51
|
McLaughlan JR, Cowell DMJ, Freear S. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy. Phys Med Biol 2017; 63:015004. [PMID: 29098986 DOI: 10.1088/1361-6560/aa97e9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19 ± 0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71 ± 0.01 MPa at a fluence of 3.4 mJ [Formula: see text]. Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of [Formula: see text] a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as providing the ability to identify and treat small multi-focal cancerous regions with minimal damage to surrounding healthy tissue.
Collapse
Affiliation(s)
- J R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom. Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, LS9 7TF, United Kingdom
| | | | | |
Collapse
|
52
|
Abstract
AbstractHigh-intensity focused ultrasound (HIFU) is emerging as an effective and promising treatment modality for the formation of coagulative necrosis inside the cancer/tumor noninvasively. To guarantee the efficacy and efficiency of HIFU ablation, the temperature field and consequent thermal dose should be monitored accurately in a high temporal and spatial resolution in real time. However, because of the significant variations of the tissue properties and deep penetration of HIFU beam, especially in the abdominal application, noninvasive thermometry is a very challenging topic, which may hamper the wide acceptance of HIFU by physicians worldwide. In this article, currently available thermometry techniques are reviewed, and their translation from hyperthermia range to the higher temperature for irreversible lesion production is discussed. With the technology improvement and/or development of new approaches, the performance of noninvasive thermometry may meet the clinical requirements.
Collapse
|
53
|
Increased light penetration due to ultrasound-induced air bubbles in optical scattering media. Sci Rep 2017; 7:16105. [PMID: 29170545 PMCID: PMC5701037 DOI: 10.1038/s41598-017-16444-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/13/2017] [Indexed: 01/11/2023] Open
Abstract
Light is an attractive tool for high spatial- and contrast-resolution imaging, highly sensitive molecular imaging, and target-selective therapy, and it does not exhibit the risks associated with ionizing radiation. The main limitation of using light in clinical applications is its superficial imaging and therapeutic depth caused by high optical scattering in biological media. Here, we demonstrate that the scattering and thus defocusing of the incident light can be alleviated when simultaneously delivered ultrasound generates air bubbles in the pathway of the incident light, thus increasing the light penetration. The bubbles are temporally induced by ultrasound with an intensity that is sufficiently low to avoid tissue damage and act as a Mie scattering medium in which light is scattered predominantly in the forward direction. The change in the optical scattering property caused by the ultrasound is undone after cessation of the insonification. From the results, it is expected that this proposed method will open a new route for overcoming the limitations of current optical imaging and therapeutic techniques.
Collapse
|
54
|
Zachiu C, Ries M, Ramaekers P, Guey JL, Moonen CTW, de Senneville BD. Real-time non-rigid target tracking for ultrasound-guided clinical interventions. ACTA ACUST UNITED AC 2017; 62:8154-8177. [DOI: 10.1088/1361-6560/aa8c66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
Sanghvi NT, Chen WH, Carlson R, Weis C, Seip R, Uchida T, Marberger M. Clinical validation of real-time tissue change monitoring during prostate tissue ablation with high intensity focused ultrasound. J Ther Ultrasound 2017; 5:24. [PMID: 28924476 PMCID: PMC5598037 DOI: 10.1186/s40349-017-0102-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of these clinical studies was to validate a Tissue Change Monitoring (TCM) algorithm in vivo. TCM is a quantitative tool for the real-time assessment of HIFU dose. TCM provides quantitative analysis of the backscatter pulse echo signals (pre and immediately post HIFU) for each individual ablative site, using ultrasonic tissue characterization as a surrogate for monitoring tissue temperature. Real-time analysis generates an energy difference parameter (ΔE in dB) that is proportional to tissue temperature. METHODS Post in vitro studies, two clinical studies were conducted to validate the TCM algorithm on the Sonablate® device. Studies enrolled histologically confirmed, organ confined prostate cancer patients. The first clinical study was conducted in two phases for whole gland ablation. First eight patients' data were used to measure the algorithm performance followed by 89 additional patients for long term outcome. The second clinical study enrolled five patients; four patients with focal cancer had hemi-ablation only and one had whole gland ablation. Four 3 Fr. needles containing three thermocouples each were placed transperineally in the prostate to record tissue temperatures in the focal zone, posterior to the focal zone and on the lateral gland where no HIFU was applied. Tissue temperatures from the focal zone were correlated to the ΔE parameter. RESULTS In the first clinical study, the average TCM rate was 86%. Pre and 6 months post HIFU, median PSA was 7.64 and 0.025 ng/ml respectively and 97% patients had negative biopsy. For the second clinical study, the measured prostate tissue temperatures (Average, Max, and Min) in the ablation zones were 84°, 114° and 60 °C and the corresponding ΔE (dB/10) parameters were 1.05, 2.6 and 0.4 resulting in 83% of temperatures in the range of 75°-100 °C and 17% in the 60°-74 °C range. Outside the focal zone, the average temperature was 50 °C and in the lateral lobe where no HIFU was applied, peak temperature was 40.7 °C. CONCLUSIONS The TCM algorithm is able to estimate tissue changes reliably during the HIFU procedure for prostate tissue ablation in real-time and can be used as a guide for HIFU dose delivery and tissue ablation control.
Collapse
Affiliation(s)
| | - Wo-Hsing Chen
- Ulthera Inc., Merz Device Innovation Center, 1840 S Stapley Drive, Ste. 200, Mesa, AZ 85204 USA
| | - Roy Carlson
- SonaCare Medical, LLC, 4000 Pendleton Way, Indianapolis, IN 46226 USA
| | - Clint Weis
- SonaCare Medical, LLC, 4000 Pendleton Way, Indianapolis, IN 46226 USA
| | - Ralf Seip
- SonaCare Medical, LLC, 4000 Pendleton Way, Indianapolis, IN 46226 USA
| | - Toyoaki Uchida
- Hachioji Urologic Clinic, 3-6-7, Koyasucho, Hachioji, Tokyo 192-0904 Japan
| | - Michael Marberger
- Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
56
|
Bai C, Xu S, Duan J, Jing B, Yang M, Wan M. Pulse-Inversion Subharmonic Ultrafast Active Cavitation Imaging in Tissue Using Fast Eigenspace-Based Adaptive Beamforming and Cavitation Deconvolution. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1175-1193. [PMID: 28796605 DOI: 10.1109/tuffc.2017.2710102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.
Collapse
|
57
|
Dai H, Chen F, Yan S, Ding X, Ma D, Wen J, Xu D, Zou J. In Vitro and In Vivo Investigation of High-Intensity Focused Ultrasound (HIFU) Hat-Type Ablation Mode. Med Sci Monit 2017; 23:3373-3382. [PMID: 28699626 PMCID: PMC5519222 DOI: 10.12659/msm.902528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. Material/Methods HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. Results Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. Conclusions Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency.
