio 45237-0507, USA.
| | | | | | | | | |
Collapse
|
65
|
Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 2012; 71:1018-39. [PMID: 21780303 DOI: 10.1002/dneu.20954] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is formed primarily to protect the brain microenvironment from the influx of plasma components, which may disturb neuronal functions. The BBB is a functional unit that consists mainly of specialized endothelial cells (ECs) lining the cerebral blood vessels, astrocytes, and pericytes. The BBB is a dynamic structure that is altered in neurologic diseases, such as stroke. ECs and astrocytes secrete extracellular matrix (ECM) proteins to generate and maintain the basement membranes (BMs). ECM receptors, such as integrins and dystroglycan, are also expressed at the brain microvasculature and mediate the connections between cellular and matrix components in physiology and disease. ECM proteins and receptors elicit diverse molecular signals that allow cell adaptation to environmental changes and regulate growth and cell motility. The composition of the ECM is altered upon BBB disruption and directly affects the progression of neurologic disease. The purpose of this review is to discuss the dynamic changes of ECM composition and integrin receptor expression that control BBB functions in physiology and pathology.
Collapse
Affiliation(s)
- Kim M Baeten
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
66
|
Changes in brain β-amyloid deposition and aquaporin 4 levels in response to altered agrin expression in mice. J Neuropathol Exp Neurol 2012; 70:1124-37. [PMID: 22082664 DOI: 10.1097/nen.0b013e31823b0b12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Conditions that compromise the blood-brain barrier (BBB) have been increasingly implicated in the pathogenesis of Alzheimer disease (AD). AGRIN is a heparan sulfate proteoglycan found abundantly in basement membranes of the cerebral vasculature, where it has been proposed to serve a functional role in the BBB. Furthermore, AGRIN is the major heparan sulfate proteoglycan associated with amyloid plaques in AD brains. To examine the relationship of AGRIN, the BBB, and AD-related pathologies, we generated mice in which the Agrn gene was deleted from either endothelial cells or neurons using gene targeting or was overexpressed using a genomic transgene construct. These mice were combined with a transgenic model of AD that over expresses disease-associated forms of amyloid precursor protein and presenilin 1. In mice lacking endothelial cell expression of Agrn, the BBB remained intact but aquaporin 4 levels were reduced, indicating that the loss of AGRIN affects BBB-associated components. This change in Agrn resulted in an increase in β-amyloid (Aβ) in the brain. Conversely, overexpression of Agrn decreased Aβ deposition, whereas elimination of Agrn from neurons did not change Aβ levels. These results indicate that AGRIN is important for maintaining BBB composition and that changes in Agrn expression (particularly vessel-associated AGRIN) influence Aβ homeostasis in mouse models of AD.
Collapse
|
67
|
Dynamics of expression patterns of AQP4, dystroglycan, agrin and matrix metalloproteinases in human glioblastoma. Cell Tissue Res 2012; 347:429-41. [PMID: 22307776 DOI: 10.1007/s00441-011-1321-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
In human glioblastoma, the blood-brain barrier (BBB) is disturbed. According to our concept, the glio-vascular relationships and thus the control of the BBB are essentially dependent on the polarity of astroglial cells. This polarity is characterized by the uneven distribution of the water channel protein aquaporin-4 (AQP4), dystroglycan and other molecules. Recently, we were able to show that the extracellular matrix component agrin is important for the construction and localization of the so-called orthogonal arrays of particles (OAPs), which consist in AQP4. Here, combining freeze-fracture electron microscopy, immunohistochemistry and Western blotting, we describe alterations of expression and distribution of AQP4, dystroglycan, agrin and the matrix metalloproteinases (MMP) 2, 3 and 9 in human primary glioblastomas (eight primary tumours, six recurrent tumours). Increase of MMP3- and MMP2/9 immunoreactivities went along with loss of agrin and dystroglycan respectively. On the protein level, AQP4 expression was increased in glioblastoma compared to control tissue. This was not accompanied by an increase of OAPs, suggesting that AQP4 can also occur without forming OAPs. The results underline our concept of the loss of glioma cell polarity as one of the factors responsible for the disturbance of the neurovascular unit and as an explanation for the formation of edemas in the glioblastoma.
Collapse
|
68
|
Chalbot S, Zetterberg H, Blennow K, Fladby T, Andreasen N, Grundke-Iqbal I, Iqbal K. Blood-cerebrospinal fluid barrier permeability in Alzheimer's disease. J Alzheimers Dis 2011; 25:505-15. [PMID: 21471645 DOI: 10.3233/jad-2011-101959] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of blood-cerebrospinal fluid barrier (BCB) dysfunction in Alzheimer's disease (AD) has been addressed but not yet established. We evaluated the BCB integrity in 179 samples of cerebrospinal fluid (CSF) retrospectively collected from AD patients and control cases using both CSF/serum albumin ratio (QAlb) and CSF secretory Ca2+-dependent phospholipase A2 (sPLA2) activity. These analyses were supplemented with the measurement of total tau, amyloid-β1-42 (Aβ1-42), and ubiquitin CSF levels. We found that due to its higher sensitivity, CSF sPLA2 activity could 1) discriminate AD from healthy controls and 2) showed BCB impairment in neurological control cases while QAlb could not. Moreover, the CSF sPLA2 activity measurement showed that around half of the AD patients were characterized by a BCB impairment. The BCB dysfunction observed in AD was independent from Mini-Mental State Examination score as well as CSF levels of total tau, Aβ1-42, and ubiquitin. Finally, the BCB dysfunction was not limited to any of the CSF biomarkers-based previously identified subgroups of AD. These results suggest that the BCB damage occurs independent of and probably precedes both Aβ and tau pathologies in a restricted subgroup of AD patients.
Collapse
Affiliation(s)
- Sonia Chalbot
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314-6399, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Askarova S, Yang X, Sheng W, Sun GY, Lee JCM. Role of Aβ-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A₂ activation in astrocytes and cerebral endothelial cells. Neuroscience 2011; 199:375-85. [PMID: 21978883 DOI: 10.1016/j.neuroscience.2011.09.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 12/22/2022]
Abstract
Blood-brain barrier (BBB) dysfunctions have been implicated in the progression of Alzheimer's disease. Cerebral endothelial cells (CECs) and astrocytes are the main cell components of the BBB. Although amyloid-β oligomers (Aβ₄₂) have been reported to mediate oxidative damage to the CECs and astrocytes and trigger the downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, the cell surface binding site for Aβ₄₂ and exact sequence of these events have yet to be elucidated. In this study, the receptor for advanced glycation endproducts (RAGE) was postulated to function as a signal transducing cell surface receptor for Aβ₄₂ to induce reactive oxygen species (ROS) generation from NADPH oxidase and trigger downstream pathways for the phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A₂ (cPLA₂). We found that Aβ₄₂ competed with the anti-RAGE antibody (Ab(RAGE)) to bind to RAGE on the surfaces of CECs and primary astrocytes. In addition, Ab(RAGE) abrogate Aβ₄₂-induced ROS production and the colocalization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase in both cell types. Ab(RAGE) as well as NADPH oxidase inhibitor and ROS scavenger suppressed Aβ₄₂-induced ERK1/2 and cPLA₂ phosphorylation in CECs. At the same time, only Ab(RAGE), but neither NADPH oxidase inhibitor nor ROS scavenger, inhibited the ERK1/2 pathway and cPLA₂ phosphorylation in primary astrocytes. Therefore, this study demonstrates that NADPH oxidase complex assembly and ROS production are not required for Aβ₄₂ binding to RAGE at astrocytic surface leading to sequential phosphorylation of ERK1/2 and cPLA₂, and suggests the presence of two different RAGE-dependent downstream pathways in the CECs and astrocytes.
Collapse
Affiliation(s)
- S Askarova
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
70
|
Anderson PJ, Watts H, Hille C, Philpott K, Clark P, Gentleman MCS, Jen LS. Glial and endothelial blood-retinal barrier responses to amyloid-beta in the neural retina of the rat. Clin Ophthalmol 2011; 2:801-16. [PMID: 19668434 PMCID: PMC2699783 DOI: 10.2147/opth.s3967] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effects of an intravitreal or subretinal injection of soluble or aggregated forms of Abeta(1-42) on retinal nestin-immunoreactivity (-IR) and glial fibrillary acidic protein (GFAP)-IR in astrocytes and Müller glial cells and the integrity of the blood-retinal barrier (BRB) were tested in the in vivo rat vitreal-retinal model. Retinas were exposed for 1, 2, 3, 5 or 30 days. We present novel data demonstrating that aggregated Abeta(1-42) up-regulates nestin-IR in astrocytes and Müller cells, with a graded response directly related to the length of pre-injection aggregation time. Similar results were obtained with GFAP-IR, but the signal was weaker. An intravitreal injection of aggregated Abeta(1-42) led to VEGF-IR up-regulation, particularly in the GCL and to a lesser extent in the INL. VEGFR1-IR (Flt1) was also increased, particularly in Müller cells and this was accompanied by marked leakage of albumin into the retinal parenchyma of the injected eye, but not in the contralateral eye.
Collapse
|
71
|
The blood-brain barrier and microvascular water exchange in Alzheimer's disease. Cardiovasc Psychiatry Neurol 2011; 2011:615829. [PMID: 21687589 PMCID: PMC3114411 DOI: 10.1155/2011/615829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/12/2011] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Although traditionally considered a disease of neurofibrillary tangles and amyloid plaques, structural and functional changes in the microvessels may contribute directly to the pathogenesis of the disease. Since vascular dysfunction often precedes cognitive impairment, understanding the role of the blood-brain barrier (BBB) in AD may be key to rational treatment of the disease. We propose that water regulation, a critical function of the BBB, is disturbed in AD and results in abnormal permeability and rates of water exchange across the vessel walls. In this paper, we describe some of the pathological events that may disturb microvascular water exchange in AD and examine the potential of a relatively new imaging technique, dynamic contrast-enhanced MRI, to quantify water exchange on a cellular level and thus serve as a probe of BBB integrity in AD.
Collapse
|
72
|
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:1-41. [PMID: 21414585 DOI: 10.1016/b978-0-12-386043-9.00001-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthogonal arrays or assemblies of intramembranous particles (OAPs) are structures in the membrane of diverse cells which were initially discovered by means of the freeze-fracturing technique. This technique, developed in the 1960s, was important for the acceptance of the fluid mosaic model of the biological membrane. OAPs were first described in liver cells, and then in parietal cells of the stomach, and most importantly, in the astrocytes of the brain. Since the discovery of the structure of OAPs and the identification of OAPs as the morphological equivalent of the water channel protein aquaporin-4 (AQP4) in the 1990s, a plethora of morphological work on OAPs in different cells was published. Now, we feel a need to balance new and old data on OAPs and AQP4 to elucidate the interrelationship of both structures and molecules. In this review, the identity of OAPs as AQP4-based structures in a diversity of cells will be described. At the same time, arguments are offered that under pathological or experimental circumstances, AQP4 can also be expressed in a non-OAP form. Thus, we attempt to project classical work on OAPs onto the molecular biology of AQP4. In particular, astrocytes and glioma cells will play the major part in this review, not only due to our own work but also due to the fact that most studies on structure and function of AQP4 were done in the nervous system.