Collapse
Affiliation(s)
- Hongya Dai
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Fei Chen
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Sijing Yan
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Xiaoya Ding
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Dazhao Ma
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Jing Wen
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Die Xu
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Jianzhong Zou
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| |
Collapse
|
58
|
May PC, Kreider W, Maxwell AD, Wang YN, Cunitz BW, Blomgren PM, Johnson CD, Park JSH, Bailey MR, Lee D, Harper JD, Sorensen MD. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging. J Endourol 2017; 31:786-792. [PMID: 28521550 DOI: 10.1089/end.2017.0202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Burst wave lithotripsy (BWL) is a transcutaneous technique with potential to safely and effectively fragment renal stones. Preclinical investigations of BWL require the assessment of potential renal injury. This study evaluates the capabilities of real-time ultrasound and MRI to detect and evaluate BWL injury that was induced in porcine kidneys. MATERIALS AND METHODS Ten kidneys from five female farm pigs were treated with either a 170 or 335 kHz BWL transducer using variable treatment parameters and monitored in real-time with ultrasound. Eight kidneys were perfusion fixed and scanned with a 3-Tesla MRI scanner (T1-weighted, T2-weighted, and susceptibility-weighted imaging), followed by processing via an established histomorphometric technique for injury quantification. In addition, two kidneys were separately evaluated for histologic characterization of injury quality. RESULTS Observed B-mode hyperechoes on ultrasound consistent with cavitation predicted the presence of BWL-induced renal injury with a sensitivity and specificity of 100% in comparison to the histomorphometric technique. Similarly, MRI detected renal injury with a sensitivity of 90% and specificity of 100% and was able to identify the scale of lesion volumes. The injuries purposefully generated with BWL were histologically similar to those formed by shock wave lithotripsy. CONCLUSIONS BWL-induced renal injury can be detected with a high degree of sensitivity and specificity by real-time ultrasound and post-treatment ex vivo MRI. No injury occurred in this study without cavitation detected on ultrasound. Such capabilities for injury detection and lesion volume quantification on MRI can be used for preclinical testing of BWL.
Collapse
Affiliation(s)
- Philip C May
- 1 University of Washington Applied Physics Lab , Center for Industrial and Medical Ultrasound, Seattle, Washington.,2 Department of Urology, University of Washington School of Medicine , Seattle, Washington
| | - Wayne Kreider
- 1 University of Washington Applied Physics Lab , Center for Industrial and Medical Ultrasound, Seattle, Washington
| | - Adam D Maxwell
- 2 Department of Urology, University of Washington School of Medicine , Seattle, Washington
| | - Yak-Nam Wang
- 1 University of Washington Applied Physics Lab , Center for Industrial and Medical Ultrasound, Seattle, Washington
| | - Bryan W Cunitz
- 1 University of Washington Applied Physics Lab , Center for Industrial and Medical Ultrasound, Seattle, Washington
| | - Philip M Blomgren
- 3 Department of Anatomy and Cell Biology, Indiana University , Indianapolis, Indiana
| | - Cynthia D Johnson
- 3 Department of Anatomy and Cell Biology, Indiana University , Indianapolis, Indiana
| | - Joshua S H Park
- 4 Department of Radiology, University of Washington , Seattle, Washington
| | - Michael R Bailey
- 1 University of Washington Applied Physics Lab , Center for Industrial and Medical Ultrasound, Seattle, Washington.,2 Department of Urology, University of Washington School of Medicine , Seattle, Washington
| | - Donghoon Lee
- 4 Department of Radiology, University of Washington , Seattle, Washington
| | - Jonathan D Harper
- 2 Department of Urology, University of Washington School of Medicine , Seattle, Washington
| | - Mathew D Sorensen
- 2 Department of Urology, University of Washington School of Medicine , Seattle, Washington.,5 Division of Urology, Department of Veteran Affairs Medical Center , Seattle, Washington
| |
Collapse
|
59
|
He M, Zhong Z, Li X, Gong X, Wang Z, Li F. Effects of different hydrostatic pressure on lesions in ex vivo bovine livers induced by high intensity focused ultrasound. ULTRASONICS SONOCHEMISTRY 2017; 36:36-41. [PMID: 28069221 DOI: 10.1016/j.ultsonch.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
It is well-known that acoustic cavitation associated with the high intensity focused ultrasound (HIFU) treatment often would change the morphology and size of lesions in its treatment. In most studies reported in literature, high ambient hydrostatic pressure was used to suppress the cavitation completely. Investigation of the effects by varying the ambient hydrostatic pressure (Pstat) is still lacking. In this paper, the effects of HIFU on lesions in ex vivo bovine liver specimens under various Pstat are systematically investigated. A 1MHz HIFU transducer, with an aperture diameter of 70mm and a focal length of 55mm, was used to generate two groups US exposure of different acoustic intensities and exposure time (6095W/cm2×8s and 9752W/cm2×5s), while keeping the same acoustic energies per unit area (48760J/cm2). The peak acoustic negative pressures (p-) of the two groups were p1-=9.58MPa and p2-=10.82MPa, respectively, with the difference pd-=p2--p1-=1.24MPa. A passive cavitation detection (PCD) was used to monitor the ultrasonic cavitation signal during exposure of the two groups. The US exposures were done under the following ambient hydrostatic pressures, Pstat: atmospheric pressure, 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, 2.5MPa and3.0MPa, respectively. The result of PCD showed that there was a statistically significant increase above background noise level in broadband emissions at dose of 9752W/cm2×5s, but not at dose of 6095W/cm2×8s under atmospheric pressure; i.e., the acoustic cavitation took place for p2- but not for p1- when under atmospheric pressure. The results also showed that there was no statistically difference of the morphology and size of lesions for 6095W/cm2×8s exposure under the aforementioned different ambient hydrostatic pressures. But the lesions generated at 9752W/cm2×5s exposure under Pstat=atmospheric pressure, 0.5MPa, 1.0MPa (all of them are less than pd-), were larger than those under 1.5MPa, 2.0MPa, 2.5MPa and 3.0MPa (all of them are over than pd-) which were consistence with 6095W/cm2×8s group. It was concluded that when Pstat>pd-, the acoustic cavitation was suppressed and prompted that there was no need to elevate Pstat higher than p- to suppress the acoustic cavitation in tissue, just need Pstat higher than pd-.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhiqiang Zhong
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Xing Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaobo Gong
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, PR China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Faqi Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
60
|
Nguyen VP, Oh J, Park S, Wook Kang H. Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors. JOURNAL OF BIOPHOTONICS 2017; 10:577-588. [PMID: 27136046 DOI: 10.1002/jbio.201600045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/22/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
A variety of thermal therapeutic methods have been investigated to treat bladder tumors but often cause bowel injury and bladder wall perforation due to high treatment dosage and limited clinical margins. The objective of the current study is to develop a dual-thermal modality to deeply coagulate the bladder tumors at low thermal dosage and to evaluate therapeutic outcomes with high contrast photoacoustic imaging (PAI). High intensity focused ultrasound (HIFU) is combined with 532 nm laser light to enhance therapeutic depth during thermal treatments on artificial tumor-injected bladder tissue ex vivo. PAI is employed to identify the margins of the tumors pre- and post-treatments. The dual-thermal modality achieves 3- and 1.8-fold higher transient temperature changes and 2.2- and 1.5-fold deeper tissue denaturation than laser and HIFU, respectively. PAI vividly identifies the position of the injected tumor and entails approximately 7.9 times higher image contrast from the coagulated tumor as that from the untreated tumor. Spectroscopic analysis exhibits that both 740 nm and 760 nm attains the maximum photoacoustic amplitudes from the treated areas. The proposed PAI-guided dual-thermal treatments (laser and HIFU) treatments can be a feasible therapeutic modality to treat bladder tumors in a controlled and efficient manner.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 608-737, South Korea