Collapse
Affiliation(s)
- Hartwig Wolburg
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
73
|
Pomponi MF, Gambassi G, Pomponi M, Di Gioia A, Masullo C. Why docosahexaenoic acid and aspirin supplementation could be useful in women as a primary prevention therapy against Alzheimer's disease? Ageing Res Rev 2011; 10:124-31. [PMID: 20920611 DOI: 10.1016/j.arr.2010.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/12/2010] [Accepted: 09/16/2010] [Indexed: 12/21/2022]
Abstract
The assumption that disease specific risk factors are similar or the same in men and women may lead to incorrect primary prevention strategies. This study focused on the evaluation of gender-specific Alzheimer's disease (AD) risk factors. In AD, female gender appears to be an important risk factor associated with the aberrant production of beta amyloid (βA) peptides. Although decreased levels in plasma DHA concentration are associated with cognitive decline in healthy elderly and Alzheimer's patients, pre-treatment with DHA significantly reduced the survival of cortical neurons incubated with beta amyloid (βA). Hence, in the presence of an increasing amount of βA, paradoxically women - who have higher plasma levels of DHA - are more likely to develop AD. Aspirin (ASA) converts cyclooxygenase (COX)-2 into a form that generates new neuroprotective docosanoids from DHA; therefore, ASA might positively resolve the paradoxical effect of the concomitant presence of DHA and βA.
Collapse
|
74
|
Ferrer I. Cognitive impairment of vascular origin: neuropathology of cognitive impairment of vascular origin. J Neurol Sci 2010; 299:139-49. [PMID: 20846674 DOI: 10.1016/j.jns.2010.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/15/2010] [Accepted: 08/24/2010] [Indexed: 12/31/2022]
Abstract
The term cognitive impairment of vascular origin is used to designate global cognitive deficits as well as focal neurological deficits such as aphasia, apraxia and agnosia of vascular/circulatory origin. It has been useful for identifying early clinical and neuroradiological alterations that might permit therapeutic strategies geared to curbing the progression of cerebrovascular disease. Multi-infarct encephalopathy, infarcts in strategic areas, lacunae and lacunar status, Binswanger's encephalopathy, hippocampal sclerosis, cortical granular atrophy and watershed infarcts are common lesions. Hypertension and vascular diseases such as arteriosclerosis, small blood vessel disease, inflammatory diseases of the blood vessels, Sneddon syndrome, cerebral amyloid angiopathies, cerebral autosomic dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and Maeda's syndrome are causative of cognitive impairment of vascular origin. Other less common causes are hereditary endotheliopathy with retinopathy, neuropathy and strokes (HERNS), cerebro-retinian vasculopathy (CRV), hereditary vascular retinopathy (HVR) (all three linked to 3p21.1-p21.3), hereditary infantile hemiparesis with arteriolar retinopathy and leukoencephalopathy (HIHRATL) (not linked to 3p21), fibromuscular dysplasia, and moya-moya disease. Lack of uniformity of clinical manifestations, the variety of vascular diseases and circulatory factors, the diverse, but often convergent, neuropathological substrates, and the common association with unrelated neurodegenerative diseases in the elderly, make it hard to assume a single clinical approach in the diagnosis and treatment of cognitive impairment of vascular origin. Rather, environmental and genetic risk factors, underlying vascular diseases, associated systemic, metabolic and neurodegenerative diseases and identification of extent and distribution of lesions with morphological and functional neuroimaging methods should be applied in every individual patient.
Collapse
Affiliation(s)
- Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, 08907 Hospitalet de LLobregat, Spain.
| |
Collapse
|
75
|
Kim SR, Chung ES, Bok E, Baik HH, Chung YC, Won SY, Joe E, Kim TH, Kim SS, Jin MY, Choi SH, Jin BK. Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation. J Neurosci Res 2010; 88:1537-48. [PMID: 20025058 DOI: 10.1002/jnr.22318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have shown that prothrombin kringle-2 (pKr-2), a domain of human prothrombin distinct from thrombin could activate cultured rat brain microglia in vitro. However, little is known whether pKr-2-induced microglial activation could cause neurotoxicity on dopaminergic (DA) neurons in vivo. To address this question, pKr-2 was injected into the rat substantia nigra (SN). Tyrosine hydroxylase (TH) immunohistochemistry experiments demonstrate significant loss of DA neurons seven days after injection of pKr-2. In parallel, pKr-2-activated microglia were detected in the SN with OX-42 and OX-6 immunohistochemistry. Reverse transcription PCR and double-label immunohistochemistry revealed that activated microglia in vivo exhibit early and transient expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and several proinflammatory cytokines. The pKr-2-induced loss of SN DA neurons was partially inhibited by the NOS inhibitor N(G)-nitro-L-arginine methyl ester hydrochloride, and the COX-2 inhibitor DuP-697. Extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were activated in the SN as early as 1 hr after pKr-2 injection, and localized within microglia. Inhibition of these kinases led to attenuation of mRNA expression of iNOS, COX-2 and several proinflammatory cytokines, and rescue of DA neurons in the SN. Intriguingly, following treatment with pKr-2 in vitro, neurotoxicity was detected exclusively in co-cultures of mesencephalic neurons and microglia, but not microglia-free neuron-enriched mesencephalic cultures, indicating that microglia are required for pKr-2 neurotoxicity. Our results strongly suggest that microglia activated by endogenous compound(s), such as pKr-2, are implicated in the DA neuronal cell death in the SN.
Collapse
Affiliation(s)
- Sang Ryong Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Membrane biophysics and mechanics in Alzheimer's disease. Mol Neurobiol 2010; 41:138-48. [PMID: 20437210 DOI: 10.1007/s12035-010-8121-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/17/2010] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a chronic neurodegenerative disorder characterized by neuronal loss, cerebrovascular inflammation, and accumulation of senile plaques in the brain parenchyma and cerebral blood vessels. Amyloid-beta peptide (Abeta), a major component of senile plaques, has been shown to exert multiple toxic effects to neurons, astrocytes, glial cells, and brain endothelium. Oligomeric Abeta can disturb the structure and function of cell membranes and alter membrane mechanical properties, such as membrane fluidity and molecular order. Much of these effects are attributed to their capability to trigger oxidative stress and inflammation. In this review, we discuss the effects of Abeta on neuronal cells, astrocytes, and cerebral endothelial cells with special emphasis on cell membrane properties and cell functions.
Collapse
|
77
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2010; 61:198-223. [PMID: 19549927 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
78
|
Park KW, Baik HH, Jin BK. IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 183:4666-74. [PMID: 19752235 DOI: 10.4049/jimmunol.0803392] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we investigated the effects of IL-13, a well-known anti-inflammatory cytokine, on the thrombin-treated hippocampus in vivo. NeuN immunohistochemistry and Nissl staining revealed significant loss of hippocampal CA1 neurons upon intrahippocampal injection of thrombin. This neurotoxicity was accompanied by substantial microglial activation, as evident from OX-42 immunohistochemistry results. In parallel, Western blot analysis and hydroethidine histochemistry disclosed activation of NADPH oxidase, generation of reactive oxygen species, and oxidative damage in the hippocampal CA1 area showing hippocampal neuron degeneration. Interestingly, immunohistochemical and biochemical experiments showed that intrahippocampal injection of thrombin increased IL-13 immunoreactivity and IL-13 levels as early as 8 h after thrombin, reaching a peak at 7 days, which was maintained up to 14 days. Moreover, double-label immunohistochemistry revealed IL-13 immunoreactivity exclusively in activated microglia. IL-13-neutralizing Abs significantly rescued CA1 hippocampal neurons from thrombin neurotoxicity. In parallel, neutralization of IL-13 inhibited activation of NADPH oxidase, reactive oxygen species production, and oxidative damage. Additionally, IL-13 neutralization suppressed the expression of inducible NO synthase and several proinflammatory cytokines. To our knowledge, the present study is the first to show that IL-13 triggers microglial NADPH oxidase-derived oxidative stress, leading to the degeneration of hippocampal neurons in vivo, as occurs in cases of Alzheimer's disease.
Collapse
Affiliation(s)
- Keun W Park
- Department of Biochemistry & Molecular biology, Brain Korea 21 Project Center, School of Medicine Kyung Hee University, Seoul 130-701, South Korea
| | | | | |
Collapse
|
79
|
Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A, Pochet R. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 2009; 1301:152-62. [PMID: 19748495 DOI: 10.1016/j.brainres.2009.09.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 12/23/2022]
Abstract
Blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) impairment is an additional accident occurring during the amyotrophic lateral sclerosis (ALS) progression. In this work, we aimed to decipher if BBB/BSCB leakage appeared before critical detrimental events and could serve as a marker preceding clinical symptoms. Three different BBB leakage markers: Evans blue, IgG and hemosiderin, were used to look at the SOD1-linked ALS rat model at presymptomatic and symptomatic stages. Although IgG and hemosiderin could be detected at presymptomatic stage, Evans blue extravasation which fits best with BBB/BSCB impairment could only be seen at symptomatic stages. BBB/BSCB impairment was further substantiate by showing at symptomatic stages decreased mRNA expression of ZO-1 and occludin as well as agrin, a basal membrane constituent. Electron microscopic data substantiate a toxic environment around endothelial cell and peri-vascular swollen astrocyte end-feet showing oedema-linked BBB opening.
Collapse
|
80
|
Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc Psychiatry Neurol 2009; 2009:278531. [PMID: 19936105 PMCID: PMC2775634 DOI: 10.1155/2009/278531] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 07/04/2009] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying the development and progression of psychiatric
illnesses are only partially known. Clinical data suggest blood-brain barrier (BBB)
breakdown and inflammation are involved in some patients groups. Here we put
forward the “BBB hypothesis” and abnormal blood-brain communication as key
mechanisms leading to neuronal dysfunction underlying disturbed cognition, mood,
and behavior. Based on accumulating clinical data and animal experiments, we
propose that events within the “neurovascular unit” are initiated by a focal BBB
breakdown, and are associated with dysfunction of brain astrocytes, a local
inflammatory response, pathological synaptic plasticity, and increased network
connectivity. Our hypothesis should be validated in animal models of psychiatric
diseases and BBB breakdown. Recently developed imaging approaches open the
opportunity to challenge our hypothesis in patients. We propose that molecular
mechanisms controlling BBB permeability, astrocytic functions, and inflammation
may become novel targets for the prevention and treatment of psychiatric
disorders.
Collapse
|
81
|
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2009; 37:13-25. [PMID: 19664713 DOI: 10.1016/j.nbd.2009.07.030] [Citation(s) in RCA: 3239] [Impact Index Per Article: 215.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/13/2009] [Accepted: 07/25/2009] [Indexed: 02/08/2023] Open
Abstract
Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.
Collapse
Affiliation(s)
- N Joan Abbott
- King's College London, Blood-Brain Barrier Group, Pharmaceutical Science Division, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
82
|
Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathol 2009; 118:103-13. [PMID: 19319544 PMCID: PMC2853006 DOI: 10.1007/s00401-009-0522-3] [Citation(s) in RCA: 620] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 12/28/2022]
Abstract
Vascular dysfunction has a critical role in Alzheimer's disease (AD). Recent data from brain imaging studies in humans and animal models suggest that cerebrovascular dysfunction may precede cognitive decline and onset of neurodegenerative changes in AD and AD models. Cerebral hypoperfusion and impaired amyloid beta-peptide (Abeta) clearance across the blood-brain barrier (BBB) may contribute to the onset and progression of dementia AD type. Decreased cerebral blood flow (CBF) negatively affects the synthesis of proteins required for memory and learning, and may eventually lead to neuritic injury and neuronal death. Impaired clearance of Abeta from the brain by the cells of the neurovascular unit may lead to its accumulation on blood vessels and in brain parenchyma. The accumulation of Abeta on the cerebral blood vessels, known as cerebral amyloid angiopathy (CAA), is associated with cognitive decline and is one of the hallmarks of AD pathology. CAA can severely disrupt the integrity of the blood vessel wall resulting in micro or macro intracerebral bleedings that exacerbates neurodegenerative process and inflammatory response and may lead to hemorrhagic stroke, respectively. Here, we review the role of the neurovascular unit and molecular mechanisms in vascular cells behind AD and CAA pathogenesis. First, we discuss apparent vascular changes, including the cerebral hypoperfusion and vascular degeneration that contribute to different stages of the disease process in AD individuals. We next discuss the role of the low-density lipoprotein receptor related protein-1 (LRP), a key Abeta clearance receptor at the BBB and along the cerebrovascular system, whose expression is suppressed early in AD. We also discuss how brain-derived apolipoprotein E isoforms may influence Abeta clearance across the BBB. We then review the role of two interacting transcription factors, myocardin and serum response factor, in cerebral vascular cells in controlling CBF responses and LRP-mediated Abeta clearance. Finally, we discuss the role of microglia and perivascular macrophages in Abeta clearance from the brain. The data reviewed here support an essential role of neurovascular and BBB mechanisms in contributing to both, onset and progression of AD.