| | - Suhyun Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 443-803, South Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 608-737, South Korea
| |
Collapse
|
61
|
Eranki A, Farr N, Partanen A, V. Sharma K, Chen H, Rossi CT, Kothapalli SVVN, Oetgen M, Kim A, H. Negussie A, Woods D, J. Wood B, C. W. Kim P, S. Yarmolenko P. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system. PLoS One 2017; 12:e0173867. [PMID: 28301597 PMCID: PMC5354405 DOI: 10.1371/journal.pone.0173867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized. In this work, lesion volume, temperature distribution, and area of lethal thermal dose were characterized for varying BH sonication parameters in tissue-mimicking phantoms (TMP) and demonstrated in ex vivo tissues. Methods The following BH sonication parameters were varied using a clinical MR-HIFU system (Sonalleve V2, Philips, Vantaa, Finland): acoustic power, number of cycles/pulse, total sonication time, and pulse repetition frequency (PRF). A 3×3×3 pattern was sonicated inside TMP’s and ex vivo tissues. Post sonication, lesion volumes were quantified using 3D ultrasonography and temperature and thermal dose distributions were analyzed offline. Ex vivo tissues were sectioned and stained with H&E post sonication to assess tissue damage. Results Significant increase in lesion volume was observed while increasing the number of cycles/pulse and PRF. Other sonication parameters had no significant effect on lesion volume. Temperature full width at half maximum at the end of sonication increased significantly with all parameters except total sonication time. Positive correlation was also found between lethal thermal dose and lesion volume for all parameters except number of cycles/pulse. Gross pathology of ex vivo tissues post sonication displayed either completely or partially damaged tissue at the focal region. Surrounding tissues presented sharp boundaries, with little or no structural damage to adjacent critical structures such as bile duct and nerves. Conclusion Our characterization of effects of HIFU sonication parameters on the resulting lesion demonstrates the ability to control lesion morphologic and thermal characteristics with a clinical MR-HIFU system in TMP’s and ex vivo tissues. We demonstrate that this system can produce spatially precise lesions in both phantoms and ex vivo tissues. The results provide guidance on a preliminary set of BH sonication parameters for this system, with a potential to facilitate BH translation to the clinic.
Collapse
Affiliation(s)
- Avinash Eranki
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: ,
| | - Navid Farr
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ari Partanen
- Clinical Science MR Therapy, Philips, Andover, Massachusetts, United States of America
| | - Karun V. Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
| | - Hong Chen
- Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, Missouri, United States of America
| | - Christopher T. Rossi
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
| | - Satya V. V. N. Kothapalli
- Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, Missouri, United States of America
| | - Matthew Oetgen
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
| | - AeRang Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
| | - Ayele H. Negussie
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Woods
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bradford J. Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter C. W. Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
| | - Pavel S. Yarmolenko
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, United States of America
| |
Collapse
|
62
|
Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Maxwell AD, Kreider W, Bailey MR, Khokhlova VA. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:374-390. [PMID: 27775904 PMCID: PMC5300962 DOI: 10.1109/tuffc.2016.2619913] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.
Collapse
|
63
|
Adams MT, Cleveland RO, Roy RA. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:17001. [PMID: 28114454 PMCID: PMC5997014 DOI: 10.1117/1.jbo.22.1.017001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/27/2016] [Indexed: 05/17/2023]
Abstract
Real-time acousto-optic (AO) sensing has been shown to noninvasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposures. The technique is particularly appropriate for monitoring noncavitating lesions that offer minimal acoustic contrast. A numerical model is presented for an AO-guided HIFU system with an illumination wavelength of 1064 nm and an acoustic frequency of 1.1 MHz. To confirm the model’s accuracy, it is compared to previously published experimental data gathered during AO-guided HIFU in chicken breast. The model is used to determine an optimal design for an AO-guided HIFU system, to assess its robustness, and to predict its efficacy for the ablation of large volumes. It was found that a through transmission geometry results in the best performance, and an optical wavelength around 800 nm was optimal as it provided sufficient contrast with low absorption. Finally, it was shown that the strategy employed while treating large volumes with AO guidance has a major impact on the resulting necrotic volume and symmetry.
Collapse
Affiliation(s)
- Matthew T. Adams
- Boston University, Department of Mechanical Engineering, 110 Cummington Mall, Boston, Massachusetts 02215, United States
- University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Robin O. Cleveland
- University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Ronald A. Roy
- University of Oxford, Department of Engineering Science, 9 Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
64
|
Johnson SL, Dillon C, Odéen H, Parker D, Christensen D, Payne A. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique. Int J Hyperthermia 2016; 32:723-34. [PMID: 27441427 PMCID: PMC5054420 DOI: 10.1080/02656736.2016.1216184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022] Open
Abstract
MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.
Collapse
Affiliation(s)
| | | | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah
| | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah
| | - Douglas Christensen
- Department of Bioengineering, University of Utah
- Department of Electrical and Computer Engineering, University of Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah
| |
Collapse
|
65
|
Worthington A, Peng P, Rod K, Bril V, Tavakkoli J. Image-Guided High Intensity Focused Ultrasound System for Large Animal Nerve Ablation Studies. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2016; 4:2000206. [PMID: 28424753 PMCID: PMC5396848 DOI: 10.1109/jtehm.2016.2581811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
Abstract
High intensity focused ultrasound (HIFU) is a form of thermal ablation technique, which can treat a variety of medical afflictions. One promising therapeutic use is the permanent destruction of nerves non-invasively in patients with severe spasticity or certain types of pain (e.g., phantom limb pain). To this end, HIFU requires ultrasound guidance, which allows the non-invasive, target-specific deposition of thermal energy to the targeted nerve, thereby blocking axonal conduction. In this paper, a composite system comprising both ultrasound-imaging and HIFU therapy was developed and used to induce localized non-invasive nerve blockage in an in vivo large animal study. Five pigs were used with the femoral nerve as the target. Calibrated needle thermocouples inserted at the target site were employed to monitor the target tissue temperature. The degree of nerve blockage was assessed by measuring compound action potential (CAP) signal with a clinical nerve electrophysiology system before and after HIFU exposures. An average CAP signal amplitude reduction of 49% of baseline with a standard deviation of 9% was observed after 20–30 min post exposure. These results demonstrate the feasibility of the proposed ultrasound-guided HIFU modality as a potential non-invasive nerve ablation method.