Collapse
Affiliation(s)
- Robert D. Bell
- Center for Neurodegenerative and Vascular Brain Disorders and Interdisciplinary Program in Dementia Research, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 670, Rochester, New York 14642, USA
| | - Berislav V. Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders and Interdisciplinary Program in Dementia Research, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 670, Rochester, New York 14642, USA
| |
Collapse
|
83
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
84
|
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 2009; 15:180-93. [PMID: 19307424 DOI: 10.1177/1073858408329509] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) does not exclusively refer to brain endothelial cells, which are the site of the barrier proper. In the past few years, it has become increasingly clear that BBB endothelial cells depend considerably on the brain microenvironment to a degree exceeding the environmental influence in other organs. The concept of the BBB has been continuously developed over the decades, culminating now in the recognition that endothelial cell function in the brain is not limited to simply mediating energy and oxygen transfer between blood and neural tissue. Endothelial cells are rather "Janus-headed beings" that are active partners of both luminal molecules and cells, as well as subendothelial cells such as pericytes, astrocytes, and neurons. In this overview, the authors present and discuss both the role of astroglial cells in managing the BBB and aspects of pathological alterations in the brain as far as the BBB is involved. After a brief introduction of the BBB that describes the structure and function of the brain capillary endothelial cells, the authors report on both the water channel protein aquaporin-4 (AQP4) in astrocytes and the extracellular matrix between astrocytes/pericytes and endothelial cells. The AQP4 has an important impact on the homeostasis in the brain parenchyma; however, the mechanistic cascade from the composition of the astrocyte membrane to the maintenance of BBB properties in the endothelial cells, including their tight junction formation, is still completely unknown.
Collapse
Affiliation(s)
- Hartwig Wolburg
- Institute of Pathology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
85
|
Noell S, Fallier-Becker P, Deutsch U, Mack AF, Wolburg H. Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell Tissue Res 2009; 337:185-95. [PMID: 19449033 DOI: 10.1007/s00441-009-0812-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/21/2009] [Indexed: 11/25/2022]
Abstract
Accumulating evidence indicates that agrin, a heparan sulphate proteoglycan of the extracellular matrix, plays a role in the organization and maintenance of the blood-brain barrier. This evidence is based on the differential effects of agrin isoforms on the expression and distribution of the water channel protein, aquaporin-4 (AQP4), on the swelling capacity of cultured astrocytes of neonatal mice and on freeze-fracture data revealing an agrin-dependent clustering of orthogonal arrays of particles (OAPs), the structural equivalent of AQP4. Here, we show that the OAP density in agrin-null mice is dramatically decreased in comparison with wild-types, by using quantitative freeze-fracture analysis of astrocytic membranes. In contrast, anti-AQP4 immunohistochemistry has revealed that the immunoreactivity of the superficial astrocytic endfeet of the agrin-null mouse is comparable with that in wild-type mice. Moreover, in vitro, wild-type and agrin-null astrocytes cultured from mouse embryos at embryonic day 19.5 differ neither in AQP4 immunoreactivity, nor in OAP density in freeze-fracture replicas. Analyses of brain tissue samples and cultured astrocytes by reverse transcription with the polymerase chain reaction have not demonstrated any difference in the level of AQP4 mRNA between wild-type astrocytes and astrocytes from agrin-null mice. Furthermore, we have been unable to detect any difference in the swelling capacity between wild-type and agrin-null astrocytes. These results clearly demonstrate, for the first time, that agrin plays a pivotal role for the clustering of OAPs in the endfoot membranes of astrocytes, whereas the mere presence of AQP4 is not sufficient for OAP clustering.
Collapse
Affiliation(s)
- Susan Noell
- Institute of Pathology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
86
|
Weiss N, Miller F, Cazaubon S, Couraud PO. [Biology of the blood-brain barrier: Part I]. Rev Neurol (Paris) 2009; 165:863-74. [PMID: 19427009 DOI: 10.1016/j.neurol.2009.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/03/2009] [Accepted: 03/16/2009] [Indexed: 12/27/2022]
Abstract
The blood-brain barrier provides the central nervous system with a unique protection against the toxic effects of many xenobiotics. This protection results from the unique anatomic and biological structure of the endothelium of blood vessels in the brain. The main features of the blood-brain barrier are the presence of tight intercellular junctions which strictly limit the diffusion of blood-borne solutes and cells into the brain and the polarized expression of transporters which specifically control the cerebral availability of nutrients, drugs or xenobiotics. Recent findings in molecular and cellular biology improved our knowledge of blood-brain barrier permeability and its regulation. The importance of these findings has been recently highlighted by the description of dysfunctions of the blood-brain barrier which could have an impact on the pathophysiology of several neurological diseases. This review focuses on recent advances in our understanding of blood-brain barrier biology and physiology, presenting the structural organization of the blood-brain barrier and the functional regulation of solute permeability and cellular transendothelial migration.
Collapse
Affiliation(s)
- N Weiss
- CNRS (UMR 8104), institut Cochin, université Paris Descartes, 22, rue Méchain, 75014 Paris, France; Inserm, U567, Paris, France
| | | | | | | |
Collapse
|
87
|
Tai LM, Holloway KA, Male DK, Loughlin AJ, Romero IA. Amyloid-beta-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J Cell Mol Med 2009; 14:1101-12. [PMID: 19438816 PMCID: PMC3822747 DOI: 10.1111/j.1582-4934.2009.00717.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular dysfunction is emerging as a key pathological hallmark in Alzheimer’s disease (AD). A leaky blood–brain barrier (BBB) has been described in AD patient tissue and in vivo AD mouse models. Brain endothelial cells (BECs) are linked together by tight junctional (TJ) proteins, which are a key determinant in restricting the permeability of the BBB. The amyloid β (Aβ) peptides of 1–40 and 1–42 amino acids are believed to be pivotal in AD pathogenesis. We therefore decided to investigate the effect of Aβ 1–40, the Aβ variant found at the highest concentration in human plasma, on the permeability of an immortalized human BEC line, hCMEC/D3. Aβ 1–40 induced a marked increase in hCMEC/D3 cell permeability to the paracellular tracer 70 kD FITC-dextran when compared with cells incubated with the scrambled Aβ 1–40 peptide. Increased permeability was associated with a specific decrease, both at the protein and mRNA level, in the TJ protein occludin, whereas claudin-5 and ZO-1 were unaffected. JNK and p38MAPK inhibition prevented both Aβ 1–40-mediated down-regulation of occludin and the increase in paracellular permeability in hCMEC/D3 cells. Our findings suggest that the JNK and p38MAPK pathways might represent attractive therapeutic targets for preventing BBB dysfunction in AD.
Collapse
Affiliation(s)
- L M Tai
- Department of Life Sciences, The Open University, Milton Keynes, UK
| | | | | | | | | |
Collapse
|
88
|
Baumann E, Preston E, Slinn J, Stanimirovic D. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res 2009; 1269:185-97. [PMID: 19285050 DOI: 10.1016/j.brainres.2009.02.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Vascular basement membrane (BM) stabilizes brain vessels and inhibits endothelial cell cycle. Cerebral ischemia causes BM breakdown with the loss of structural BM components including collagens and laminins. In this study, the expression changes of the BM proteoglycan agrin, and the non-structural BM constituent SPARC (BM-40, osteonectin), were studied in brain vessels after global cerebral ischemia. A transient 20-min forebrain ischemia followed by 1, 6 or 24 h of reperfusion was induced in adult Sprague-Dawley rats by combined bilateral common carotid artery occlusion and hypotension (42-45 mm Hg). In a separate group of animals, a mild (32 degrees C) post-ischemic hypothermia was induced for 6 h, starting immediately after ischemia. RNA from approximately 500 brain vessels (20-100 microm) extracted by laser-capture microdissection (LCM) microscopy was used to determine the expression of proteoglycans agrin and SPARC mRNAs by quantitative PCR (Q-PCR). Protein expression was determined by immunohistochemistry in adjacent tissue sections. The BBB permeability was assessed using (3)H-sucrose as an in vivo tracer and by examining fibrinogen immunoreactivity in tissue sections. A transient global brain ischemia resulted in a significant (ANOVA, p<0.05; 6 animals/group) reduction in agrin and SPARC mRNAs in LCM-captured brain vessels 24 h after reperfusion. A time-dependent loss of agrin and SPARC from the BM during reperfusion was also observed by immunochemistry. A 6-h post-ischemic hypothermia reduced SPARC and agrin mRNA and protein losses, BBB transfer constant for (3)H-sucrose as well as fibrinogen extravasation 24 h after reperfusion. It is conluded that a transient post-ischemic hypothermia stabilizes brain vessels and reduces BBB disruption in part by preventing proteolytic degradation of regulatory BM constituents, SPARC and agrin.
Collapse
Affiliation(s)
- Ewa Baumann
- Cerebrovascular Research Group, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
89
|
Luque FA, Jaffe SL. The molecular and cellular pathogenesis of dementia of the Alzheimer's type an overview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 84:151-65. [PMID: 19501717 DOI: 10.1016/s0074-7742(09)00408-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The pathogenesis of dementia of the Alzheimer's type (DAT) remains elusive. The neurodegeneration occurring in this disease has been traditionally believed to be the result of toxicity caused by the accumulation of insoluble amyloid-beta 42 (AB) aggregates, however recent research questions this thesis and has suggested other more convincing cellular and molecular mechanisms. Dysfunction of amyloid precursor protein metabolism, AB generation/aggregation and/or degredation/clearance, tau metabolism, protein trafficking, signal transduction, heavy metal homeostasis, acetylcholine and cholesterol metabolism, have all been implicated etiologically especially as to production of neurotoxic by-products occurring as a result of a specific process derangement. In this paper, these and other research directions are discussed as well as their implications for future therapies. The relationship of the proposed abnormal molecular and cellular processes to underlying genetic mutations is also scrutinized, all in an attempt to stimulate further insight into the pathogenesis of, and thus therapeutics for this increasingly prevalent disease.
Collapse
Affiliation(s)
- Francisco A Luque
- Department of Neurology, Louisiana State University School of Medicine-Shreveport, Shreveport, Louisiana 71103, USA
| | | |
Collapse
|
90
|
Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:842-57. [PMID: 19061857 DOI: 10.1016/j.bbamem.2008.10.022] [Citation(s) in RCA: 489] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/02/2008] [Accepted: 10/29/2008] [Indexed: 12/13/2022]
Abstract
Brain endothelial cells are unique among endothelial cells in that they express apical junctional complexes, including tight junctions, which quite resemble epithelial tight junctions both structurally and functionally. They form the blood-brain-barrier (BBB) which strictly controls the exchanges between the blood and the brain compartments by limiting passive diffusion of blood-borne solutes while actively transporting nutrients to the brain. Accumulating experimental and clinical evidence indicate that BBB dysfunctions are associated with a number of serious CNS diseases with important social impacts, such as multiple sclerosis, stroke, brain tumors, epilepsy or Alzheimer's disease. This review will focus on the implication of brain endothelial tight junctions in BBB architecture and physiology, will discuss the consequences of BBB dysfunction in these CNS diseases and will present some therapeutic strategies for drug delivery to the brain across the BBB.