Collapse
Affiliation(s)
| | - Philip Peng
- Department of Anesthesia and Pain ManagementToronto Western HospitalUniversity of TorontoTorontoONCanada
| | - Kevin Rod
- Department of Community and Family MedicineUniversity of TorontoONCanada.,Toronto Poly ClinicTorontoONCanada
| | - Vera Bril
- Department of NeurologyUniversity Health NetworkToronto Western HospitalTorontoONCanada
| | - Jahan Tavakkoli
- Department of PhysicsRyerson UniversityTorontoONCanada.,Keenan Research Centre for Biomedical ScienceInstitute for Biomedical Engineering, Science and Technology, St. Michael's HospitalTorontoONCanada
| |
Collapse
|
66
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
67
|
Liu R, Xu S, Hu H, Huo R, Wang S, Wan M. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:798. [PMID: 27586712 DOI: 10.1121/1.4960519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.
Collapse
Affiliation(s)
- Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Rui Huo
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
68
|
Lu S, Xu S, Liu R, Hu H, Wan M. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1000. [PMID: 27586732 DOI: 10.1121/1.4960589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
69
|
Bessiere F, N'djin WA, Colas EC, Chavrier F, Greillier P, Chapelon JY, Chevalier P, Lafon C. Ultrasound-Guided Transesophageal High-Intensity Focused Ultrasound Cardiac Ablation in a Beating Heart: A Pilot Feasibility Study in Pigs. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1848-1861. [PMID: 27158083 DOI: 10.1016/j.ultrasmedbio.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Catheter ablation for the treatment of arrhythmia is associated with significant complications and often-repeated procedures. Consequently, a less invasive and more efficient technique is required. Because high-intensity focused ultrasound (HIFU) enables the generation of precise thermal ablations in deep-seated tissues without harming the tissues in the propagation path, it has the potential to be used as a new ablation technique. A system capable of delivering HIFU into the heart by a transesophageal route using ultrasound (US) imaging guidance was developed and tested in vivo in six male pigs. HIFU exposures were performed on atria and ventricles. At the time of autopsy, visual inspection identified thermal lesions in the targeted areas in three of the animals. These lesions were confirmed by histologic analysis (mean size: 5.5 mm(2) × 11 mm(2)). No esophageal thermal injury was observed. One animal presented with bradycardia due to an atrio-ventricular block, which provides real-time confirmation of an interaction between HIFU and the electrical circuits of the heart. Thus, US-guided HIFU has the potential to minimally invasively create myocardial lesions without an intra-cardiac device.
Collapse
Affiliation(s)
- Francis Bessiere
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France; Inserm, LabTau, Lyon, France; Université de Lyon, Lyon, France.
| | | | | | | | - Paul Greillier
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France; Inserm, LabTau, Lyon, France
| | | | - Philippe Chevalier
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France; Université de Lyon, Lyon, France
| | - Cyril Lafon
- Inserm, LabTau, Lyon, France; Université de Lyon, Lyon, France
| |
Collapse
|
70
|
Le N, Song S, Nabi G, Wang R, Huang Z. Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study. Int J Hyperthermia 2016; 32:713-22. [DOI: 10.1080/02656736.2016.1190036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Nhan Le
- Department of Mechanical Engineering, University of Dundee, Dundee, UK
| | - ShaoZhen Song
- Biophotonics and Imaging Laboratory, University of Washington, Seattle, USA
| | - Ghulam Nabi
- Division of Cancer Research, University of Dundee, Angus, Dundee, UK
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Zhihong Huang
- Department of Mechanical Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
71
|
Liu J, Foiret J, Stephens DN, Le Baron O, Ferrara KW. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia. Phys Med Biol 2016; 61:5275-96. [PMID: 27353347 DOI: 10.1088/0031-9155/61/14/5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jingfei Liu
- Department of Biomedical Engineering, University of California, Davis, CA 95616-8686, USA
| | | | | | | | | |
Collapse
|
72
|
Zhang N, Cai X, Gao W, Wang R, Xu C, Yao Y, Hao L, Sheng D, Chen H, Wang Z, Zheng Y. A Multifunctional Theranostic Nanoagent for Dual-Mode Image-Guided HIFU/Chemo- Synergistic Cancer Therapy. Am J Cancer Res 2016; 6:404-17. [PMID: 26909114 PMCID: PMC4737726 DOI: 10.7150/thno.13478] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/09/2015] [Indexed: 11/07/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is deemed to be a promising noninvasive therapeutic modality for cancers as well as non-neoplastic diseases. However, the accuracy of the technique in the diagnosis and treatment of tumors remains unsatisfactory. HIFU, when combined with multifunctional synergistic agents (SAs), has the potential to be of greater diagnostic and therapeutic efficacy. Here we describe a smart and multifunctional hollow mesoporous Prussian blue (HMPBs) theranostic nanoplatform, the hollow structure of which is capable of encapsulating doxorubicin (DOX) and perfluorohexane (HMPBs-DOX/PFH). In vitro and in vivo studies validated that HMPBs-DOX/PFH can be used as an amplifiable dual-mode imaging contrast agent, which can simultaneously enhance ultrasound (US) and photoacoustic (PA) imaging for guiding and monitoring tumor therapy. When exposed to HIFU, this versatile HMPBs-DOX/PFH agent could increase the cavitation effect and use lower HIFU intensity to achieve coagulative necrosis. Furthermore, it significantly accelerated the release of DOX thereby enhancing chemotherapeutic efficacy and avoiding systemic side effects of the drug. Such a novel theranostic nanoplatform is expected to integrate dual-mode guided imaging with greater therapeutic efficacy and fewer side effects and is very promising for the noninvasive synergistic tumor therapy.
Collapse
|
73
|
Ramaekers P, de Greef M, van Breugel JMM, Moonen CTW, Ries M. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in thein vivoporcine liver. Phys Med Biol 2016; 61:1057-77. [DOI: 10.1088/0031-9155/61/3/1057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
74
|
Gray JP, Dana N, Dextraze KL, Maier F, Emelianov S, Bouchard RR. Multi-Wavelength Photoacoustic Visualization of High Intensity Focused Ultrasound Lesions. ULTRASONIC IMAGING 2016; 38:96-112. [PMID: 26149314 PMCID: PMC4961072 DOI: 10.1177/0161734615593747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High intensity focused ultrasound (HIFU) thermal therapies are limited by deficiencies in existing image-guidance techniques. Previous studies using single-wavelength photoacoustic (PA) imaging have demonstrated that HIFU lesions generate contrast with respect to native tissues but have not sufficiently assessed lesion extent. The purpose of this study is to demonstrate feasibility of characterization of in vitro HIFU ablation lesion dimensions using 3D multi-wavelength PA imaging. Fresh porcine cardiac and liver tissue samples were embedded in agar phantoms and ablated using a 2.5 MHz small-animal HIFU system. Both 2D and 3D multi-wavelength photoacoustic-ultrasonic (PAUS) scans were performed in the near-infrared (NIR) range to characterize the change in the absorption spectrum of tissues following ablation and were compared to stained gross pathology to assess treatment margins and lesion extent. Comprehensive 2D multi-wavelength PA imaging yielded a spectrum in ablated tissue that did not display the characteristic local maximum in the optical absorption spectrum of deoxy-hemoglobin (Hb) near 760 nm. Two-dimensional tissue characterization map (TCM) images reconstructed from 3D TCM volumes reliably characterized lesion area and showed >70% area agreement with stained gross pathology. In addition, tissue samples were heated via water bath and concurrently interrogated with 2D PAUS imaging. PA signal exhibited an initial amplitude increase across all wavelengths, corresponding to an initial temperature increase, before then exhibiting a spectral change. This study suggests that multi-wavelength PA imaging has potential to obtain accurate characterization of HIFU lesion extent and may be better suited to guide HIFU ablation therapies during clinical treatments than single-wavelength methods.