Collapse
Affiliation(s)
- Nicolas Weiss
- Institut Cochin, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
91
|
Shimizu E, Kawahara K, Kajizono M, Sawada M, Nakayama H. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6503-13. [PMID: 18941241 DOI: 10.4049/jimmunol.181.9.6503] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A hallmark of immunopathology associated with Alzheimer's disease is the presence of activated microglia (MG) surrounding senile plaque deposition of beta-amyloid (Abeta) peptides. Abeta peptides are believed to be potent activators of MG, which leads to Alzheimer's disease pathology, but the role of MG subtypes in Abeta clearance still remains unclear. In this study, we found that IL-4 treatment of rat primary-type 2 MG enhanced uptake and degradation of oligomeric Abeta(1-42) (o-Abeta(1-42)). IL-4 treatment induced significant expression of the scavenger receptor CD36 and the Abeta-degrading enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE) but reduced expression of certain other scavenger receptors. Of cytokines and stimulants tested, the anti-inflammatory cytokines IL-4 and IL-13 effectively enhanced CD36, NEP, and IDE. We demonstrated the CD36 contribution to IL-4-induced Abeta clearance: Chinese hamster ovary cells overexpressing CD36 exhibited marked, dose-dependent degradation of (125)I-labeled o-Abeta(1-42) compared with controls, the degradation being blocked by anti-CD36 Ab. Also, we found IL-4-induced clearance of o-Abeta(1-42) in type 2 MG from CD36-expressing WKY/NCrj rats but not in cells from SHR/NCrj rats with dysfunctional CD36 expression. NEP and IDE also contributed to IL-4-induced degradation of Abeta(1-42), because their inhibitors, thiorphan and insulin, respectively, significantly suppressed this activity. IL-4-stimulated uptake and degradation of o-Abeta(1-42) were selectively enhanced in type 2, but not type 1 MG that express CD40, which suggests that the two MG types may play different neuroimmunomodulating roles in the Abeta-overproducing brain. Thus, selective o-Abeta(1-42) clearance, which is induced by IL-4, may provide an additional focus for developing strategies to prevent and treat Alzheimer's disease.
Collapse
Affiliation(s)
- Eisuke Shimizu
- Department of Molecular Cell Function, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
92
|
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 2008; 335:75-96. [DOI: 10.1007/s00441-008-0658-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/03/2008] [Indexed: 02/01/2023]
|
93
|
Apolipoprotein E, amyloid-beta, and blood-brain barrier permeability in Alzheimer disease. J Neuropathol Exp Neurol 2008; 67:261-70. [PMID: 18379441 DOI: 10.1097/nen.0b013e31816a0dc8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) compromise in Alzheimer disease (AD). The presence of the epsilon4 allele of the apolipoprotein E (apoE) gene is a risk factor for sporadic AD. Apolipoprotein E is essential both for maintenance of BBB integrity and for the deposition of fibrillar amyloid-beta (Abeta) that leads to the development of Abeta plaques in AD and to cerebral amyloid angiopathy. This review investigates the relationships between apoE, Abeta, and the BBB in AD. Alterations in the expression and distribution of the BBB Abeta transporters receptor for advanced glycation end-products and low-density lipoprotein receptor-related protein 1 in AD and the potential roles of apoE4 expression in adversely influencing Abeta burden and BBB permeability are also examined. Because both apoE and Abeta are ligands for low-density lipoprotein receptor-related protein 1, all 3 molecules are present in AD plaques, and most AD plaques are located close to the cerebral microvasculature. The interactions of these molecules at the BBB likely influence metabolism and clearance of Abeta and contribute to AD pathogenesis. Therapeutic alternatives targeting apoE/Abeta and sealing a compromised BBB are under development for the treatment of AD.
Collapse
|
94
|
Williams S, Ryan C, Jacobson C. Agrin and neuregulin, expanding roles and implications for therapeutics. Biotechnol Adv 2008; 26:187-201. [DOI: 10.1016/j.biotechadv.2007.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/15/2023]
|
95
|
Stopa EG, Butala P, Salloway S, Johanson CE, Gonzalez L, Tavares R, Hovanesian V, Hulette CM, Vitek MP, Cohen RA. Cerebral Cortical Arteriolar Angiopathy, Vascular Beta-Amyloid, Smooth Muscle Actin, Braak Stage, and
APOE
Genotype. Stroke 2008; 39:814-21. [DOI: 10.1161/strokeaha.107.493429] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edward G. Stopa
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Parag Butala
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Stephen Salloway
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Conrad E. Johanson
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Liliana Gonzalez
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Rosemarie Tavares
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Virginia Hovanesian
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Christine M. Hulette
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Michael P. Vitek
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| | - Ronald A. Cohen
- From the Departments of Pathology (E.G.S., P.B., R.T., V.H.), Psychiatry and Human Behavior (S.S., R.A.C.), and Clinical Neurosciences (E.G.S., S.S., C.E.J.), Warren Alpert Medical School of Brown University, Providence, RI; the Department of Computer Science and Statistics (L.G.), University of Rhode Island, Kingston, RI; and Departments of Medicine (Neurology Division) and Pathology (Neuropathology Division) (C.M.H., M.P.V.), Bryan Alzheimer Disease Research Center, Duke University School of
| |
Collapse
|
96
|
Bellucci C, Lilli C, Baroni T, Parnetti L, Sorbi S, Emiliani C, Lumare E, Calabresi P, Balloni S, Bodo M. Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer's disease. Mol Med 2007; 13:542-50. [PMID: 17660861 PMCID: PMC1933258 DOI: 10.2119/2007-00034.bellucci] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/09/2007] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix (ECM) molecules and growth factors, such as fibroblast growth factor (FGF), play a crucial role in Alzheimer's disease (AD). The purpose of this investigation was to determine whether phenotypic alterations in ECM production are present in non-neuronal AD cells associated with different FGF expression and response. Synthesis of glycosaminoglycans (GAG) and collagen were measured in skin fibroblasts from patients with familial, sporadic AD (FAD and SAD respectively), and from age-matched controls by radiolabeled precursors. Proteoglycans (PG), metalloprotease (MMP)-1, and FGF gene expressions were measured by reverse transcription-polymerase chain reaction. The results showed different ECM neosynthesis and mRNA levels in the two AD fibroblast populations. FAD accumulated more collagen and secreted less GAG than SAD. Biglycan PG was upregulated in FAD while betaglycan, syndecan, and decorin were markedly downregulated in SAD fibroblasts. We found a significant decrease of MMP1, more marked in FAD than in SAD fibroblasts. Constitutive FGF expression was greatly reduced in both pathological conditions (SAD>FAD). Moreover, an inverse high affinity/low affinity FGF receptor ratio between SAD and FAD fibroblasts was observed. FGF treatment differently modulated ECM molecule production and gene expression in the two cell populations. These observations in association with the changes in FGF gene expression and in the FGF receptor number, suggest that cellular mechanisms downstream from FGF receptor binding are involved in the two different forms of AD.