Collapse
Affiliation(s)
- J P Gray
- MD Anderson Cancer Center, Houston, TX, USA
| | - N Dana
- University of Texas at Austin, Austin, TX, USA
| | | | - F Maier
- MD Anderson Cancer Center, Houston, TX, USA
| | - S Emelianov
- University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
75
|
Copelan A, Hartman J, Chehab M, Venkatesan AM. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy. Semin Intervent Radiol 2015; 32:398-415. [PMID: 26622104 PMCID: PMC4640913 DOI: 10.1055/s-0035-1564793] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy.
Collapse
Affiliation(s)
- Alexander Copelan
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jason Hartman
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Monzer Chehab
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Aradhana M. Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
76
|
Han Y, Hou GY, Wang S, Konofagou E. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI). Phys Med Biol 2015; 60:5911-24. [PMID: 26184846 DOI: 10.1088/0031-9155/60/15/5911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p < 0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.
Collapse
Affiliation(s)
- Yang Han
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
77
|
Tang ZY, Zhao JN, Zhong WJ, Luo YD, Wu W, Chen WJ, Dai YB. The Value of Proton Magnetic Resonance Spectroscopy in High-Intensity Focused Ultrasound Treatment of Experimental Liver Cancer. Transl Oncol 2015; 8:163-8. [PMID: 26055173 PMCID: PMC4487792 DOI: 10.1016/j.tranon.2015.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a rapidly developing, non-invasive technique for local treatment of solid tumors that produce coagulative tumor necrosis. This study is aimed to investigate the feasibility of proton magnetic resonance spectroscopy (MRS) on early assessing treatment of HIFU ablation in rabbit with VX2 liver tumor. HIFU ablation was performed on normal liver and VX2 tumor in rabbit, and MRS was performed on normal liver and VX2 tumor before and 2 days after 100% HIFU ablation or 80% ablation in tumor volume. Choline (Cho) and choline/lipid (Cho/Lip) ratios between complete and partial HIFU ablation of tumor were compared. Tissues were harvested and sequentially sliced to confirm the necrosis. In normal liver, the Cho value liver was not obviously changed after HIFU (P > .05), but the Cho/Lip ratio was decreased (P < .05). Cho in liver VX2 tumor was much higher than that in normal liver (P < .001). Cho and Cho/Lip ratio were significantly decreased in tumor after complete HIFU ablation and partial HIFU ablation, and the Cho value in complete HIFU tumor ablation did not show any difference from that in normal liver after HIFU (P > .05); however, the Cho value in partial ablation was still higher than that in normal liver before or in tumor after complete HIFU treatment due to the residual part of tumors, and Cho/Lip ratio is lower than that in complete HIFU treatment (P < .001). The changes in MRS parameters were consistent with histopathologic changes of the tumor tissues after treatment. MRS could differentiate the complete tumor necrosis from residual tumor tissue, when combined with magnetic resonance imaging. We conclude that MRS may be applied as an important, non-invasive biomarker for monitoring the thoroughness of HIFU ablation.
Collapse
Affiliation(s)
- Zhuo-Yue Tang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Radiology, Chongqing People's Hospital, Chongqing, China
| | - Jian-Nong Zhao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei-Jia Zhong
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin-Deng Luo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Juan Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Bing Dai
- Department of Otolaryngology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
78
|
Liu R, Hu H, Xu S, Huo R, Wang S, Wan M. Ultrafast active cavitation imaging with enhanced cavitation to tissue ratio based on wavelet transform and pulse inversion. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:3099-3106. [PMID: 26093401 DOI: 10.1121/1.4921606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.
Collapse
Affiliation(s)
- Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Rui Huo
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
79
|
Hu H, Xu S, Yuan Y, Liu R, Wang S, Wan M. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:2563-2572. [PMID: 25994689 DOI: 10.1121/1.4919286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.
Collapse
Affiliation(s)
- Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuan Yuan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
80
|
Ebbini ES, ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 2015; 31:77-89. [PMID: 25614047 DOI: 10.3109/02656736.2014.995238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This paper reviews ultrasound imaging methods for the guidance of therapeutic focused ultrasound (USgFUS), with emphasis on real-time preclinical methods. Guidance is interpreted in the broadest sense to include pretreatment planning, siting of the FUS focus, real-time monitoring of FUS-tissue interactions, and real-time control of exposure and damage assessment. The paper begins with an overview and brief historical background of the early methods used for monitoring FUS-tissue interactions. Current imaging methods are described, and discussed in terms of sensitivity and specificity of the localisation of the FUS effects in both therapeutic and sub-therapeutic modes. Thermal and non-thermal effects are considered. These include cavitation-enhanced heating, tissue water boiling and cavitation. Where appropriate, USgFUS methods are compared with similar methods implemented using other guidance modalities, e.g. magnetic resonance imaging. Conclusions are drawn regarding the clinical potential of the various guidance methods, and the feasibility and current status of real-time implementation.
Collapse
Affiliation(s)
- Emad S Ebbini
- Electrical and Computer Engineering, University of Minnesota Twin Cities , Minneapolis, Minnesota , USA and
| | | |
Collapse
|
81
|
Civale J, Rivens I, ter Haar G. Quality assurance for clinical high intensity focused ultrasound fields. Int J Hyperthermia 2015; 31:193-202. [PMID: 25677839 DOI: 10.3109/02656736.2014.1002435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the use of HIFU in the clinic becomes more widespread there is an ever increasing need to standardise quality assurance protocols, an important step in facilitating the wider acceptance of HIFU as a therapeutic modality. This article reviews pertinent aspects of HIFU treatment delivery, encompassing the closely related aspects of quality assurance and calibration. Particular attention is given to the description and characterisation of relevant acoustic field parameters and the measurement of acoustic power. Where appropriate, recommendations are made.
Collapse
Affiliation(s)
- John Civale
- Division of Radiotherapy and Imaging, Institute of Cancer Research , Sutton, Surrey , UK
| | | | | |
Collapse
|
82
|
Alhamami M, Kolios MC, Tavakkoli J. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Med Phys 2014; 41:053502. [PMID: 24784408 DOI: 10.1118/1.4871621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissues in vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. METHODS A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissues in vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue - a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500-900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors' optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500-900 nm. RESULTS HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75 ± 0.26 (mean ± standard error of the mean). The authors' spectroscopic investigation has shown that HIFU-treated tissues have a greater optical absorption and reduced scattering coefficients than native tissues in the wavelength range of 500-900 nm. In fact, at 720 and 845 nm, the ratio of the optical absorption coefficient of HIFU-treated tissues to that of native tissues was 1.13 and 1.17, respectively; on the other hand, the ratio of the reduced scattering coefficient of HIFU-treated tissues to that of native tissues was 13.22 and 14.67 at 720 and 845 nm, respectively. Consequently, HIFU-treated tissues have a higher effective attenuation coefficient and a lower light penetration depth than native tissues in the wavelength range 500-900 nm. CONCLUSIONS Using a PA approach, HIFU-treated tissues interrogated at 720 and 845 nm optical wavelengths can be differentiated from untreated tissues. Based on the authors' spectroscopic investigation, the authors conclude that the observed PA contrast between HIFU-induced thermal lesions and untreated tissue is due, in part, to the increase in the optical absorption coefficient, the reduced scattering coefficient and, therefore, the deposited laser energy fluence in HIFU-treated tissues.
Collapse
Affiliation(s)
- Mosa Alhamami
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
83
|
Rangraz P, Behnam H, Sobhebidari P, Tavakkoli J. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2841-2850. [PMID: 25438863 DOI: 10.1016/j.ultrasmedbio.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 07/27/2014] [Accepted: 07/31/2014] [Indexed: 06/04/2023]
Abstract
High-intensity focused ultrasound (HIFU) induces thermal lesions by increasing the tissue temperature in a tight focal region. The main ultrasound imaging techniques currently used to monitor HIFU treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation and elastography-based methods. The present study was carried out on ex vivo animal tissue samples, in which backscattered radiofrequency (RF) signals were acquired in real time at time instances before, during and after HIFU treatment. The manifold learning algorithm, a non-linear dimensionality reduction method, was applied to RF signals whichconstruct B-mode images to detect the HIFU-induced changes among the image frames obtained during HIFU treatment. In this approach, the embedded non-linear information in the region of interest of sequential images is represented in a 2-D manifold with the Isomap algorithm, and each image is depicted as a point on the reconstructed manifold. Four distinct regions are chosen in the manifold corresponding to the four phases of HIFU treatment (before HIFU treatment, during HIFU treatment, immediately after HIFU treatment and 10-min after HIFU treatment). It was found that disorganization of the points is achieved by increasing the acoustic power, and if the thermal lesion has been formed, the regions of points related to pre- and post-HIFU significantly differ. Moreover, the manifold embedding was repeated on 2-D moving windows in RF data envelopes related to pre- and post-HIFU exposure data frames. It was concluded that if mean values of the points related to pre- and post-exposure frames in the reconstructed manifold are estimated, and if the Euclidean distance between these two mean values is calculated and the sliding window is moved and this procedure is repeated for the whole image, a new image based on the Euclidean distance can be formed in which the HIFU thermal lesion is detectable.
Collapse
Affiliation(s)
- Parisa Rangraz
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | | |
Collapse
|
84
|
Abstract
High intensity focused ultrasound (HIFU), is a promising, non-invasive modality for treatment of tumours in conjunction with magnetic resonance imaging or diagnostic ultrasound guidance. HIFU is being used increasingly for treatment of prostate cancer and uterine fibroids. Over the last 10 years a growing number of clinical trials have examined HIFU treatment of both benign and malignant tumours of the liver, breast, pancreas, bone, connective tissue, thyroid, parathyroid, kidney and brain. For some of these emerging indications, HIFU is poised to become a serious alternative or adjunct to current standard treatments--including surgery, radiation, gene therapy, immunotherapy, and chemotherapy. Current commercially available HIFU devices are marketed for their thermal ablation applications. In the future, lower energy treatments may play a significant role in mediating targeted drug and gene delivery for cancer treatment. In this article we introduce currently available HIFU systems, provide an overview of clinical trials in emerging oncological targets, and briefly discuss selected pre-clinical research that is relevant to future oncological HIFU applications.
Collapse
Affiliation(s)
- Ezekiel Maloney
- Department of Radiology, University of Washington , Seattle and
| | | |
Collapse
|
85
|
Hou GY, Provost J, Grondin J, Wang S, Marquet F, Bunting E, Konofagou EE. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:2107-17. [PMID: 24960528 PMCID: PMC4327913 DOI: 10.1109/tmi.2014.2332184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jean Provost
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Julien Grondin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shutao Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ethan Bunting
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
86
|
Li T, Khokhlova TD, Sapozhnikov OA, O'Donnell M, Hwang JH. A new active cavitation mapping technique for pulsed HIFU applications--bubble Doppler. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1698-708. [PMID: 25265178 PMCID: PMC4454370 DOI: 10.1109/tuffc.2014.006502] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility is tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents-color Doppler, pulse-inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach-bubble Doppler-was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity.
Collapse
|
87
|
Song JH, Chang JH. An effective pulse sequence for simultaneous HIFU insonation and monitoring. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1580-1587. [PMID: 25167158 DOI: 10.1109/tuffc.2014.3072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The HIFU interference cancellation method using pulse inversion is useful for real-time treatment monitoring; however, this method suffers from residual interference when a high duty cycle is employed. In this paper, a pulse sequence is proposed to overcome the problem. It was experimentally verified that all interference could be removed using the pulse sequence. This implies that the HIFU interference cancellation method with the pulse sequence can be utilized for simultaneous HIFU insonation and monitoring under any duty cycle condition.
Collapse
|
88
|
Kim Y, Maxwell AD, Hall TL, Xu Z, Lin KW, Cain CA. Rapid prototyping fabrication of focused ultrasound transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1559-1574. [PMID: 25167156 DOI: 10.1109/tuffc.2014.3070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rapid prototyping (RP) fabrication techniques are currently widely used in diverse industrial and medical fields, providing substantial advantages in development time and costs in comparison to more traditional manufacturing processes. This paper presents a new method for the fabrication of high-intensity focused ultrasound transducers using RP technology. The construction of a large-aperture hemispherical transducer designed by computer software is described to demonstrate the process. The transducer was conceived as a modular design consisting of 32 individually focused 50.8-mm (2-in) PZT-8 element modules distributed in a 300-mm hemispherical scaffold with a geometric focus of 150 mm. The entire structure of the array, including the module housings and the hemispherical scaffold was fabricated through a stereolithography (SLA) system using a proprietary photopolymer. The PZT elements were bonded to the lenses through a quarter-wave tungsten-epoxy matching layer developed in-house specifically for this purpose. Modules constructed in this manner displayed a high degree of electroacoustic consistency, with an electrical impedance mean and standard deviation of 109 ± 10.2 Ω for the 32 elements. Time-of-flight measurements for individually pulsed modules mounted on the hemispherical scaffold showed that all pulses arrived at the focus within a 350 ns range, indicating a good degree of element alignment. Pressure profile measurements of the fully assembled transducer also showed close agreement with simulated results. The measured focal beam FWHM dimensions were 1.9 × 4.0 mm (1.9 × 3.9 mm simulated) in the transversal and axial directions respectively. Total material expenses associated with the construction of the transducer were approximately 5000 USD (as of 2011). The versatility and lower fabrication costs afforded by RP methods may be beneficial in the development of complex transducer geometries suitable for a variety of research and clinical applications.