Collapse
Affiliation(s)
- Catia Bellucci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Cinzia Lilli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Lucilla Parnetti
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Sandro Sorbi
- Department of Neurologic and Psychiatric Sciences, University of Firenze, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | - Paolo Calabresi
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Stefania Balloni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Maria Bodo
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
- Address correspondence and reprint requests to Maria Bodo, Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy. Phone/Fax: 075-5857432; E-mail:
| |
Collapse
|
97
|
Lee JA, Cole GJ. Generation of Transgenic Zebrafish Expressing Green Fluorescent Protein Under Control of Zebrafish Amyloid Precursor Protein Gene Regulatory Elements. Zebrafish 2007; 4:277-86. [DOI: 10.1089/zeb.2007.0516] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ju-Ahng Lee
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Gregory J. Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
- Department of Biology, North Carolina Central University, Durham, North Carolina
| |
Collapse
|
98
|
Noell S, Fallier-Becker P, Beyer C, Kröger S, Mack AF, Wolburg H. Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. Eur J Neurosci 2007; 26:2109-18. [PMID: 17927773 DOI: 10.1111/j.1460-9568.2007.05850.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Agrin is a heparan sulfate proteoglycan of the extracellular matrix and is known for organizing the postsynaptic differentiation of the neuromuscular junction. Increasing evidence also suggests roles for agrin in the developing CNS, including the formation and maintenance of the blood-brain barrier. Here we describe effects of agrin on the expression and distribution of the water channel protein aquaporin-4 (AQP4) and on the swelling capacity of cultured astrocytes of newborn mice. If astrocytes were cultured on a substrate containing poly DL-ornithine, anti-AQP4 immunoreactivity was evenly and diffusely distributed. If, however, astrocytes were cultured in the presence of agrin-conditioned medium, we observed an increase in the intensity of AQP4-specific membrane-associated staining. Freeze-fracture studies revealed a clustering of orthogonal arrays of particles, representing a structural equivalent of AQP4, when exogenous agrin was present in the astrocyte cultures. Neuronal and non-neuronal agrin isoforms (agrin A0B0 and agrin A4B8, respectively) were able to induce membrane-associated AQP4 staining. Water transport capacity as well as the density of orthogonal arrays of intramembranous particles was increased in astrocytes cultured with the neuronal agrin isoform A4B8, but not with the endothelial and meningeal isoform A0B0. RT-PCR demonstrated that agrin A4B8 increased the level of the M23 splice variant of AQP4 and decreased the level of the M1 splice variant of AQP4. Implications for the regulation and maintenance of the blood-brain barrier including oedema formation under pathological conditions are discussed.
Collapse
Affiliation(s)
- Susan Noell
- Institute of Pathology, University of Tübingen, Liebermeisterstrasse 8, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
The blood brain barrier (BBB) evolved to preserve the microenvironment of the highly excitable neuronal cells to allow for action potential generation and propagation. Intricate molecular interactions between two main cell types, the neurons and the glial cells, form the underlying basis of the critical functioning of the nervous system across species. In invertebrates, interactions between neurons and glial cells are central in establishing a functional BBB. However, in vertebrates, the BBB formation and function is coordinated by interactions between neurons, glial cells, and endothelial cells. Here we review the neuron-glial interaction-based blood barriers in invertebrates and vertebrates and provide an evolutionary perspective as to how a glial-barrier system in invertebrates evolved into an endothelial barrier system. We also summarize the clinical relevance of the BBB as this protective barrier becomes disadvantageous in the pharmacological treatment of various neurological disorders.
Collapse
|
100
|
Malloy P, Correia S, Stebbins G, Laidlaw DH. Neuroimaging of white matter in aging and dementia. Clin Neuropsychol 2007; 21:73-109. [PMID: 17366279 DOI: 10.1080/13854040500263583] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Clinical neuroscientists have focused increasing attention on white matter connections in the brain and on the effects of aging and disease on these connections. Recent advances in magnetic resonance imaging (MRI) analysis have given researchers new tools for quantifying and visualizing white matter to better relate white matter structure and function. The goals of this article are (a) to acquaint the reader with both established and newer methods for imaging and quantifying white matter anatomy and pathology; and (b) to review recent findings on white matter pathology in aging and dementia. Computer-assisted quantification appears to offer better statistical power than visual rating scales for detecting these relationships. New MR modalities such as diffusion imaging can detect white matter abnormalities not shown with conventional acquisition sequences. These newer techniques hold promise for early detection of disease and for delineating functional connections between brain areas.
Collapse
Affiliation(s)
- Paul Malloy
- Brown University Medical School, Providence, RI, USA.
| | | | | | | |
Collapse
|