Collapse
|
89
|
High-intensity focused ultrasound ablation assisted using color Doppler imaging for the treatment of hepatocellular carcinomas. ACTA ACUST UNITED AC 2014; 38:1263-8. [PMID: 23728304 PMCID: PMC3827892 DOI: 10.1007/s00261-013-0010-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). MATERIALS AND METHODS US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. RESULTS The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. CONCLUSION Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.
Collapse
|
90
|
Shaw CJ, ter Haar GR, Rivens IH, Giussani DA, Lees CC. Pathophysiological mechanisms of high-intensity focused ultrasound-mediated vascular occlusion and relevance to non-invasive fetal surgery. J R Soc Interface 2014; 11:20140029. [PMID: 24671935 PMCID: PMC4006242 DOI: 10.1098/rsif.2014.0029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive technology, which can be used occlude blood vessels in the body. Both the theory underlying and practical process of blood vessel occlusion are still under development and relatively sparse in vivo experimental and therapeutic data exist. HIFU would however provide an alternative to surgery, particularly in circumstances where serious complications inherent to surgery outweigh the potential benefits. Accordingly, the HIFU technique would be of particular utility for fetal and placental interventions, where open or endoscopic surgery is fraught with difficulty and likelihood of complications including premature delivery. This assumes that HIFU could be shown to safely and effectively occlude blood vessels in utero. To understand these mechanisms more fully, we present a review of relevant cross-specialty literature on the topic of vascular HIFU and suggest an integrative mechanism taking into account clinical, physical and engineering considerations through which HIFU may produce vascular occlusion. This model may aid in the design of HIFU protocols to further develop this area, and might be adapted to provide a non-invasive therapy for conditions in fetal medicine where vascular occlusion is beneficial.
Collapse
Affiliation(s)
- C. J. Shaw
- Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - G. R. ter Haar
- Joint Department of Physics, Institute of Cancer Research: Royal Marsden NHSF Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - I. H. Rivens
- Joint Department of Physics, Institute of Cancer Research: Royal Marsden NHSF Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - D. A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - C. C. Lees
- Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Campus Gasthuisberg, KU Leuven, Belgium
| |
Collapse
|
91
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
92
|
A novel high intensity focused ultrasound robotic system for breast cancer treatment. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2014; 16:388-95. [PMID: 24505785 DOI: 10.1007/978-3-642-40760-4_49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
High intensity focused ultrasound (HIFU) is a promising technique for cancer treatment owing to its minimal invasiveness and safety. However, skin burn, long treatment time and incomplete ablation are main shortcomings of this method. This paper presents a novel HIFU robotic system for breast cancer treatment. The robot has 4 rotational degrees of freedom with the workspace located in a water tank for HIFU beam imaging and ablation treatment. The HIFU transducer combined with a diagnostic 2D linear ultrasound probe is mounted on the robot end-effector, which is rotated around the HIFU focus when ablating the tumor. HIFU beams are visualized by the 2D probe using beam imaging. Skin burn can be prevented or alleviated by avoiding long time insonification towards the same skin area. The time cost could be significantly reduced, as there is no need to interrupt the ablation procedure for cooling the skin. In addition, our proposed robot control strategies can avoid incomplete ablation. Experiments were carried out and the results showed the effectiveness of our proposed system.
Collapse
|
93
|
Weiss N, Goldberg SN, Sosna J, Azhari H. Temperature–density hysteresis in X-ray CT during HIFU thermal ablation: Heating and cooling phantom study. Int J Hyperthermia 2013; 30:27-35. [DOI: 10.3109/02656736.2013.860241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
94
|
Aoyagia R, Nakamura H, Azuma T, Yoshinaka K, Takeuchi H, Fujiwara K, Itani K, Sasaki A, Takagi S, Matsumoto Y. Localized elasticity measurement for detection of coagulation during HIFU therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:6273-6. [PMID: 24111174 DOI: 10.1109/embc.2013.6610987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High intensity focused ultrasound (HIFU) treatment is one minimally invasive treatment method for cancer. Visualizing the internal treatment area of a body during HIFU treatment is required in order to achieve appropriate beam positioning and HIFU dosage. The objective of this work is to develop an ultrasound monitoring system for thermally induced coagulation. Localized motion imaging (LMI) is a monitoring method used to detect a localized mechanical response that is dependent on changes in tissue stiffness caused by thermal coagulation. In LMI, amplitude modulated HIFU causes oscillation of tissues in the HIFU focal area. The elastic modulus at a coagulated area increases and can be detected as an area with decreased oscillation amplitude., Localized control of the oscillation by changing the modulation frequency was conducted to increase the detection sensitivity for small coagulated areas in porcine liver. 2 and 7.5 MHz transducers were employed for HIFU and imaging, respectively. The amplitude modulation frequency was changed in the range from 50 to 200 Hz. The acoustic intensity of HIFU was 2.0 kW/cm2 at the focus and the exposure time was 45 s. The decrease in the amplitude of tissue oscillation at the focal point was detected within 5-10 s of HIFU exposure at the highest modulation frequency. The detected amplitude was decreased to 0.2, which indicates that for LMI, a high modulation frequency is suitable for the detection of small coagulation areas or areas of initial coagulation.
Collapse
|
95
|
Zhu J, Zhu H, Mei Z, Jin C, Ran L, Zhou K, Yang W, Zhang L, She C. High-intensity focused ultrasound ablation for treatment of hepatocellular carcinoma and hypersplenism: preliminary study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:1855-1862. [PMID: 24065267 DOI: 10.7863/ultra.32.10.1855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The purpose of this work was to preliminarily investigate the efficacy and safety of high-intensity focused ultrasound treatment of hepatocellular carcinoma and hypersplenism. Nine patients with hepatocellular carcinoma complicated by hypersplenism (5 male and 4 female; median age, 56 years; range, 51-66 years) were treated with ultrasound-guided high-intensity focused ultrasound. Complications were recorded. Laboratory examination and magnetic resonance imaging were used to evaluate the efficacy. After high-intensity focused ultrasound treatment, mean spleen ablation ± SD of 28.76% ± 6.1% was discovered; meanwhile, the white blood cell count, platelet count, and liver function of the patients were substantially improved during the follow-up period. In addition, symptoms such as epistaxis and gingival bleeding were ameliorated or even eliminated, and the quality of life was improved. Follow-up imaging showed a nonperfused volume in the spleen and an absence of a tumor blood supply at the treated lesions in the liver. For the first time to our knowledge, high-intensity focused ultrasound ablation was used to treat hepatocellular carcinoma complicated by hypersplenism. High-intensity focused ultrasound may be an effective and safe alternative for treatment of hepatocellular carcinoma complicated by hypersplenism, but further studies are necessary to clarify the mechanisms.
Collapse
Affiliation(s)
- Jing Zhu
- College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Casper AJ, Liu D, Ballard JR, Ebbini ES. Real-time implementation of a dual-mode ultrasound array system: in vivo results. IEEE Trans Biomed Eng 2013; 60:2751-9. [PMID: 23708766 PMCID: PMC3779652 DOI: 10.1109/tbme.2013.2264484] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.
Collapse
Affiliation(s)
- Andrew J. Casper
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - John R. Ballard
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emad S. Ebbini
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
97
|
Rahimian S, Tavakkoli J. Estimating dynamic changes of tissue attenuation coefficient during high-intensity focused ultrasound treatment. J Ther Ultrasound 2013; 1:14. [PMID: 25516802 PMCID: PMC4265947 DOI: 10.1186/2050-5736-1-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study investigated the dynamic changes of tissue attenuation coefficients before, during, and after high-intensity focused ultrasound (HIFU) treatment at different total acoustic powers (TAP) in ex vivo porcine muscle tissue. It further assessed the reliability of employing changes in tissue attenuation coefficient parameters as potential indicators of tissue thermal damage. METHODS Two-dimensional pulse-echo radio frequency (RF) data were acquired before, during, and after HIFU exposure to estimate changes in least squares attenuation coefficient slope (Δβ) and attenuation coefficient intercept (Δα 0). Using the acquired RF data, Δβ and Δα 0 images, along with conventional B-mode ultrasound images, were constructed. The dynamic changes of Δβ and Δα 0, averaged in the region of interest, were correlated with B-mode images obtained during the HIFU treatment process. RESULTS At a HIFU exposure duration of 40 s and various HIFU intensities (737-1,068 W/cm(2)), Δβ and Δα 0 increased rapidly to values in the ranges 1.5-2.5 dB/(MHz.cm) and 4-5 dB/cm, respectively. This rapid increase was accompanied with the appearance of bubble clouds in the B-mode images. Bubble activities appeared as strong hyperechoic regions in the B-mode images and caused fluctuations in the estimated Δβ and Δα 0 values. After the treatment, Δβ and Δα 0 values gradually decreased, accompanied by fade-out of hyperechoic spots in the B-mode images. At 10 min after the treatment, they reached values in ranges 0.75-1 dB/(MHz.cm) and 1-1.5 dB/cm, respectively, and remained stable within those ranges. At a long HIFU exposure duration of around 10 min and low HIFU intensity (117 W/cm(2)), Δβ and Δα 0 gradually increased to values of 2.2 dB/(MHz.cm) and 2.2 dB/cm, respectively. This increase was not accompanied with the appearance of bubble clouds in the B-mode images. After HIFU treatment, Δβ and Δα 0 gradually decreased to values of 1.8 dB/(MHz.cm) and 1.5 dB/cm, respectively, and remained stable at those values. CONCLUSIONS Δβ and Δα 0 estimations were both potentially reliable indicators of tissue thermal damage. In addition, Δβ and Δα 0 images both had significantly higher contrast-to-speckle ratios compared to the conventional B-mode images and outperformed the B-mode images in detecting HIFU thermal lesions at all investigated TAPs and exposure durations.
Collapse
Affiliation(s)
- Siavash Rahimian
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
98
|
Sijia Guo, Yun Jing, Xiaoning Jiang. Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1699-1707. [PMID: 25004540 DOI: 10.1109/tuffc.2013.2751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-intensity focused ultrasound (HIFU) is becoming an increasingly important noninvasive surgical tool, despite the challenges in temperature rise control and unwanted heating problems. In this study, experiments and simulations on tissue ablation effectiveness were performed using multi-frequency HIFU with frequency differences of more than 500 kHz (center frequencies are 950 kHz, 1.5 MHz, and 3.3 MHz). In the experiments, the temperature was recorded as chicken breast tissue was heated by single-frequency, dual-frequency, and tri-frequency HIFU configurations at controlled acoustic power and exposure time. 5% to 10% temperature rise differences were observed between single- and multi-frequency modes, indicating that multi-frequency HIFU is more effective at producing faster temperature rises. Cavitation detection tests were conducted to compare the cavitation pressure fields between single- and multi-frequency ultrasound. Moreover, simulations on single-frequency and multi-frequency acoustic fields as well as bio-heating-induced temperature fields were performed. With the comparison between experimental and simulation results, we believe that the more effective tissue ablation using multi-frequency ultrasound is likely attributed to the enhanced cavitation, a promising result for HIFU applications.
Collapse
|
99
|
Bu R, Yin L, Yang H, Wang Q, Wu F, Zou JZ. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1410-1419. [PMID: 23711500 DOI: 10.1016/j.ultrasmedbio.2013.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/02/2013] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p < 0.01). This study revealed that the complete peripheral necrosis barrier within the target tissues can defined using linear-scanned HIFU in an isolated porcine liver perfusion model. Additionally, the flow rate in the major hepatic vessels may play an important role in the use of the peripheral ablation mode, and this novel mode of ablation may enhance the therapeutic efficacy and tolerability of the treatment of large tumors using HIFU ablation.
Collapse
Affiliation(s)
- Rui Bu
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing 400016, China
| | | | | | | | | | | |
Collapse
|
100
|
Kemmerer JP, Ghoshal G, Karunakaran C, Oelze ML. Assessment of high-intensity focused ultrasound treatment of rodent mammary tumors using ultrasound backscatter coefficients. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1559-68. [PMID: 23927196 PMCID: PMC3745495 DOI: 10.1121/1.4812877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fischer 344 rats with subcutaneous mammary adenocarcinoma tumors were exposed to therapeutic ultrasound at one of three exposure levels (335, 360, and 502 W/cm(2) spatial-peak temporal-average intensity). Quantitative ultrasound estimates were generated from ultrasound radio frequency (RF) data from tumors before and after high-intensity focused ultrasound treatment. Treatment outcome was independently assessed by triphenyl tetrazolium chloride (TTC) staining, histological analysis by a pathologist, and thermocouple data. The average backscatter coefficient (BSC) and integrated backscatter coefficient (IBSC) were estimated before and after therapeutic ultrasound exposure for each tumor from RF data collected using clinical (Ultrasonix Sonix RP) and small-animal (Visualsonics Vevo 2100) array systems. Changes in the BSC with treatment were comparable to inter-sample variation of untreated tumors, but statistically significant differences in the change in the IBSCs were observed when comparing the exposures collectively (p < 0.10 for Sonix RP, p < 0.05 for Vevo 2100). Several exposure levels produced statistically significant differences in the change in IBSC when examined pair-wise, including two exposures having similar intensities (p < 0.05, Vevo 2100). A comparison of the IBSC results with temperature data, histology, and TTC staining revealed that the BSC was not always sensitive to thermal insult and that peak exposure pressure appeared to correlate with observed BSC increases.
Collapse
Affiliation(s)
- Jeremy P Kemmerer
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61081, USA
| | | | | | | |
Collapse
|